An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations

•A meta-heuristic is proposed to identify unknown parameters of photovoltaic model.•To that end, a modified teaching learning-based optimization approach is designed.•Three commercial photovoltaic models are evaluated using one and two diode models.•Intensive verifications with other competing metho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy conversion and management Ročník 227; s. 113614
Hlavní autori: Abdel-Basset, Mohamed, Mohamed, Reda, Chakrabortty, Ripon K., Sallam, Karam, Ryan, Michael J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.01.2021
Elsevier Science Ltd
Predmet:
ISSN:0196-8904, 1879-2227
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A meta-heuristic is proposed to identify unknown parameters of photovoltaic model.•To that end, a modified teaching learning-based optimization approach is designed.•Three commercial photovoltaic models are evaluated using one and two diode models.•Intensive verifications with other competing methods are executed.•The accuracy, reliability, and convergence of the proposed algorithm are confirmed. Accurate and efficient parameter estimation of the photovoltaic (PV) models is considered a dispensable process to simulate the PV systems. Therefore, many meta-heuristic algorithms have been recently proposed, but the parameters obtained are not as accurate and reliable as is desired, particularly when the PV models have a significant number of unknown parameters. Therefore, in this paper, a modified teaching–learning based optimization (MTLBO) approach is suggested to accurately and reliably extract the unknown parameters of PV models. Our modification to TLBO divides each of the teaching and learning phases into three levels: low, medium, and high according to the scoring level of each learner. The scoring level of each one is measured based on comparison between the fitness of the updated learner and the current leaner; if the fitness of the updated is better, the scoring level is reset to 0, and otherwise, it is increased by 1. Finally, to observe the efficacy of MTLBO, it is investigated on five PV cells and modules: single diode model and double diode model in case of RTC France, Photowatt-PWP201 module, STM6-40/36 module, and STP6-120/36 module. For those PV cells and modules, our proposed could respectively come true the following average outcomes: 0.0009860219, 0.0009825026, 0.0024250749, 0.0017298137, and 0.0166006031. To check the efficacy of MTLBO, it is compared with a number of recent and well-known algorithms. The experimental results show the superiority of the proposed algorithm, especially on double diode model.
AbstractList Accurate and efficient parameter estimation of the photovoltaic (PV) models is considered a dispensable process to simulate the PV systems. Therefore, many meta-heuristic algorithms have been recently proposed, but the parameters obtained are not as accurate and reliable as is desired, particularly when the PV models have a significant number of unknown parameters. Therefore, in this paper, a modified teaching–learning based optimization (MTLBO) approach is suggested to accurately and reliably extract the unknown parameters of PV models. Our modification to TLBO divides each of the teaching and learning phases into three levels: low, medium, and high according to the scoring level of each learner. The scoring level of each one is measured based on comparison between the fitness of the updated learner and the current leaner; if the fitness of the updated is better, the scoring level is reset to 0, and otherwise, it is increased by 1. Finally, to observe the efficacy of MTLBO, it is investigated on five PV cells and modules: single diode model and double diode model in case of RTC France, Photowatt-PWP201 module, STM6-40/36 module, and STP6-120/36 module. For those PV cells and modules, our proposed could respectively come true the following average outcomes: 0.0009860219, 0.0009825026, 0.0024250749, 0.0017298137, and 0.0166006031. To check the efficacy of MTLBO, it is compared with a number of recent and well-known algorithms. The experimental results show the superiority of the proposed algorithm, especially on double diode model.
•A meta-heuristic is proposed to identify unknown parameters of photovoltaic model.•To that end, a modified teaching learning-based optimization approach is designed.•Three commercial photovoltaic models are evaluated using one and two diode models.•Intensive verifications with other competing methods are executed.•The accuracy, reliability, and convergence of the proposed algorithm are confirmed. Accurate and efficient parameter estimation of the photovoltaic (PV) models is considered a dispensable process to simulate the PV systems. Therefore, many meta-heuristic algorithms have been recently proposed, but the parameters obtained are not as accurate and reliable as is desired, particularly when the PV models have a significant number of unknown parameters. Therefore, in this paper, a modified teaching–learning based optimization (MTLBO) approach is suggested to accurately and reliably extract the unknown parameters of PV models. Our modification to TLBO divides each of the teaching and learning phases into three levels: low, medium, and high according to the scoring level of each learner. The scoring level of each one is measured based on comparison between the fitness of the updated learner and the current leaner; if the fitness of the updated is better, the scoring level is reset to 0, and otherwise, it is increased by 1. Finally, to observe the efficacy of MTLBO, it is investigated on five PV cells and modules: single diode model and double diode model in case of RTC France, Photowatt-PWP201 module, STM6-40/36 module, and STP6-120/36 module. For those PV cells and modules, our proposed could respectively come true the following average outcomes: 0.0009860219, 0.0009825026, 0.0024250749, 0.0017298137, and 0.0166006031. To check the efficacy of MTLBO, it is compared with a number of recent and well-known algorithms. The experimental results show the superiority of the proposed algorithm, especially on double diode model.
ArticleNumber 113614
Author Mohamed, Reda
Ryan, Michael J.
Sallam, Karam
Abdel-Basset, Mohamed
Chakrabortty, Ripon K.
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Abdel-Basset
  fullname: Abdel-Basset, Mohamed
  email: mohamedbasset@zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah 44519, Egypt
– sequence: 2
  givenname: Reda
  surname: Mohamed
  fullname: Mohamed, Reda
  email: redamoh@zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah 44519, Egypt
– sequence: 3
  givenname: Ripon K.
  orcidid: 0000-0002-7373-0149
  surname: Chakrabortty
  fullname: Chakrabortty, Ripon K.
  email: r.chakrabortty@adfa.edu.au
  organization: Capability Systems Centre, School of Engineering and IT, UNSW Canberra, Australia
– sequence: 4
  givenname: Karam
  surname: Sallam
  fullname: Sallam, Karam
  email: karam_sallam@zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah 44519, Egypt
– sequence: 5
  givenname: Michael J.
  surname: Ryan
  fullname: Ryan, Michael J.
  email: m.ryan@adfa.edu.au
  organization: Capability Systems Centre, School of Engineering and IT, UNSW Canberra, Australia
BookMark eNqFkc2OFCEURokZE3tGX8GQuHFTLUV1UYVxYWfiXzKJG12TO3CZpkNBCXQn4yP41FJTupnNbICQ8325cC7JRYgBCXndsm3LWvHuuMWgY5ggbDnj9bLtRLt7RjbtOMiGcz5ckA1rpWhGyXYvyGXOR8ZY1zOxIX_2gaK1TjsMhRYEfXDhrvEIKSyHW8hoaJyLm9xvKC4GCv4uJlcOE7Ux0RkSTFgwZepM7XC1a-WipfMhlniOvoDTdIoGfX5P9wH8fXaZQjD0DN6ZBz6_JM8t-Iyv_u1X5OfnTz-uvzY33798u97fNLobutIYsJybURo-jsBwYNr0ALIbpBCD0YzBiAwGZvrbXkpuO2t7YSVYqTsUdbkib9feOcVfJ8xFTS5r9B4CxlNWfCdHLvu26yv65hF6jKdU51-oQTLB-p5V6sNK6RRzTmiVduXhTSWB86plahGljuq_KLWIUquoGheP4nNyE6T7p4Mf12D9Vjw7TCovGjUal1AXZaJ7quIvZdu3aw
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_118877
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1016_j_rineng_2024_103433
crossref_primary_10_1016_j_egyr_2022_03_144
crossref_primary_10_1016_j_egyr_2022_10_012
crossref_primary_10_1007_s00500_021_06010_x
crossref_primary_10_1016_j_enconman_2021_114689
crossref_primary_10_32604_cmc_2021_016956
crossref_primary_10_1016_j_rineng_2025_106234
crossref_primary_10_3390_jmse12081370
crossref_primary_10_1155_2022_5013146
crossref_primary_10_3390_su15043312
crossref_primary_10_3390_a17010026
crossref_primary_10_1007_s11356_023_26447_x
crossref_primary_10_1016_j_jclepro_2021_128080
crossref_primary_10_1016_j_compeleceng_2025_110276
crossref_primary_10_1016_j_knosys_2022_110146
crossref_primary_10_1007_s10825_025_02298_2
crossref_primary_10_1016_j_enconman_2024_119382
crossref_primary_10_1016_j_apenergy_2022_118527
crossref_primary_10_1007_s10462_021_10105_0
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1109_ACCESS_2024_3462947
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1063_5_0194488
crossref_primary_10_1016_j_ijhydene_2024_06_424
crossref_primary_10_3390_a15090317
crossref_primary_10_3390_en15197212
crossref_primary_10_1016_j_cogsys_2024_101237
crossref_primary_10_1080_15325008_2023_2283843
crossref_primary_10_1016_j_enconman_2024_118705
crossref_primary_10_1016_j_eswa_2023_120827
crossref_primary_10_1002_gch2_202300355
crossref_primary_10_1016_j_isatra_2023_01_026
crossref_primary_10_1016_j_psj_2025_105889
crossref_primary_10_3390_en14112980
crossref_primary_10_3390_math10071057
crossref_primary_10_7717_peerj_cs_1501
crossref_primary_10_1016_j_energy_2022_123760
crossref_primary_10_3389_fenrg_2022_1011887
crossref_primary_10_3390_su15064982
crossref_primary_10_3390_math9101140
crossref_primary_10_1002_cpe_7762
crossref_primary_10_1016_j_aej_2025_04_020
crossref_primary_10_1016_j_engappai_2023_106225
crossref_primary_10_1049_rpg2_12465
crossref_primary_10_1016_j_renene_2025_122764
crossref_primary_10_1038_s41598_024_61359_x
crossref_primary_10_1007_s00500_023_09473_2
crossref_primary_10_1016_j_enconman_2021_114667
crossref_primary_10_1007_s10825_024_02153_w
crossref_primary_10_3390_su17041609
crossref_primary_10_1007_s11356_022_24941_2
crossref_primary_10_1007_s10825_022_01870_4
crossref_primary_10_1109_ACCESS_2022_3174222
crossref_primary_10_1155_2021_9210050
crossref_primary_10_3390_fractalfract7010095
crossref_primary_10_3390_sym14030455
crossref_primary_10_1016_j_asoc_2023_110017
crossref_primary_10_1016_j_enconman_2021_114030
crossref_primary_10_3390_math13152503
crossref_primary_10_3390_math13132158
crossref_primary_10_1038_s41598_024_53582_3
crossref_primary_10_1016_j_enconman_2025_120029
crossref_primary_10_1016_j_matpr_2023_09_189
crossref_primary_10_3390_en14071867
crossref_primary_10_1016_j_energy_2023_129034
crossref_primary_10_1002_cpe_6425
crossref_primary_10_1038_s41598_024_63383_3
crossref_primary_10_1038_s41598_025_85841_2
crossref_primary_10_1109_ACCESS_2022_3142779
crossref_primary_10_1016_j_asoc_2023_110032
crossref_primary_10_1016_j_enconman_2022_115526
crossref_primary_10_1109_ACCESS_2022_3209795
crossref_primary_10_1038_s41598_025_99105_6
crossref_primary_10_3390_photonics9030131
crossref_primary_10_1109_ACCESS_2021_3103146
crossref_primary_10_1007_s13369_024_08839_4
crossref_primary_10_1016_j_matcom_2023_05_021
crossref_primary_10_1108_COMPEL_09_2022_0306
crossref_primary_10_1038_s41598_025_90802_w
crossref_primary_10_1007_s10586_024_04877_7
Cites_doi 10.1016/j.energy.2016.01.052
10.1016/j.ins.2011.08.006
10.1016/j.apenergy.2016.05.064
10.1109/TEC.2004.827707
10.1016/j.apenergy.2009.07.022
10.1016/j.engappai.2019.103457
10.1016/j.renene.2012.01.082
10.1007/s40095-017-0252-6
10.1016/j.solener.2019.08.022
10.1016/j.eswa.2018.02.018
10.1016/j.apenergy.2013.06.046
10.1016/j.solmat.2005.04.023
10.1080/01425918608909835
10.1016/j.enconman.2017.04.054
10.1016/j.enconman.2018.08.081
10.1016/j.enconman.2017.08.088
10.1016/j.apenergy.2017.12.115
10.1049/iet-rpg.2017.0308
10.1016/j.solener.2011.09.032
10.1016/j.egyr.2016.06.004
10.1016/j.enconman.2015.05.074
10.1016/j.energy.2015.08.019
10.1016/j.enconman.2017.12.033
10.1016/j.swevo.2017.09.010
10.1016/j.enconman.2019.112243
10.1016/j.enconman.2016.12.082
10.1016/j.apenergy.2018.06.010
10.1016/j.cageo.2017.12.003
10.1016/j.enconman.2016.01.071
10.1016/j.solener.2011.06.025
10.1016/j.rser.2010.11.032
10.1049/joe.2017.0662
10.1016/j.enconman.2019.02.048
10.1016/j.enconman.2017.08.063
10.1016/j.solener.2010.02.012
10.1016/j.energy.2014.05.011
10.1109/T-ED.1987.22920
10.1049/iet-rpg.2018.5317
10.1016/j.enconman.2019.112138
10.1016/j.solener.2013.05.007
10.1016/j.enconman.2019.112443
10.1016/j.apenergy.2017.05.029
10.1016/j.solener.2012.08.018
10.1016/j.jclepro.2019.118778
10.1016/0038-1101(86)90212-1
10.1016/j.solener.2013.01.010
10.1016/j.enconman.2019.112113
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 1, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2020.113614
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2020_113614
S0196890420311420
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-daf22d89d288a0e70cd5aa9379667dc00a8e0a70d5b5992f3ff56f9af9c3e69c3
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603342500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sat Sep 27 21:40:41 EDT 2025
Wed Aug 13 06:59:36 EDT 2025
Sat Nov 29 07:22:19 EST 2025
Tue Nov 18 22:18:58 EST 2025
Fri Feb 23 02:47:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Teaching-learning
Environmental factors
PV models
Optimization
Solar energy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-daf22d89d288a0e70cd5aa9379667dc00a8e0a70d5b5992f3ff56f9af9c3e69c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7373-0149
PQID 2479060550
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2498295135
proquest_journals_2479060550
crossref_citationtrail_10_1016_j_enconman_2020_113614
crossref_primary_10_1016_j_enconman_2020_113614
elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113614
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Chen (b0145) 2020; 244
Oliva, Abd El Aziz, Ella Hassanien (b0130) 2017; 200
Askarzadeh, Rezazadeh (b0085) 2012; 86
Gong, Cai (b0230) 2013; 94
Chan, Phillips, Phang (b0065) 1986; 29
Bechouat, Younsi, Sedraoui, Soufi, Yousfi, Tabet, Touafek (b0030) 2017; 8
Rao, Savsani, Vakharia (b0160) 2012; 183
Li (b0150) 2020; 205
Chen, Xu, Mei, Ding, Li (b0175) 2018; 212
Yu, Liang, Qu, Cheng, Wang (b0140) 2018; 226
EASWARAKHANTHAN, BOTTIN, BOUHOUCH, BOUTRIT (b0060) 1986; 4
Merchaoui, Sakly, Mimouni (b0235) 2018; 175
Chan, Phang (b0050) 1987; 34
Long (b0155) 2020; 89
Allaoui, Ahiod, El Yafrani (b0100) 2018; 102
Elazab, O.S., et al., Parameters estimation of single-and multiple-diode photovoltaic model using whale optimisation algorithm. IET Renewable Power Generation, 2018. 12(15): p. 1755-1761.
