Parameter estimation in nonlinear algebraic models via global optimization

The estimation of parameters in semi-empirical nonlinear models through the error-in-variables method has been widely studied from a computational standpoint. This method involves the minimization of a quadratic objective function subject to the model equations being satisfied. Due to the nonlinear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 22; s. S213 - S220
Hlavní autoři: Esposito, William R., Floudas, Christodoulos A.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.01.1998
Elsevier
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The estimation of parameters in semi-empirical nonlinear models through the error-in-variables method has been widely studied from a computational standpoint. This method involves the minimization of a quadratic objective function subject to the model equations being satisfied. Due to the nonlinear nature of these models, the resulting formulation is nonconvex in nature. The approaches to solve this problem presented so far in the literature, although computationally efficient, only offer convergence to a local solution of a model which may contain multiple minima. In this paper a global optimization approach based on a branch-and-bound framework will be presented to solve the error-in-variables formulation. Various estimation problems were solved and will be presented to illustrate the theoretical and computational aspects of the proposed method.
ISSN:0098-1354
1873-4375
DOI:10.1016/S0098-1354(98)00217-8