Order conditions for general linear methods

We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This derivation is based on the extension of the Albrecht approach proposed in the context of Runge–Kutta and composite and linear cyclic methods. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 290; S. 44 - 64
Hauptverfasser: Cardone, Angelamaria, Jackiewicz, Zdzisław, Verner, James H., Welfert, Bruno
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.12.2015
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This derivation is based on the extension of the Albrecht approach proposed in the context of Runge–Kutta and composite and linear cyclic methods. This approach was generalized by Jackiewicz and Tracogna to two-step Runge–Kutta methods, by Jackiewicz and Vermiglio to general linear methods with external stages of different orders, and by Garrappa to some classes of Runge–Kutta methods for Volterra integral equations with weakly singular kernels. This leads to general order conditions for many special cases of general linear methods such as diagonally implicit multistage integration methods, Nordsieck methods, and general linear methods with inherent Runge–Kutta stability. Exact coefficients for several low order methods with some desirable stability properties are presented for illustration.
AbstractList We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This derivation is based on the extension of the Albrecht approach proposed in the context of Runge–Kutta and composite and linear cyclic methods. This approach was generalized by Jackiewicz and Tracogna to two-step Runge–Kutta methods, by Jackiewicz and Vermiglio to general linear methods with external stages of different orders, and by Garrappa to some classes of Runge–Kutta methods for Volterra integral equations with weakly singular kernels. This leads to general order conditions for many special cases of general linear methods such as diagonally implicit multistage integration methods, Nordsieck methods, and general linear methods with inherent Runge–Kutta stability. Exact coefficients for several low order methods with some desirable stability properties are presented for illustration.
Author Welfert, Bruno
Verner, James H.
Jackiewicz, Zdzisław
Cardone, Angelamaria
Author_xml – sequence: 1
  givenname: Angelamaria
  orcidid: 0000-0003-2399-1137
  surname: Cardone
  fullname: Cardone, Angelamaria
  email: ancardone@unisa.it
  organization: Dipartimento di Matematica, Università di Salerno, Fisciano (Sa), 84084, Italy
– sequence: 2
  givenname: Zdzisław
  surname: Jackiewicz
  fullname: Jackiewicz, Zdzisław
  email: jackiewicz@asu.edu
  organization: Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA
– sequence: 3
  givenname: James H.
  surname: Verner
  fullname: Verner, James H.
  email: jimverner@shaw.ca
  organization: Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6, Canada
– sequence: 4
  givenname: Bruno
  surname: Welfert
  fullname: Welfert, Bruno
  email: welfert@asu.edu
  organization: Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA
BookMark eNp9kEtLAzEUhYNUsK3-AHezFGTqTeaRCa6k-IJCN7oOmeSOpswkNZkK_nsz1JWLwoEDl_NdOGdBZs47JOSawooCre92K62GFQNaraBMYmdkThsucsp5MyNzKDjP05lfkEWMOwCoBS3n5HYbDIZMe2fsaL2LWedD9oEOg-qz3jpUIRtw_PQmXpLzTvURr_58Sd6fHt_WL_lm-_y6ftjkuuDFmHdtyZQAzjvAhhneIWt51eq2oVoJ09aioA1SbISooOwUZVXNRYoLjRWnpliSm-PfffBfB4yjHGzU2PfKoT9EOVUCYAWtU5Qfozr4GAN2UttRTUXGoGwvKchpHrmTaR45zSOhTGKJpP_IfbCDCj8nmfsjg6n9t8Ugo7boNBobUI_SeHuC_gX6DH5U
CitedBy_id crossref_primary_10_1007_s40314_025_03202_1
crossref_primary_10_1016_j_cam_2023_115629
crossref_primary_10_1016_j_apnum_2017_04_001
crossref_primary_10_1007_s40314_023_02356_0
crossref_primary_10_1016_j_cam_2019_112488
crossref_primary_10_1016_j_apnum_2018_05_004
crossref_primary_10_1007_s10915_019_01021_1
crossref_primary_10_1016_j_apnum_2022_08_010
crossref_primary_10_1016_j_amc_2022_127204
crossref_primary_10_1007_s41980_022_00731_x
crossref_primary_10_1016_j_apnum_2019_12_022
crossref_primary_10_1016_j_cam_2018_03_018
crossref_primary_10_1007_s11075_024_02004_6
crossref_primary_10_3390_axioms7030045
Cites_doi 10.1137/0728062
10.1007/BF01990528
10.1023/A:1019195215402
10.1016/0168-9274(93)90059-Z
10.1016/S0168-9274(96)00043-8
10.1023/A:1021152005287
10.1090/S0025-5718-1966-0189251-X
10.1016/j.apnum.2004.08.010
10.1007/BF01389876
10.1007/s11075-013-9759-y
10.1007/BF01733788
10.1023/A:1021987717046
10.1007/s11075-013-9789-5
10.1016/j.cam.2008.02.014
10.1016/S0377-0427(96)00093-3
10.1007/BF01933191
10.1016/j.apnum.2008.03.013
10.1016/0096-3003(89)90108-2
10.1016/j.amc.2011.11.088
10.1137/S0036142995282509
10.1016/S0168-9274(97)00109-8
10.1016/S0377-0427(97)00039-3