Tan, Kirschen, Jenkins (b0195) 2004; 19
AlHajri, El-Naggar, AlRashidi, Al-Othman (b0020) 2012; 44
Ishaque, Salam (b0115) 2011; 85
Gao, Cui, Hu, Xu, Wang, Qu, Wang (b0215) 2018; 157
Bana, Saini (b0200) 2016; 2
Yeh, W.-C., et al., Simplex simplified swarm optimisation for the efficient optimisation of parameter identification for solar cell models. IET Renewable Power Generation, 2017. 12(1): p. 45-51.
Askarzadeh, Rezazadeh (b0120) 2013; 90
Mahdavi, Rahnamayan, Deb (b0205) 2018; 39
Wu, Yu, Kang (b0135) 2017; 151
Awadallah (b0015) 2016; 113
Hultmann Ayala, Coelho, Mariani, Askarzadeh (b0005) 2015; 93
Tong, Pora (b0210) 2016; 176
Li, Gong, Yan, Hu, Bai, Wang, Gao (b0180) 2019; 186
Chen, Sun, Yang, Sun, Guan (b0220) 2018; 112
Sandrolini, Artioli, Reggiani (b0075) 2010; 87
Elazab, O.S., et al., Whale optimisation algorithm for photovoltaic model identification. The Journal of Engineering, 2017. 2017(13): p. 1906-1911.
Lo Brano, Ciulla (b0035) 2013; 111
Ortiz-Conde, Sánchez, Muci (b0055) 2006; 90
Yang, Gong, Wang (b0045) 2019; 201
El-Naggar, AlRashidi, AlHajri, Al-Othman (b0080) 2012; 86
Wei (b0105) 2011
Yu, Chen, Wang, Wang (b0170) 2017; 145
Ram, Babu, Dragicevic, Rajasekar (b0090) 2017; 135
Liang (b0190) 2020; 203
Zagrouba, Sellami, Bouaïcha, Ksouri (b0070) 2010; 84
Chen, Yu, Du, Zhao, Liu (b0165) 2016; 99
Alam, Yousri, Eteiba (b0240) 2015; 101
Parida, Iniyan, Goic (b0025) 2011; 15
Long (b0110) 2020; 203
Abdel-Basset, Chang, Mohamed (b0095) 2020
Yu, Liang, Qu, Chen, Wang (b0225) 2017; 150
Li, Gong, Yan, Hu, Bai, Wang (b0185) 2019; 190
Oliva, Cuevas, Pajares (b0010) 2014; 72
AlHajri (10.1016/j.enconman.2020.113614_b0020) 2012; 44
Awadallah (10.1016/j.enconman.2020.113614_b0015) 2016; 113
Bechouat (10.1016/j.enconman.2020.113614_b0030) 2017; 8
Chen (10.1016/j.enconman.2020.113614_b0175) 2018; 212
El-Naggar (10.1016/j.enconman.2020.113614_b0080) 2012; 86
Yu (10.1016/j.enconman.2020.113614_b0170) 2017; 145
Gong (10.1016/j.enconman.2020.113614_b0230) 2013; 94
Alam (10.1016/j.enconman.2020.113614_b0240) 2015; 101
Lo Brano (10.1016/j.enconman.2020.113614_b0035) 2013; 111
Yu (10.1016/j.enconman.2020.113614_b0140) 2018; 226
Gao (10.1016/j.enconman.2020.113614_b0215) 2018; 157
Long (10.1016/j.enconman.2020.113614_b0110) 2020; 203
Rao (10.1016/j.enconman.2020.113614_b0160) 2012; 183
Li (10.1016/j.enconman.2020.113614_b0185) 2019; 190
Li (10.1016/j.enconman.2020.113614_b0150) 2020; 205
Ortiz-Conde (10.1016/j.enconman.2020.113614_b0055) 2006; 90
Liang (10.1016/j.enconman.2020.113614_b0190) 2020; 203
Tong (10.1016/j.enconman.2020.113614_b0210) 2016; 176
Sandrolini (10.1016/j.enconman.2020.113614_b0075) 2010; 87
10.1016/j.enconman.2020.113614_b0040
Li (10.1016/j.enconman.2020.113614_b0180) 2019; 186
Oliva (10.1016/j.enconman.2020.113614_b0010) 2014; 72
Merchaoui (10.1016/j.enconman.2020.113614_b0235) 2018; 175
Hultmann Ayala (10.1016/j.enconman.2020.113614_b0005) 2015; 93
Parida (10.1016/j.enconman.2020.113614_b0025) 2011; 15
Zagrouba (10.1016/j.enconman.2020.113614_b0070) 2010; 84
Chen (10.1016/j.enconman.2020.113614_b0165) 2016; 99
10.1016/j.enconman.2020.113614_b0245
Allaoui (10.1016/j.enconman.2020.113614_b0100) 2018; 102
10.1016/j.enconman.2020.113614_b0125
Long (10.1016/j.enconman.2020.113614_b0155) 2020; 89
Abdel-Basset (10.1016/j.enconman.2020.113614_b0095) 2020
Chan (10.1016/j.enconman.2020.113614_b0065) 1986; 29
Mahdavi (10.1016/j.enconman.2020.113614_b0205) 2018; 39
Askarzadeh (10.1016/j.enconman.2020.113614_b0085) 2012; 86
Tan (10.1016/j.enconman.2020.113614_b0195) 2004; 19
Wei (10.1016/j.enconman.2020.113614_b0105) 2011
Yu (10.1016/j.enconman.2020.113614_b0225) 2017; 150
Ram (10.1016/j.enconman.2020.113614_b0090) 2017; 135
Askarzadeh (10.1016/j.enconman.2020.113614_b0120) 2013; 90
Yang (10.1016/j.enconman.2020.113614_b0045) 2019; 201
Wu (10.1016/j.enconman.2020.113614_b0135) 2017; 151
Oliva (10.1016/j.enconman.2020.113614_b0130) 2017; 200
Chen (10.1016/j.enconman.2020.113614_b0220) 2018; 112
EASWARAKHANTHAN (10.1016/j.enconman.2020.113614_b0060) 1986; 4
Ishaque (10.1016/j.enconman.2020.113614_b0115) 2011; 85
Chen (10.1016/j.enconman.2020.113614_b0145) 2020; 244
Bana (10.1016/j.enconman.2020.113614_b0200) 2016; 2
Chan (10.1016/j.enconman.2020.113614_b0050) 1987; 34
References_xml – volume: 86
  start-page: 266
  year: 2012
  end-page: 274
  ident: b0080
  article-title: Simulated Annealing algorithm for photovoltaic parameters identification
  publication-title: Sol Energy
– volume: 135
  start-page: 463
  year: 2017
  end-page: 476
  ident: b0090
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
– volume: 90
  start-page: 352
  year: 2006
  end-page: 361
  ident: b0055
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
  publication-title: Sol Energy Mater Sol Cells
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0160
  article-title: Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
– volume: 29
  start-page: 329
  year: 1986
  end-page: 337
  ident: b0065
  article-title: A comparative study of extraction methods for solar cell model parameters
  publication-title: Solid-State Electron
– volume: 203
  year: 2020
  ident: b0110
  article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers Manage
– volume: 99
  start-page: 170
  year: 2016
  end-page: 180
  ident: b0165
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
– volume: 112
  start-page: 38
  year: 2018
  end-page: 46
  ident: b0220
  article-title: An improved optimum-path forest clustering algorithm for remote sensing image segmentation
  publication-title: Comput Geosci
– year: 2011
  ident: b0105
  article-title: Extracting solar cell model parameters based on chaos particle swarm algorithm
– volume: 176
  start-page: 104
  year: 2016
  end-page: 115
  ident: b0210
  article-title: A parameter extraction technique exploiting intrinsic properties of solar cells
  publication-title: Appl Energy
– volume: 186
  start-page: 293
  year: 2019
  end-page: 305
  ident: b0180
  article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization
  publication-title: Energy Convers Manage
– volume: 205
  year: 2020
  ident: b0150
  article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers Manage
– volume: 89
  year: 2020
  ident: b0155
  article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model
  publication-title: Eng Appl Artif Intell
– volume: 201
  year: 2019
  ident: b0045
  article-title: Comparative study on parameter extraction of photovoltaic models via differential evolution
  publication-title: Energy Convers Manage
– volume: 102
  start-page: 44
  year: 2018
  end-page: 56
  ident: b0100
  article-title: A hybrid crow search algorithm for solving the DNA fragment assembly problem
  publication-title: Expert Syst Appl
– reference: Elazab, O.S., et al., Whale optimisation algorithm for photovoltaic model identification. The Journal of Engineering, 2017. 2017(13): p. 1906-1911.
– volume: 8
  start-page: 331
  year: 2017
  end-page: 341
  ident: b0030
  article-title: Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods
  publication-title: Int J Energy Environ Eng
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b0170
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
– volume: 15
  start-page: 1625
  year: 2011
  end-page: 1636
  ident: b0025
  article-title: A review of solar photovoltaic technologies
  publication-title: Renew Sustain Energy Rev
– volume: 151
  start-page: 107
  year: 2017
  end-page: 115
  ident: b0135
  article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer
  publication-title: Energy Convers Manage
– volume: 84
  start-page: 860
  year: 2010
  end-page: 866
  ident: b0070
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction
  publication-title: Sol Energy
– volume: 157
  start-page: 460
  year: 2018
  end-page: 479
  ident: b0215
  article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm
  publication-title: Energy Convers Manage
– volume: 72
  start-page: 93
  year: 2014
  end-page: 102
  ident: b0010
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0130
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
– volume: 19
  start-page: 748
  year: 2004
  end-page: 755
  ident: b0195
  article-title: A Model of PV Generation Suitable for Stability Analysis
  publication-title: IEEE Trans. On Energy Conversion
– volume: 113
  start-page: 312
  year: 2016
  end-page: 320
  ident: b0015
  article-title: Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data
  publication-title: Energy Convers Manage
– volume: 111
  start-page: 894
  year: 2013
  end-page: 903
  ident: b0035
  article-title: An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data
  publication-title: Appl Energy
– volume: 39
  start-page: 1
  year: 2018
  end-page: 23
  ident: b0205
  article-title: Opposition based learning: A literature review
  publication-title: Swarm Evol Comput
– volume: 2
  start-page: 171
  year: 2016
  end-page: 187
  ident: b0200
  article-title: A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems
  publication-title: Energy Rep
– volume: 93
  start-page: 1515
  year: 2015
  end-page: 1522
  ident: b0005
  article-title: An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module
  publication-title: Energy
– volume: 85
  start-page: 2349
  year: 2011
  end-page: 2359
  ident: b0115
  article-title: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)
  publication-title: Sol Energy
– volume: 190
  start-page: 465
  year: 2019
  end-page: 474
  ident: b0185
  article-title: Parameter estimation of photovoltaic models with memetic adaptive differential evolution
  publication-title: Sol Energy
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  ident: b0230
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
– volume: 101
  start-page: 410
  year: 2015
  end-page: 422
  ident: b0240
  article-title: Flower Pollination Algorithm based solar PV parameter estimation
  publication-title: Energy Convers Manage
– volume: 150
  start-page: 742
  year: 2017
  end-page: 753
  ident: b0225
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
– volume: 203
  year: 2020
  ident: b0190
  article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
  publication-title: Energy Convers Manage
– volume: 44
  start-page: 238
  year: 2012
  end-page: 245
  ident: b0020
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renewable Energy
– volume: 86
  start-page: 3241
  year: 2012
  end-page: 3249
  ident: b0085
  article-title: Parameter identification for solar cell models using harmony search-based algorithms
  publication-title: Sol Energy
– volume: 175
  start-page: 151
  year: 2018
  end-page: 163
  ident: b0235
  article-title: Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction
  publication-title: Energy Convers Manage
– start-page: 1
  year: 2020
  end-page: 34
  ident: b0095
  article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems
  publication-title: Neural Comput Appl
– volume: 34
  start-page: 286
  year: 1987
  end-page: 293
  ident: b0050
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron Devices
– volume: 90
  start-page: 123
  year: 2013
  end-page: 133
  ident: b0120
  article-title: Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach
  publication-title: Sol Energy
– reference: Yeh, W.-C., et al., Simplex simplified swarm optimisation for the efficient optimisation of parameter identification for solar cell models. IET Renewable Power Generation, 2017. 12(1): p. 45-51.
– volume: 87
  start-page: 442
  year: 2010
  end-page: 451
  ident: b0075
  article-title: Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis
  publication-title: Appl Energy
– volume: 212
  start-page: 1578
  year: 2018
  end-page: 1588
  ident: b0175
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl Energy
– volume: 226
  start-page: 408
  year: 2018
  end-page: 422
  ident: b0140
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl Energy
– volume: 244
  year: 2020
  ident: b0145
  article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts
  publication-title: J Cleaner Prod
– volume: 4
  start-page: 1
  year: 1986
  end-page: 12
  ident: b0060
  article-title: Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers
  publication-title: International Journal of Solar Energy
– reference: Elazab, O.S., et al., Parameters estimation of single-and multiple-diode photovoltaic model using whale optimisation algorithm. IET Renewable Power Generation, 2018. 12(15): p. 1755-1761.
– volume: 99
  start-page: 170
  year: 2016
  ident: 10.1016/j.enconman.2020.113614_b0165
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.052
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2020.113614_b0160
  article-title: Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.08.006
– volume: 176
  start-page: 104
  year: 2016
  ident: 10.1016/j.enconman.2020.113614_b0210
  article-title: A parameter extraction technique exploiting intrinsic properties of solar cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.064
– volume: 19
  start-page: 748
  issue: 4
  year: 2004
  ident: 10.1016/j.enconman.2020.113614_b0195
  article-title: A Model of PV Generation Suitable for Stability Analysis
  publication-title: IEEE Trans. On Energy Conversion
  doi: 10.1109/TEC.2004.827707
– volume: 87
  start-page: 442
  issue: 2
  year: 2010
  ident: 10.1016/j.enconman.2020.113614_b0075
  article-title: Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.07.022
– volume: 89
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0155
  article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103457
– volume: 44
  start-page: 238
  year: 2012
  ident: 10.1016/j.enconman.2020.113614_b0020
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.01.082
– volume: 8
  start-page: 331
  issue: 4
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0030
  article-title: Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods
  publication-title: Int J Energy Environ Eng
  doi: 10.1007/s40095-017-0252-6
– volume: 190
  start-page: 465
  year: 2019
  ident: 10.1016/j.enconman.2020.113614_b0185
  article-title: Parameter estimation of photovoltaic models with memetic adaptive differential evolution
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.08.022
– volume: 102
  start-page: 44
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0100
  article-title: A hybrid crow search algorithm for solving the DNA fragment assembly problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.02.018
– volume: 111
  start-page: 894
  year: 2013
  ident: 10.1016/j.enconman.2020.113614_b0035
  article-title: An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.06.046
– volume: 90
  start-page: 352
  issue: 3
  year: 2006
  ident: 10.1016/j.enconman.2020.113614_b0055
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2005.04.023
– volume: 4
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.enconman.2020.113614_b0060
  article-title: Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers
  publication-title: International Journal of Solar Energy
  doi: 10.1080/01425918608909835
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0170
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.054
– volume: 175
  start-page: 151
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0235
  article-title: Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.08.081
– volume: 151
  start-page: 107
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0135
  article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.088
– volume: 212
  start-page: 1578
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0175
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.115
– ident: 10.1016/j.enconman.2020.113614_b0040
  doi: 10.1049/iet-rpg.2017.0308
– volume: 86
  start-page: 266
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2020.113614_b0080
  article-title: Simulated Annealing algorithm for photovoltaic parameters identification
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.09.032
– volume: 2
  start-page: 171
  year: 2016
  ident: 10.1016/j.enconman.2020.113614_b0200
  article-title: A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2016.06.004
– volume: 101
  start-page: 410
  year: 2015
  ident: 10.1016/j.enconman.2020.113614_b0240
  article-title: Flower Pollination Algorithm based solar PV parameter estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.05.074
– volume: 93
  start-page: 1515
  year: 2015
  ident: 10.1016/j.enconman.2020.113614_b0005
  article-title: An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.019
– year: 2011
  ident: 10.1016/j.enconman.2020.113614_b0105
– volume: 157
  start-page: 460
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0215
  article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.12.033
– volume: 39
  start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0205
  article-title: Opposition based learning: A literature review
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.09.010
– start-page: 1
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0095
  article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems
  publication-title: Neural Comput Appl
– volume: 203
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0110
  article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112243
– volume: 135
  start-page: 463
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0090
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.082
– volume: 226
  start-page: 408
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0140
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.010
– volume: 112
  start-page: 38
  year: 2018
  ident: 10.1016/j.enconman.2020.113614_b0220
  article-title: An improved optimum-path forest clustering algorithm for remote sensing image segmentation
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.12.003
– volume: 113
  start-page: 312
  year: 2016
  ident: 10.1016/j.enconman.2020.113614_b0015
  article-title: Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.01.071
– volume: 85
  start-page: 2349
  issue: 9
  year: 2011
  ident: 10.1016/j.enconman.2020.113614_b0115
  article-title: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.06.025
– volume: 15
  start-page: 1625
  issue: 3
  year: 2011
  ident: 10.1016/j.enconman.2020.113614_b0025
  article-title: A review of solar photovoltaic technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.11.032
– ident: 10.1016/j.enconman.2020.113614_b0125
  doi: 10.1049/joe.2017.0662
– volume: 186
  start-page: 293
  year: 2019
  ident: 10.1016/j.enconman.2020.113614_b0180
  article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.048
– volume: 150
  start-page: 742
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0225
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.063
– volume: 84
  start-page: 860
  issue: 5
  year: 2010
  ident: 10.1016/j.enconman.2020.113614_b0070
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.02.012
– volume: 72
  start-page: 93
  year: 2014
  ident: 10.1016/j.enconman.2020.113614_b0010
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.011
– volume: 34
  start-page: 286
  issue: 2
  year: 1987
  ident: 10.1016/j.enconman.2020.113614_b0050
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1987.22920
– ident: 10.1016/j.enconman.2020.113614_b0245
  doi: 10.1049/iet-rpg.2018.5317
– volume: 203
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0190
  article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112138
– volume: 94
  start-page: 209
  year: 2013
  ident: 10.1016/j.enconman.2020.113614_b0230
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.05.007
– volume: 205
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0150
  article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112443
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.enconman.2020.113614_b0130
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 86
  start-page: 3241
  issue: 11
  year: 2012
  ident: 10.1016/j.enconman.2020.113614_b0085
  article-title: Parameter identification for solar cell models using harmony search-based algorithms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2012.08.018
– volume: 244
  year: 2020
  ident: 10.1016/j.enconman.2020.113614_b0145
  article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2019.118778
– volume: 29
  start-page: 329
  issue: 3
  year: 1986
  ident: 10.1016/j.enconman.2020.113614_b0065
  article-title: A comparative study of extraction methods for solar cell model parameters
  publication-title: Solid-State Electron
  doi: 10.1016/0038-1101(86)90212-1
– volume: 90
  start-page: 123
  year: 2013
  ident: 10.1016/j.enconman.2020.113614_b0120
  article-title: Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.01.010
– volume: 201
  year: 2019
  ident: 10.1016/j.enconman.2020.113614_b0045
  article-title: Comparative study on parameter extraction of photovoltaic models via differential evolution
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112113
SSID ssj0003506
Score 2.6107063
Snippet •A meta-heuristic is proposed to identify unknown parameters of photovoltaic model.•To that end, a modified teaching learning-based optimization approach is...
Accurate and efficient parameter estimation of the photovoltaic (PV) models is considered a dispensable process to simulate the PV systems. Therefore, many...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113614
SubjectTerms administrative management
Algorithms
cells
diodes
energy conversion
Environmental factors
estimation
Fitness
France
Heuristic methods
Learning
Machine learning
Mathematical models
Modules
Optimization
Parameter estimation
Parameter identification
Parameter modification
Photovoltaic cells
Photovoltaics
PV models
solar collectors
Solar energy
Teaching-learning
Title An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations
URI https://dx.doi.org/10.1016/j.enconman.2020.113614
https://www.proquest.com/docview/2479060550
https://www.proquest.com/docview/2498295135
Volume 227
WOSCitedRecordID wos000603342500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK6iMJCReKtSvKSObd4CGuI6ITRQ3yI3jtdMTVK12bTfwD_jX3EcO262McYeeLHaNHaSni8-x5_PBaGXPBPhTDMFr7hmAejbKODxTAVMy2hXg9QnbYTcj89sf59Pp-LrYPCri4U5WbCq4qenYvlfRQ3HQNgmdPYa4vaDwgH4DEKHFsQO7T8JPqmMk0bRBjqOGucsGbjqEIeBUVtqVMNMUboQzJFcHNaropmXrc-hSQZeGieZ9ahQzpfI25XLed3UMKM1sshsFZ21pRZdahNDw8PDFKpHBHa8v40ybN3cW46uPbm84H6TzGDU4A0Y9Xaf5Es9h_tRHhn2q4XGhk5w7gmwmLBVDr4VS7jCp7FnkMyGQenC32TZJzvC3R7Z4fhPEQdc2IrF3QQe2uwCbgo2RWpsXOoF7WCJiqOxSRFawfON4RK2qo3tcDYd9zk16Z0XO7-4o7QbJzXjpHacG2g7ZFSAjthOPuxNP3qzIKJtoVf_BL1w9T_f0WWW0jmboTWEDu6iO24FgxOLvHtokFf30e1eXssH6GdSYY9BfAkGcR-D2GMQAwbxBoP4LAZxrXEfg9hi8DXuEIgBVLiHwIfo-7u9g7fvA1f0I8giFjWBkjoMFRcq5FySnJFMUSnBiIZ1OVMZIZLnRDKi6IwKEepIaxprIbXIojyG5hHaquoqf4zwJCZSKs2MUgM7lfOM5ZHhQCYypzLKhoh2f3CauYz4pjDLIv27iIfole-3tDlhruwhOvmlzrK1FmsK0Lyy704n8NRNM-s0nDBBYkIpGaIX_mfQDGa7T1Z5fWzOETyEBVREn1z7hp-iW5vXbwdtNavj_Bm6mZ00xXr13EH7N50652U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+teaching-learning-based+optimization+algorithm+for+parameters+identification+of+photovoltaic+models%3A+Analysis+and+validations&rft.jtitle=Energy+conversion+and+management&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Mohamed%2C+Reda&rft.au=Chakrabortty%2C+Ripon+K.&rft.au=Sallam%2C+Karam&rft.date=2021-01-01&rft.issn=0196-8904&rft.volume=227&rft.spage=113614&rft_id=info:doi/10.1016%2Fj.enconman.2020.113614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2020_113614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon