Aspects of Differential Calculus Related to Infinite-Dimensional Vector Bundles and Poisson Vector Spaces

We prove various results in infinite-dimensional differential calculus that relate the differentiability properties of functions and associated operator-valued functions (e.g., differentials). The results are applied in two areas: (1) in the theory of infinite-dimensional vector bundles, to construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms Jg. 11; H. 5; S. 221
1. Verfasser: Glöckner, Helge
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.05.2022
Schlagworte:
ISSN:2075-1680, 2075-1680
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove various results in infinite-dimensional differential calculus that relate the differentiability properties of functions and associated operator-valued functions (e.g., differentials). The results are applied in two areas: (1) in the theory of infinite-dimensional vector bundles, to construct new bundles from given ones, such as dual bundles, topological tensor products, infinite direct sums, and completions (under suitable hypotheses); (2) in the theory of locally convex Poisson vector spaces, to prove continuity of the Poisson bracket and continuity of passage from a function to the associated Hamiltonian vector field. Topological properties of topological vector spaces are essential for the studies, which allow the hypocontinuity of bilinear mappings to be exploited. Notably, we encounter kR-spaces and locally convex spaces E such that E×E is a kR-space.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11050221