10.1007/BF02142812
10.1023/A:1019135630307
10.3846/13926292.2013.785039
10.1016/j.cam.2013.09.020
10.1016/j.jcp.2011.03.015
10.1137/S0036142994260872
10.1023/B:NUMA.0000027738.54515.50
10.1137/0724030
10.1137/0732064
10.1023/B:BITN.0000009952.71388.23
10.1007/s00211-002-0452-7
10.1016/j.cam.2003.10.007
10.1023/B:BITN.0000046804.67936.06
10.1016/j.camwa.2007.04.026
10.1016/j.apnum.2010.02.004
10.1017/S0962492906220014
10.1007/s12190-011-0485-0
10.21136/AM.1995.134306
10.1023/A:1022352704635
10.3846/13926292.2012.655789
10.3846/13926292.2014.892903
10.1007/s10543-006-0046-3
10.1016/S0168-9274(96)00046-3
10.1007/s11075-011-9509-y
10.1023/A:1019157029031
10.3846/13926292.2012.685497
10.1023/A:1021195804379
10.1007/BF03167454
10.1007/s10543-006-0078-8
10.1090/S0025-5718-1992-1136222-8
10.1016/j.jco.2007.01.009
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2015.04.042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 64
ExternalDocumentID 10_1016_j_cam_2015_04_042
S037704271500268X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FGOYB
G-2
HZ~
NHB
R2-
SEW
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c373t-fb42a9077f0e82d7fe2b75bcb81ca9db69318e1e899504fa12567977f9ce571d3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359167100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sun Sep 28 04:29:32 EDT 2025
Sat Nov 29 06:39:03 EST 2025
Tue Nov 18 21:57:31 EST 2025
Fri Feb 23 02:31:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 65L05
Nordsieck methods
65L20
Order conditions
Two-step Runge–Kutta formulas
General linear methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-fb42a9077f0e82d7fe2b75bcb81ca9db69318e1e899504fa12567977f9ce571d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2399-1137
OpenAccessLink https://www.openaccessrepository.it/record/182832
PQID 1778002316
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1778002316
crossref_citationtrail_10_1016_j_cam_2015_04_042
crossref_primary_10_1016_j_cam_2015_04_042
elsevier_sciencedirect_doi_10_1016_j_cam_2015_04_042
PublicationCentury 2000
PublicationDate 2015-12-15
PublicationDateYYYYMMDD 2015-12-15
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Butcher, Jackiewicz (br000110) 2003; 95
Tracogna (br000220) 1996
Schmitt, Weiner, Jebens (br000245) 2009; 59
Weiner, Biermann, Schmitt, Podhaisky (br000250) 2008; 55
Albrecht (br000315) 1996; 33
Butcher, Jackiewicz (br000115) 2004; 36
Beck, Weiner, Podhaisky, Schmitt (br000235) 2012; 38
Lambert (br000060) 1991
Braś, Cardone (br000280) 2012; 17
Butcher, Hill (br000270) 2006; 46
Butcher, Jackiewicz, Mittelmann (br000125) 1997; 81
Wright (br000045) 2002
Bartoszewski, Jackiewicz (br000145) 2012; 218
Butcher (br000035) 2006; 15
Lambert (br000055) 1973
Shampine, Gordon (br000070) 1975
Tracogna, Welfert (br000225) 2000; 40
Jackiewicz, Vermiglio (br000325) 1996; 36
Garrappa (br000330) 2010; 60
Hairer, Nørsett, Wanner (br000010) 1993; vol. 8
Butcher (br000030) 2003
J.C. Butcher, Y. Habib, A.T. Hill, T.J.T. Norton, The control of parasitism in G-symplectic methods. Report, Auckland, 2013.
Butcher, Wright (br000135) 2003; 43
Jebens, Knoth, Weiner (br000240) 2011; 230
D’Ambrosio, Paternoster (br000295) 2014; 262
Butcher, Jackiewicz, Wright (br000130) 2007; 23
Butcher, Chartier, Jackiewicz (br000275) 1999; 22
Jackiewicz, Tracogna (br000195) 1995; 32
Albrecht (br000310) 1989; 31
Tracogna (br000215) 1996; 76
Jackiewicz, Tracogna (br000200) 1996; 12
Burrage, Butcher (br000260) 1980; 20
Bartoszewski, Jackiewicz (br000175) 1998; 18
Albrecht (br000320) 1996; 22
Jackiewicz (br000015) 2009
Jackiewicz, Verner (br000205) 2002; 19
Butcher (br000020) 1966; 20
Butcher, Jackiewicz (br000085) 1993; 33
Butcher, Chartier, Jackiewicz (br000155) 1997; 16
Albrecht (br000300) 1985; 47
Jackiewicz, Zennaro (br000210) 1992; 59
Butcher, Jackiewicz (br000095) 1997; 34
D’Ambrosio, De Martino, Paternoster (br000340) 2014; 40
Wright (br000230) 2002; 31
Jackiewicz, Renaut, Zennaro (br000190) 1995; 40
Hairer, Wanner (br000040) 2010; vol. 14
Butcher (br000080) 1993; 11
Jackiewicz, Renaut, Feldstein (br000185) 1991; 28
Butcher (br000005) 2008
Butcher, Jackiewicz (br000090) 1996; 21
Braś, Cardone, D’Ambrosio (br000150) 2013; 18
Henrici (br000050) 1962
Cardone, Jackiewicz, Sandu, Zhang (br000290) 2014; 65
Albrecht (br000305) 1987; 24
Shampine (br000065) 1994
Butcher, Jackiewicz (br000105) 2001; 41
Butcher (br000265) 2006; 46
Cardone, Jackiewicz, Sandu, Zhang (br000285) 2014; 19
Cardone, Jackiewicz, Mittelmann (br000170) 2012; 17
Butcher, Jackiewicz (br000100) 1998; 27
Butcher (br000025) 1987
Butcher, Imran (br000335) 2014; 65
Weiner, Schmitt, Podhaisky, Jebens (br000255) 2009; 223
Bartoszewski, Jackiewicz (br000140) 2005; 53
Butcher, Jackiewicz (br000120) 2004; 44
Cardone, Jackiewicz (br000165) 2012; 60
Jackiewicz, Podhaisky, Weiner (br000180) 2004; 167
Butcher, Jackiewicz (br000160) 2002; 31
Dekker, Verwer (br000075) 1984; vol. 2
Bartoszewski (10.1016/j.cam.2015.04.042_br000145) 2012; 218
Butcher (10.1016/j.cam.2015.04.042_br000135) 2003; 43
Schmitt (10.1016/j.cam.2015.04.042_br000245) 2009; 59
Albrecht (10.1016/j.cam.2015.04.042_br000300) 1985; 47
Butcher (10.1016/j.cam.2015.04.042_br000120) 2004; 44
Henrici (10.1016/j.cam.2015.04.042_br000050) 1962
Butcher (10.1016/j.cam.2015.04.042_br000125) 1997; 81
Butcher (10.1016/j.cam.2015.04.042_br000110) 2003; 95
Weiner (10.1016/j.cam.2015.04.042_br000255) 2009; 223
Butcher (10.1016/j.cam.2015.04.042_br000005) 2008
Cardone (10.1016/j.cam.2015.04.042_br000290) 2014; 65
Albrecht (10.1016/j.cam.2015.04.042_br000320) 1996; 22
Braś (10.1016/j.cam.2015.04.042_br000280) 2012; 17
Tracogna (10.1016/j.cam.2015.04.042_br000215) 1996; 76
Butcher (10.1016/j.cam.2015.04.042_br000275) 1999; 22
Jackiewicz (10.1016/j.cam.2015.04.042_br000185) 1991; 28
Butcher (10.1016/j.cam.2015.04.042_br000335) 2014; 65
Weiner (10.1016/j.cam.2015.04.042_br000250) 2008; 55
Butcher (10.1016/j.cam.2015.04.042_br000105) 2001; 41
Bartoszewski (10.1016/j.cam.2015.04.042_br000140) 2005; 53
Butcher (10.1016/j.cam.2015.04.042_br000265) 2006; 46
Hairer (10.1016/j.cam.2015.04.042_br000040) 2010; vol. 14
Butcher (10.1016/j.cam.2015.04.042_br000100) 1998; 27
Jebens (10.1016/j.cam.2015.04.042_br000240) 2011; 230
Lambert (10.1016/j.cam.2015.04.042_br000060) 1991
Butcher (10.1016/j.cam.2015.04.042_br000080) 1993; 11
Wright (10.1016/j.cam.2015.04.042_br000230) 2002; 31
Butcher (10.1016/j.cam.2015.04.042_br000160) 2002; 31
Hairer (10.1016/j.cam.2015.04.042_br000010) 1993; vol. 8
Cardone (10.1016/j.cam.2015.04.042_br000285) 2014; 19
Albrecht (10.1016/j.cam.2015.04.042_br000315) 1996; 33
Shampine (10.1016/j.cam.2015.04.042_br000065) 1994
Albrecht (10.1016/j.cam.2015.04.042_br000305) 1987; 24
Butcher (10.1016/j.cam.2015.04.042_br000085) 1993; 33
Cardone (10.1016/j.cam.2015.04.042_br000170) 2012; 17
Butcher (10.1016/j.cam.2015.04.042_br000115) 2004; 36
Braś (10.1016/j.cam.2015.04.042_br000150) 2013; 18
D’Ambrosio (10.1016/j.cam.2015.04.042_br000295) 2014; 262
Butcher (10.1016/j.cam.2015.04.042_br000035) 2006; 15
Tracogna (10.1016/j.cam.2015.04.042_br000225) 2000; 40
Butcher (10.1016/j.cam.2015.04.042_br000270) 2006; 46
Jackiewicz (10.1016/j.cam.2015.04.042_br000325) 1996; 36
Butcher (10.1016/j.cam.2015.04.042_br000030) 2003
Butcher (10.1016/j.cam.2015.04.042_br000130) 2007; 23
Beck (10.1016/j.cam.2015.04.042_br000235) 2012; 38
Butcher (10.1016/j.cam.2015.04.042_br000155) 1997; 16
Jackiewicz (10.1016/j.cam.2015.04.042_br000180) 2004; 167
Jackiewicz (10.1016/j.cam.2015.04.042_br000015) 2009
Bartoszewski (10.1016/j.cam.2015.04.042_br000175) 1998; 18
Albrecht (10.1016/j.cam.2015.04.042_br000310) 1989; 31
Wright (10.1016/j.cam.2015.04.042_br000045) 2002
Butcher (10.1016/j.cam.2015.04.042_br000020) 1966; 20
10.1016/j.cam.2015.04.042_br000345
Butcher (10.1016/j.cam.2015.04.042_br000090) 1996; 21
Jackiewicz (10.1016/j.cam.2015.04.042_br000190) 1995; 40
Jackiewicz (10.1016/j.cam.2015.04.042_br000210) 1992; 59
Tracogna (10.1016/j.cam.2015.04.042_br000220) 1996
Shampine (10.1016/j.cam.2015.04.042_br000070) 1975
Burrage (10.1016/j.cam.2015.04.042_br000260) 1980; 20
D’Ambrosio (10.1016/j.cam.2015.04.042_br000340) 2014; 40
Dekker (10.1016/j.cam.2015.04.042_br000075) 1984; vol. 2
Lambert (10.1016/j.cam.2015.04.042_br000055) 1973
Garrappa (10.1016/j.cam.2015.04.042_br000330) 2010; 60
Butcher (10.1016/j.cam.2015.04.042_br000095) 1997; 34
Butcher (10.1016/j.cam.2015.04.042_br000025) 1987
Cardone (10.1016/j.cam.2015.04.042_br000165) 2012; 60
Jackiewicz (10.1016/j.cam.2015.04.042_br000205) 2002; 19
Jackiewicz (10.1016/j.cam.2015.04.042_br000200) 1996; 12
Jackiewicz (10.1016/j.cam.2015.04.042_br000195) 1995; 32
References_xml – year: 1991
  ident: br000060
  article-title: The initial value problem
  publication-title: Numerical Methods for Ordinary Differential Systems
– volume: vol. 14
  year: 2010
  ident: br000040
  publication-title: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems
– volume: 12
  start-page: 347
  year: 1996
  end-page: 368
  ident: br000200
  article-title: Variable stepsize continuous two-step Runge–Kutta methods for ordinary differential equations
  publication-title: Numer. Algorithms
– volume: 21
  start-page: 385
  year: 1996
  end-page: 415
  ident: br000090
  article-title: Construction of diagonally implicit general linear methods of type 1 and 2 for ordinary differential equations
  publication-title: Appl. Numer. Math.
– volume: 28
  start-page: 1165
  year: 1991
  end-page: 1182
  ident: br000185
  article-title: Two-step Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
– volume: 22
  start-page: 3
  year: 1996
  end-page: 21
  ident: br000320
  article-title: The common basis of the theories of linear cyclic methods and Runge–Kutta methods
  publication-title: Appl. Numer. Math.
– volume: 36
  start-page: 53
  year: 2004
  end-page: 72
  ident: br000115
  article-title: Construction of general linear methods with Runge–Kutta stability properties
  publication-title: Numer. Algorithms
– volume: 81
  start-page: 181
  year: 1997
  end-page: 196
  ident: br000125
  article-title: A nonlinear optimization approach to the construction of general linear methods of high order
  publication-title: J. Comput. Appl. Math.
– year: 2008
  ident: br000005
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: 41
  start-page: 656
  year: 2001
  end-page: 665
  ident: br000105
  article-title: A reliable error estimation for diagonally implicit multistage integration methods
  publication-title: BIT
– volume: 31
  start-page: 1
  year: 1989
  end-page: 17
  ident: br000310
  article-title: Elements of a general theory of composite integration methods
  publication-title: Appl. Math. Comput.
– volume: 223
  start-page: 753
  year: 2009
  end-page: 764
  ident: br000255
  article-title: Superconvergent explicit two-step peer methods
  publication-title: J. Comput. Appl. Math.
– volume: 60
  start-page: 561
  year: 2010
  end-page: 573
  ident: br000330
  article-title: Order conditions for Volterra Runge–Kutta methods
  publication-title: Appl. Numer. Math.
– volume: 53
  start-page: 149
  year: 2005
  end-page: 163
  ident: br000140
  article-title: Nordsieck representation of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: Appl. Numer. Math.
– year: 1996
  ident: br000220
  article-title: A general class of two-step Runge–Kutta methods for ordinary differential equations
– volume: 18
  start-page: 289
  year: 2013
  end-page: 307
  ident: br000150
  article-title: Implementation of explicit Nordsieck methods with inherent quadratic stability
  publication-title: Math. Model. Anal.
– volume: 60
  start-page: 1
  year: 2012
  end-page: 25
  ident: br000165
  article-title: Explicit Nordsieck methods with quadratic stability
  publication-title: Numer. Algorithms
– volume: vol. 8
  year: 1993
  ident: br000010
  publication-title: Solving Ordinary Differential Equations I: Nonstiff Problems
– volume: 38
  start-page: 389
  year: 2012
  end-page: 406
  ident: br000235
  article-title: Implicit peer methods for large stiff ODE systems
  publication-title: J. Appl. Math. Comput.
– year: 1962
  ident: br000050
  article-title: Discrete Variable Methods in Ordinary Differential Equations
– year: 2002
  ident: br000045
  article-title: General linear methods with inherent Runge–Kutta stability
– volume: 230
  start-page: 4955
  year: 2011
  end-page: 4974
  ident: br000240
  article-title: Partially implicit peer methods for the compressible Euler equations
  publication-title: J. Comput. Phys.
– volume: 65
  start-page: 377
  year: 2014
  end-page: 399
  ident: br000290
  article-title: Extrapolation-based implicit–explicit general linear methods
  publication-title: Numer. Algorithms
– volume: 20
  start-page: 185
  year: 1980
  end-page: 203
  ident: br000260
  article-title: Non-linear stability of a general class of differential equation methods
  publication-title: BIT
– volume: 31
  start-page: 75
  year: 2002
  end-page: 85
  ident: br000160
  article-title: Error estimation for Nordsieck methods
  publication-title: Numer. Algorithms
– volume: vol. 2
  year: 1984
  ident: br000075
  publication-title: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations
– volume: 59
  start-page: 421
  year: 1992
  end-page: 438
  ident: br000210
  article-title: Variable-stepsize explicit two-step Runge–Kutta methods
  publication-title: Math. Comp.
– volume: 46
  start-page: 5
  year: 2006
  end-page: 19
  ident: br000270
  article-title: Linear multistep methods as irreducible general linear methods
  publication-title: BIT
– volume: 32
  start-page: 1390
  year: 1995
  end-page: 1427
  ident: br000195
  article-title: A general class of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: SIAM J. Numer. Anal.
– volume: 262
  start-page: 271
  year: 2014
  end-page: 280
  ident: br000295
  article-title: -stable general Nyström methods for
  publication-title: J. Comput. Appl. Math.
– volume: 40
  start-page: 775
  year: 2000
  end-page: 799
  ident: br000225
  article-title: Two-step Runge–Kutta: theory and practice
  publication-title: BIT
– volume: 19
  start-page: 18
  year: 2014
  end-page: 43
  ident: br000285
  article-title: Extrapolated implicit–explicit Runge–Kutta methods
  publication-title: Math. Model. Anal.
– volume: 76
  start-page: 113
  year: 1996
  end-page: 136
  ident: br000215
  article-title: Implementation of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: J. Comput. Appl. Math.
– year: 2009
  ident: br000015
  article-title: General Linear Methods for Ordinary Differential Equations
– volume: 95
  start-page: 487
  year: 2003
  end-page: 502
  ident: br000110
  article-title: A new approach to error estimation for general linear methods
  publication-title: Numer. Math.
– volume: 24
  start-page: 391
  year: 1987
  end-page: 406
  ident: br000305
  article-title: A new theoretical approach to Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
– volume: 218
  start-page: 6056
  year: 2012
  end-page: 6066
  ident: br000145
  article-title: Explicit Nordsieck methods with extended stability regions
  publication-title: Appl. Math. Comput.
– volume: 47
  start-page: 59
  year: 1985
  end-page: 87
  ident: br000300
  article-title: Numerical treatment of ODEs: the theory of
  publication-title: Numer. Math.
– volume: 33
  start-page: 1712
  year: 1996
  end-page: 1735
  ident: br000315
  article-title: The Runge–Kutta theory in a nutshell
  publication-title: SIAM J. Numer. Anal.
– volume: 167
  start-page: 389
  year: 2004
  end-page: 403
  ident: br000180
  article-title: Construction of highly stable two-step
  publication-title: J. Comput. Appl. Math.
– year: 1987
  ident: br000025
  article-title: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods
– volume: 27
  start-page: 1
  year: 1998
  end-page: 12
  ident: br000100
  article-title: Construction of high order diagonally implicit multistage integration methods for ordinary differential equations
  publication-title: Appl. Numer. Math.
– volume: 40
  start-page: 433
  year: 1995
  end-page: 456
  ident: br000190
  article-title: Explicit two-step Runge–Kutta methods
  publication-title: Appl. Math.
– year: 1973
  ident: br000055
  publication-title: Computational Methods in Ordinary Differential Equations
– volume: 55
  start-page: 609
  year: 2008
  end-page: 619
  ident: br000250
  article-title: Explicit two-step peer methods
  publication-title: Comput. Math. Appl.
– volume: 44
  start-page: 557
  year: 2004
  end-page: 570
  ident: br000120
  article-title: Unconditionally stable general linear methods for ordinary differential equations
  publication-title: BIT
– volume: 11
  start-page: 347
  year: 1993
  end-page: 363
  ident: br000080
  article-title: Diagonally-implicit multi-stage integration methods
  publication-title: Appl. Numer. Math.
– volume: 65
  start-page: 499
  year: 2014
  end-page: 517
  ident: br000335
  article-title: Symplectic effective order methods
  publication-title: Numer. Algorithms
– volume: 31
  start-page: 381
  year: 2002
  end-page: 399
  ident: br000230
  article-title: Explicit general linear methods with inherent Runge–Kutta stability
  publication-title: Numer. Algorithms
– volume: 18
  start-page: 51
  year: 1998
  end-page: 70
  ident: br000175
  article-title: Construction of two-step Runge–Kutta methods of high order for ordinary differential equations
  publication-title: Numer. Algorithms
– year: 1994
  ident: br000065
  article-title: Numerical Solution of Ordinary Differential Equations
– volume: 16
  start-page: 209
  year: 1997
  end-page: 230
  ident: br000155
  article-title: Nordsieck representation of DIMSIMs
  publication-title: Numer. Algorithms
– reference: J.C. Butcher, Y. Habib, A.T. Hill, T.J.T. Norton, The control of parasitism in G-symplectic methods. Report, Auckland, 2013.
– year: 2003
  ident: br000030
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: 20
  start-page: 1
  year: 1966
  end-page: 10
  ident: br000020
  article-title: On the convergence of numerical solutions to ordinary differential equations
  publication-title: Math. Comp.
– volume: 34
  start-page: 2119
  year: 1997
  end-page: 2141
  ident: br000095
  article-title: Implementation of diagonally implicit multistage integration methods for ordinary differential equations
  publication-title: SIAM J. Numer. Anal.
– volume: 43
  start-page: 695
  year: 2003
  end-page: 721
  ident: br000135
  article-title: The construction of practical general linear methods
  publication-title: BIT
– volume: 19
  start-page: 227
  year: 2002
  end-page: 248
  ident: br000205
  article-title: Derivation and implementation of two-step Runge–Kutta pairs
  publication-title: Japan J. Indust. Appl. Math.
– volume: 15
  start-page: 157
  year: 2006
  end-page: 256
  ident: br000035
  article-title: General linear methods
  publication-title: Acta Numer.
– volume: 22
  start-page: 237
  year: 1999
  end-page: 261
  ident: br000275
  article-title: Experiments with a variable-order type 1 DIMSIM code
  publication-title: Numer. Algorithms
– volume: 17
  start-page: 293
  year: 2012
  end-page: 308
  ident: br000170
  article-title: Optimization-based search for Nordsieck methods of high order with quadratic stability
  publication-title: Math. Model. Anal.
– volume: 17
  start-page: 171
  year: 2012
  end-page: 189
  ident: br000280
  article-title: Construction of efficient general linear methods for non-stiff differential systems
  publication-title: Math. Model. Anal.
– volume: 59
  start-page: 769
  year: 2009
  end-page: 782
  ident: br000245
  article-title: Parameter optimization for explicit parallel peer two-step methods
  publication-title: Appl. Numer. Math.
– volume: 46
  start-page: 479
  year: 2006
  end-page: 489
  ident: br000265
  article-title: Thirty years of
  publication-title: BIT
– volume: 36
  start-page: 688
  year: 1996
  end-page: 712
  ident: br000325
  article-title: General linear methods with external stages of different orders
  publication-title: BIT
– year: 1975
  ident: br000070
  article-title: The initial value problem
  publication-title: Computer Solution of Ordinary Differential Equations
– volume: 40
  start-page: 553
  year: 2014
  end-page: 575
  ident: br000340
  article-title: Numerical integration of Hamiltonian problems by G-symplectic methods
  publication-title: Adv. Comput. Math.
– volume: 23
  start-page: 560
  year: 2007
  end-page: 580
  ident: br000130
  article-title: Error propagation of general linear methods for ordinary differential equations
  publication-title: J. Complexity
– volume: 33
  start-page: 452
  year: 1993
  end-page: 472
  ident: br000085
  article-title: Diagonally implicit general linear methods for ordinary differential equations
  publication-title: BIT
– volume: 28
  start-page: 1165
  year: 1991
  ident: 10.1016/j.cam.2015.04.042_br000185
  article-title: Two-step Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728062
– volume: 33
  start-page: 452
  year: 1993
  ident: 10.1016/j.cam.2015.04.042_br000085
  article-title: Diagonally implicit general linear methods for ordinary differential equations
  publication-title: BIT
  doi: 10.1007/BF01990528
– volume: 16
  start-page: 209
  year: 1997
  ident: 10.1016/j.cam.2015.04.042_br000155
  article-title: Nordsieck representation of DIMSIMs
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019195215402
– volume: 11
  start-page: 347
  year: 1993
  ident: 10.1016/j.cam.2015.04.042_br000080
  article-title: Diagonally-implicit multi-stage integration methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(93)90059-Z
– year: 1975
  ident: 10.1016/j.cam.2015.04.042_br000070
  article-title: The initial value problem
– volume: 21
  start-page: 385
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000090
  article-title: Construction of diagonally implicit general linear methods of type 1 and 2 for ordinary differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(96)00043-8
– volume: 31
  start-page: 75
  year: 2002
  ident: 10.1016/j.cam.2015.04.042_br000160
  article-title: Error estimation for Nordsieck methods
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1021152005287
– volume: 20
  start-page: 1
  year: 1966
  ident: 10.1016/j.cam.2015.04.042_br000020
  article-title: On the convergence of numerical solutions to ordinary differential equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1966-0189251-X
– year: 2003
  ident: 10.1016/j.cam.2015.04.042_br000030
– volume: 53
  start-page: 149
  year: 2005
  ident: 10.1016/j.cam.2015.04.042_br000140
  article-title: Nordsieck representation of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.08.010
– volume: 47
  start-page: 59
  year: 1985
  ident: 10.1016/j.cam.2015.04.042_br000300
  article-title: Numerical treatment of ODEs: the theory of A-methods
  publication-title: Numer. Math.
  doi: 10.1007/BF01389876
– volume: 65
  start-page: 377
  year: 2014
  ident: 10.1016/j.cam.2015.04.042_br000290
  article-title: Extrapolation-based implicit–explicit general linear methods
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-013-9759-y
– volume: 36
  start-page: 688
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000325
  article-title: General linear methods with external stages of different orders
  publication-title: BIT
  doi: 10.1007/BF01733788
– volume: 41
  start-page: 656
  year: 2001
  ident: 10.1016/j.cam.2015.04.042_br000105
  article-title: A reliable error estimation for diagonally implicit multistage integration methods
  publication-title: BIT
  doi: 10.1023/A:1021987717046
– volume: 65
  start-page: 499
  year: 2014
  ident: 10.1016/j.cam.2015.04.042_br000335
  article-title: Symplectic effective order methods
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-013-9789-5
– volume: 223
  start-page: 753
  year: 2009
  ident: 10.1016/j.cam.2015.04.042_br000255
  article-title: Superconvergent explicit two-step peer methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.02.014
– volume: 76
  start-page: 113
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000215
  article-title: Implementation of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(96)00093-3
– volume: 20
  start-page: 185
  year: 1980
  ident: 10.1016/j.cam.2015.04.042_br000260
  article-title: Non-linear stability of a general class of differential equation methods
  publication-title: BIT
  doi: 10.1007/BF01933191
– volume: 59
  start-page: 769
  year: 2009
  ident: 10.1016/j.cam.2015.04.042_br000245
  article-title: Parameter optimization for explicit parallel peer two-step methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.013
– volume: 31
  start-page: 1
  year: 1989
  ident: 10.1016/j.cam.2015.04.042_br000310
  article-title: Elements of a general theory of composite integration methods
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(89)90108-2
– year: 1973
  ident: 10.1016/j.cam.2015.04.042_br000055
– year: 1991
  ident: 10.1016/j.cam.2015.04.042_br000060
  article-title: The initial value problem
– volume: 218
  start-page: 6056
  year: 2012
  ident: 10.1016/j.cam.2015.04.042_br000145
  article-title: Explicit Nordsieck methods with extended stability regions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.11.088
– volume: 34
  start-page: 2119
  year: 1997
  ident: 10.1016/j.cam.2015.04.042_br000095
  article-title: Implementation of diagonally implicit multistage integration methods for ordinary differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995282509
– volume: 27
  start-page: 1
  year: 1998
  ident: 10.1016/j.cam.2015.04.042_br000100
  article-title: Construction of high order diagonally implicit multistage integration methods for ordinary differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(97)00109-8
– volume: 81
  start-page: 181
  year: 1997
  ident: 10.1016/j.cam.2015.04.042_br000125
  article-title: A nonlinear optimization approach to the construction of general linear methods of high order
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(97)00039-3
– year: 1994
  ident: 10.1016/j.cam.2015.04.042_br000065
– volume: 12
  start-page: 347
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000200
  article-title: Variable stepsize continuous two-step Runge–Kutta methods for ordinary differential equations
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142812
– volume: 22
  start-page: 237
  year: 1999
  ident: 10.1016/j.cam.2015.04.042_br000275
  article-title: Experiments with a variable-order type 1 DIMSIM code
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019135630307
– volume: 18
  start-page: 289
  year: 2013
  ident: 10.1016/j.cam.2015.04.042_br000150
  article-title: Implementation of explicit Nordsieck methods with inherent quadratic stability
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2013.785039
– volume: 262
  start-page: 271
  year: 2014
  ident: 10.1016/j.cam.2015.04.042_br000295
  article-title: P-stable general Nyström methods for y=f(y(t))
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.09.020
– volume: 230
  start-page: 4955
  year: 2011
  ident: 10.1016/j.cam.2015.04.042_br000240
  article-title: Partially implicit peer methods for the compressible Euler equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.03.015
– ident: 10.1016/j.cam.2015.04.042_br000345
– volume: 33
  start-page: 1712
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000315
  article-title: The Runge–Kutta theory in a nutshell
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142994260872
– volume: vol. 14
  year: 2010
  ident: 10.1016/j.cam.2015.04.042_br000040
– volume: 36
  start-page: 53
  year: 2004
  ident: 10.1016/j.cam.2015.04.042_br000115
  article-title: Construction of general linear methods with Runge–Kutta stability properties
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000027738.54515.50
– volume: 24
  start-page: 391
  year: 1987
  ident: 10.1016/j.cam.2015.04.042_br000305
  article-title: A new theoretical approach to Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724030
– year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000220
– volume: 32
  start-page: 1390
  year: 1995
  ident: 10.1016/j.cam.2015.04.042_br000195
  article-title: A general class of two-step Runge–Kutta methods for ordinary differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0732064
– volume: 43
  start-page: 695
  year: 2003
  ident: 10.1016/j.cam.2015.04.042_br000135
  article-title: The construction of practical general linear methods
  publication-title: BIT
  doi: 10.1023/B:BITN.0000009952.71388.23
– year: 1987
  ident: 10.1016/j.cam.2015.04.042_br000025
– volume: 95
  start-page: 487
  year: 2003
  ident: 10.1016/j.cam.2015.04.042_br000110
  article-title: A new approach to error estimation for general linear methods
  publication-title: Numer. Math.
  doi: 10.1007/s00211-002-0452-7
– volume: 167
  start-page: 389
  year: 2004
  ident: 10.1016/j.cam.2015.04.042_br000180
  article-title: Construction of highly stable two-step W-methods for ordinary differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.10.007
– volume: 44
  start-page: 557
  year: 2004
  ident: 10.1016/j.cam.2015.04.042_br000120
  article-title: Unconditionally stable general linear methods for ordinary differential equations
  publication-title: BIT
  doi: 10.1023/B:BITN.0000046804.67936.06
– volume: 55
  start-page: 609
  year: 2008
  ident: 10.1016/j.cam.2015.04.042_br000250
  article-title: Explicit two-step peer methods
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.04.026
– volume: 60
  start-page: 561
  year: 2010
  ident: 10.1016/j.cam.2015.04.042_br000330
  article-title: Order conditions for Volterra Runge–Kutta methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.02.004
– volume: 15
  start-page: 157
  year: 2006
  ident: 10.1016/j.cam.2015.04.042_br000035
  article-title: General linear methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492906220014
– year: 1962
  ident: 10.1016/j.cam.2015.04.042_br000050
– volume: 38
  start-page: 389
  year: 2012
  ident: 10.1016/j.cam.2015.04.042_br000235
  article-title: Implicit peer methods for large stiff ODE systems
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-011-0485-0
– volume: 40
  start-page: 433
  year: 1995
  ident: 10.1016/j.cam.2015.04.042_br000190
  article-title: Explicit two-step Runge–Kutta methods
  publication-title: Appl. Math.
  doi: 10.21136/AM.1995.134306
– volume: 40
  start-page: 775
  year: 2000
  ident: 10.1016/j.cam.2015.04.042_br000225
  article-title: Two-step Runge–Kutta: theory and practice
  publication-title: BIT
  doi: 10.1023/A:1022352704635
– volume: 17
  start-page: 171
  year: 2012
  ident: 10.1016/j.cam.2015.04.042_br000280
  article-title: Construction of efficient general linear methods for non-stiff differential systems
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2012.655789
– volume: 19
  start-page: 18
  year: 2014
  ident: 10.1016/j.cam.2015.04.042_br000285
  article-title: Extrapolated implicit–explicit Runge–Kutta methods
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2014.892903
– volume: 46
  start-page: 5
  year: 2006
  ident: 10.1016/j.cam.2015.04.042_br000270
  article-title: Linear multistep methods as irreducible general linear methods
  publication-title: BIT
  doi: 10.1007/s10543-006-0046-3
– volume: vol. 8
  year: 1993
  ident: 10.1016/j.cam.2015.04.042_br000010
– volume: 22
  start-page: 3
  year: 1996
  ident: 10.1016/j.cam.2015.04.042_br000320
  article-title: The common basis of the theories of linear cyclic methods and Runge–Kutta methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(96)00046-3
– volume: 60
  start-page: 1
  year: 2012
  ident: 10.1016/j.cam.2015.04.042_br000165
  article-title: Explicit Nordsieck methods with quadratic stability
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9509-y
– volume: 18
  start-page: 51
  year: 1998
  ident: 10.1016/j.cam.2015.04.042_br000175
  article-title: Construction of two-step Runge–Kutta methods of high order for ordinary differential equations
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019157029031
– year: 2008
  ident: 10.1016/j.cam.2015.04.042_br000005
– volume: 17
  start-page: 293
  year: 2012
  ident: 10.1016/j.cam.2015.04.042_br000170
  article-title: Optimization-based search for Nordsieck methods of high order with quadratic stability
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2012.685497
– volume: 31
  start-page: 381
  year: 2002
  ident: 10.1016/j.cam.2015.04.042_br000230
  article-title: Explicit general linear methods with inherent Runge–Kutta stability
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1021195804379
– year: 2002
  ident: 10.1016/j.cam.2015.04.042_br000045
– volume: vol. 2
  year: 1984
  ident: 10.1016/j.cam.2015.04.042_br000075
– volume: 19
  start-page: 227
  year: 2002
  ident: 10.1016/j.cam.2015.04.042_br000205
  article-title: Derivation and implementation of two-step Runge–Kutta pairs
  publication-title: Japan J. Indust. Appl. Math.
  doi: 10.1007/BF03167454
– year: 2009
  ident: 10.1016/j.cam.2015.04.042_br000015
– volume: 46
  start-page: 479
  year: 2006
  ident: 10.1016/j.cam.2015.04.042_br000265
  article-title: Thirty years of G-stability
  publication-title: BIT
  doi: 10.1007/s10543-006-0078-8
– volume: 40
  start-page: 553
  year: 2014
  ident: 10.1016/j.cam.2015.04.042_br000340
  article-title: Numerical integration of Hamiltonian problems by G-symplectic methods
  publication-title: Adv. Comput. Math.
– volume: 59
  start-page: 421
  year: 1992
  ident: 10.1016/j.cam.2015.04.042_br000210
  article-title: Variable-stepsize explicit two-step Runge–Kutta methods
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1992-1136222-8
– volume: 23
  start-page: 560
  year: 2007
  ident: 10.1016/j.cam.2015.04.042_br000130
  article-title: Error propagation of general linear methods for ordinary differential equations
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2007.01.009
SSID ssj0006914
Score 2.2501132
Snippet We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Derivation
Differential equations
General linear methods
Kernels
Mathematical analysis
Multistage
Nordsieck methods
Order conditions
Runge-Kutta method
Stability
Two-step Runge–Kutta formulas
Volterra integral equations
Title Order conditions for general linear methods
URI https://dx.doi.org/10.1016/j.cam.2015.04.042
https://www.proquest.com/docview/1778002316
Volume 290
WOSCitedRecordID wos000359167100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH3S9IULpYcWgyzLlnUMYUNbtpseNu3Si5BlKWxIvNv15kF_fUcvO01JSA-FxSzGL2Y-RjOjmW8QeksUtTn3OtUQK6eUFTSVlPK04QTrXGpM_dSSMZtMqtmMfw1lY50bJ8Datjo_58v_qmo4B8q2rbP_oO7-oXAC_oPS4Qhqh-ONFL9nyTRtNXnjq7FcIeGBZ5f-YJ1KuQpzo7srPFPlJj3ELKFjcw2-6nFP8tq74jsAsUVIi9oCWXksfeXyOrbwz_XZXLk89Y_m17wbsubf9Cq027ha3aFP4rs-MqGXyDIjLC6mJrLClnn45szYksVYaod5XDS3xI8HDQbTkz-Gpdfzmf9l1H1-4RACdksdkBWOm9Zzcv1JoD3ZE7v747GYjmbTd8ufqZ0tZvfgw6CV22iTsIKD7dvc_jSafe5X7JJ7Dvj4uXH329UBXnrrVf7LpZXcuSfTB-h-0F6y7fHwEN3S7SN078ugr8e27xaQkQzISAAZSUBG4pGRBGQ8Qfu7o-nOxzTMykhVzvJ1ampKJMeMGawr0jCjSc2KWtVVpiRv6pKD8daZhvC6wNRI8GtLBr6_4UoXLGvyp2ijBbQ8Q4mWZWkwlZRjA8F7VmeNKitOqjo3IKh8C-EoAaECkbydZ3IkYsXgoQChCSs0gSn8yBZ639-y9Cwq111Mo1hFcAO9eycAENfd9iaqQICJtPtestWLk05kjNmwKM_K5ze45gW6O2D5JdpYr070K3RHna7n3ep1gM5vADiIRQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Order+conditions+for+general+linear+methods&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cardone%2C+Angelamaria&rft.au=Jackiewicz%2C+Zdzisaw&rft.au=Verner%2C+James+H&rft.au=Welfert%2C+Bruno&rft.date=2015-12-15&rft.issn=0377-0427&rft.volume=290&rft.spage=44&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cam.2015.04.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon