Feature selection for binary classification based on class labeling, SOM, and hierarchical clustering

Feature selection plays an important role in algorithms for processing high-dimensional data. Traditional pattern classification and information theory methods are widely applied to feature selection methods. However, traditional pattern classification methods such as Fisher Score, Laplacian Score,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Measurement and control (London) Ročník 56; číslo 9-10; s. 1649 - 1669
Hlavní autori: Zhengtian, Zhao, Zhiyuan, Rui, Xiaoyan, Duan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London, England SAGE Publications 01.11.2023
Sage Publications Ltd
SAGE Publishing
Predmet:
ISSN:0020-2940, 2051-8730
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature selection plays an important role in algorithms for processing high-dimensional data. Traditional pattern classification and information theory methods are widely applied to feature selection methods. However, traditional pattern classification methods such as Fisher Score, Laplacian Score, and relief use class labels inadequately. Previous information theory based feature selection methods such as MIFS ignore the intra-class to tight inter-class to sparse property of the samples. To address these problems, a feature selection algorithm for the binary classification problem is proposed, which is based on class label transformation using self-organizing mapping neural network (SOM) and cohesive hierarchical clustering. The algorithm first converts class labels without numerical meaning into numerical values that can participate in operations and retain classification information through class label mapping, and constitutes a two-dimensional vector from it and the attribute values to be judged. Then, these two-dimensional vectors are clustered by using SOM neural network and hierarchical clustering. Finally, evaluation function value is calculated, that is closely related to intra-cluster to tightness, inter-cluster separation, and division accuracy after clustering, and is used to evaluate the ability of alternative attributes to distinguish between classes. It is experimentally verified that the algorithm is robust and can effectively screen attributes with strong classification ability and improve the prediction performance of the classifier.
AbstractList Feature selection plays an important role in algorithms for processing high-dimensional data. Traditional pattern classification and information theory methods are widely applied to feature selection methods. However, traditional pattern classification methods such as Fisher Score, Laplacian Score, and relief use class labels inadequately. Previous information theory based feature selection methods such as MIFS ignore the intra-class to tight inter-class to sparse property of the samples. To address these problems, a feature selection algorithm for the binary classification problem is proposed, which is based on class label transformation using self-organizing mapping neural network (SOM) and cohesive hierarchical clustering. The algorithm first converts class labels without numerical meaning into numerical values that can participate in operations and retain classification information through class label mapping, and constitutes a two-dimensional vector from it and the attribute values to be judged. Then, these two-dimensional vectors are clustered by using SOM neural network and hierarchical clustering. Finally, evaluation function value is calculated, that is closely related to intra-cluster to tightness, inter-cluster separation, and division accuracy after clustering, and is used to evaluate the ability of alternative attributes to distinguish between classes. It is experimentally verified that the algorithm is robust and can effectively screen attributes with strong classification ability and improve the prediction performance of the classifier.
Author Zhengtian, Zhao
Zhiyuan, Rui
Xiaoyan, Duan
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0002-7172-268X
  surname: Zhengtian
  fullname: Zhengtian, Zhao
– sequence: 2
  givenname: Rui
  surname: Zhiyuan
  fullname: Zhiyuan, Rui
– sequence: 3
  givenname: Duan
  surname: Xiaoyan
  fullname: Xiaoyan, Duan
BookMark eNp1kT1PHDEQhi1EJA7CD6CzlJYFf50_SoQCQQJRkNTWrD17-LRZg71X5N_ju0OhQLgZe-Z5X489x-RwyhMScsbZBefGXDImmHCKCdmO0ih7QBaCLXlnjWSHZLGtd1vgiJzWumZtWa210AuCNwjzpiCtOGKYU57okAvt0wTlHw0j1JqGFGBX6aFipG2zy9MRehzTtDqnT48P5xSmSJ8TFijhuSnGRm3qjKUR38m3AcaKp-_xhPy5-fn7-ld3_3h7d3113wVp5NxFGbXRQ2BSGOOUDZr1TEQnOFptwATBXXAGJWOBW46xF3opobcAXKvo5Am52_vGDGv_UtLf9gqfIfldIpeVhzKnMKIXvVCKo4wWlBLC9Vy5yJxx7W8Y50Pz-rH3ein5dYN19uu8KVNr3wtr7dJpLkyj-J4KJddacPh_K2d-Oxz_aThNc7HXVFjhh-vXgjcCAo35
Cites_doi 10.1109/TNSRE.2013.2293575
10.1073/pnas.87.23.9193
10.1109/TKDE.2005.66
10.1016/j.jbi.2018.07.014
10.1109/72.80236
10.1007/s10115-012-0487-8
10.1109/5.58325
10.1016/S0004-3702(96)00034-3
10.1109/TNN.2008.2005601
10.1016/j.patcog.2015.11.007
10.1109/ACCESS.2022.3205618
10.1109/ACCESS.2020.2981265
10.1109/TPAMI.2005.159
10.3233/IDA-1997-1302
10.3389/fbinf.2022.927312
10.1109/TIP.2020.3011253
10.1109/72.298224
10.1109/TII.2008.2002920
10.1109/TCYB.2020.3018815
10.1109/TPAMI.2020.3002843
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1177/00202940231173748
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-8730
EndPage 1669
ExternalDocumentID oai_doaj_org_article_2b2441e3d8a44229b149d0979008011f
10_1177_00202940231173748
10.1177_00202940231173748
GrantInformation_xml – fundername: national key research and development program of china
  grantid: 2018YFB1703105
  funderid: https://doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 51865027
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -TM
-~X
01A
0R~
54M
6TJ
AABMB
AADUE
AAGGD
AAPEO
AARDL
AARIX
AASGM
AAYJJ
ABAWP
ABDWY
ABEIX
ABFWQ
ABKRH
ABQKF
ABQXT
ABRHV
ABVFX
ABYTW
ACARO
ACDSZ
ACDXX
ACGBL
ACGFS
ACOFE
ADBBV
ADEBD
ADEIA
ADOGD
ADTBJ
ADUKL
AEDFJ
AEQLS
AERKM
AEUHG
AEWDL
AEXNY
AFCOW
AFEET
AFFNX
AFKRA
AFKRG
AFRWT
AFUIA
AFYCX
AGNHF
AHJOV
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
APTNG
ARTOV
BCNDV
BDDNI
BENPR
BSEHC
CBRKF
CCPQU
CFDXU
CORYS
DC-
DOPDO
EBS
EJD
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
J8X
K.F
OK1
P.9
P.B
PHGZM
PHGZT
PIMPY
Q1R
ROL
SAUOL
SCDPB
SCNPE
SFC
ZONMY
ZPPRI
ZRKOI
ZY4
AAEJI
AAYXX
ABJCF
ACHEB
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
M7S
PQGLB
PTHSS
7SP
7TB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
FR3
L6V
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c373t-d3d676fc03277948c60b02d921e867a7c219c97e300c181edb2653ab8aa164d93
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001006328100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-2940
IngestDate Fri Oct 03 12:41:49 EDT 2025
Sat Sep 06 07:32:33 EDT 2025
Sat Nov 29 08:14:35 EST 2025
Tue Jun 17 22:40:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords SOM
hierarchical clustering
Feature selection
class labeling
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-d3d676fc03277948c60b02d921e867a7c219c97e300c181edb2653ab8aa164d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7172-268X
OpenAccessLink https://www.proquest.com/docview/2888596127?pq-origsite=%requestingapplication%
PQID 2888596127
PQPubID 4450589
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_2b2441e3d8a44229b149d0979008011f
proquest_journals_2888596127
crossref_primary_10_1177_00202940231173748
sage_journals_10_1177_00202940231173748
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Measurement and control (London)
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Wolberg, Mangasarian 1990; 87
Guyon, Elisseeff 2003; 3
Dietterich, Lathrop, Lozano-Pérez 1997; 89
Roffo, Melzi, Castellani 2021; 43
Islam, Lima, Das 2022; 10
Urbanowicz, Meeker, Cava 2018; 85
Kohonen 1990; 78
Haro-García, Toledano, Cerruela-García 2022; 52
Chen, Ma, Huang 2012; 49
Tsanas, Little, Fox 2014; 22
Peng, Long, Ding 2005; 27
Pudjihartono, Fadason, Kempa-Liehr 2022; 2
Yu 2009
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos 2013; 34
Henni, Mezghani, Mitiche 2020; 8
Le, Alex, Arthur 2012; 13
Kamin 1990; 1
Vinh, Zhou, Chan 2016; 53
Gong, Huang, Chen 2008; 4
Brown, Pocock, Zhao 2012; 13
Fleuret 2004; 5
Dash, Liu 1997; 1
Zhang, Li 2020; 29
Estévez, Tesmer, Perez 2009; 20
Battiti 1994; 5
Liu, Yu 2005; 17
Zhao Z (bibr11-00202940231173748)
bibr18-00202940231173748
bibr5-00202940231173748
Brown G (bibr24-00202940231173748) 2012; 13
bibr12-00202940231173748
Haykin S (bibr26-00202940231173748) 2008
bibr7-00202940231173748
Yu Y (bibr28-00202940231173748) 2009
Fleuret F (bibr21-00202940231173748) 2004; 5
bibr32-00202940231173748
bibr22-00202940231173748
bibr8-00202940231173748
bibr25-00202940231173748
Jović A (bibr4-00202940231173748)
Le S (bibr13-00202940231173748)
bibr9-00202940231173748
Nie F (bibr15-00202940231173748)
bibr27-00202940231173748
bibr1-00202940231173748
Langley P (bibr2-00202940231173748)
bibr31-00202940231173748
bibr17-00202940231173748
bibr34-00202940231173748
Chen T (bibr33-00202940231173748) 2012; 49
Guyon I (bibr3-00202940231173748) 2003; 3
He X (bibr10-00202940231173748)
bibr23-00202940231173748
bibr16-00202940231173748
Le S (bibr14-00202940231173748) 2012; 13
bibr29-00202940231173748
bibr19-00202940231173748
bibr20-00202940231173748
bibr30-00202940231173748
bibr6-00202940231173748
References_xml – volume: 43
  start-page: 4396
  year: 2021
  end-page: 4410
  article-title: Infinite feature selection: a graph-based feature filtering approach
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 2
  start-page: 1
  year: 2022
  end-page: 17
  article-title: A review of feature selection methods for machine learning-based disease risk prediction
  publication-title: Front Bioinform
– volume: 5
  start-page: 537
  year: 1994
  end-page: 550
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans Neural Netw
– volume: 13
  start-page: 27
  year: 2012
  end-page: 66
  article-title: Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 99595
  year: 2022
  end-page: 99632
  article-title: A comprehensive survey on the process, methods, evaluation, and challenges of feature selection
  publication-title: IEEE Access
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 29
  start-page: 8097
  year: 2020
  end-page: 8106
  article-title: Unsupervised feature selection via data reconstruction and side information
  publication-title: IEEE Trans Image Process
– volume: 52
  start-page: 2942
  year: 2022
  end-page: 2954
  article-title: Grab’Em: a novel graph-based method for combining feature subset selectors
  publication-title: IEEE Trans Cybern
– volume: 8
  start-page: 62841
  year: 2020
  end-page: 62854
  article-title: Cluster density properties define a graph for effective pattern feature selection
  publication-title: IEEE Access
– volume: 20
  start-page: 189
  year: 2009
  end-page: 201
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans Neural Netw
– volume: 1
  start-page: 239
  year: 1990
  end-page: 242
  article-title: A simple procedure for pruning back-propagation trained neural networks
  publication-title: IEEE Trans Neural Netw
– volume: 4
  start-page: 198
  year: 2008
  end-page: 206
  article-title: Robust and efficient rule extraction through data summarization and its application in welding fault diagnosis
  publication-title: IEEE Trans Ind Inform
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proc Natl Acad Sci USA
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  article-title: The self-organization map
  publication-title: Proc IEEE
– volume: 13
  start-page: 1393
  year: 2012
  end-page: 1434
  article-title: Feature selection via dependence maximization
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans Knowl Data Eng
– volume: 22
  start-page: 181
  year: 2014
  end-page: 190
  article-title: Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 85
  start-page: 189
  year: 2018
  end-page: 203
  article-title: Relief-based feature selection: introduction and review
  publication-title: J Biomed Inform
– volume: 5
  start-page: 1531
  year: 2004
  end-page: 1555
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learn Res
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  article-title: Feature selection for classification
  publication-title: Intell Data Anal
– year: 2009
  publication-title: A study of clustering and data analysis methods based on one-dimensional SOM
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 735
  year: 2012
  end-page: 745
  article-title: Novel and efficient method on feature selection and data classification
  publication-title: J Comput Res Dev
– volume: 89
  start-page: 31
  year: 1997
  end-page: 71
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif Intell
– volume: 53
  start-page: 46
  year: 2016
  end-page: 58
  article-title: Can high-order dependencies improve mutual information based feature selection?
  publication-title: Pattern Recognit
– volume: 34
  start-page: 483
  year: 2013
  end-page: 519
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl Inf Syst
– volume: 5
  start-page: 1531
  year: 2004
  ident: bibr21-00202940231173748
  publication-title: J Mach Learn Res
– ident: bibr32-00202940231173748
  doi: 10.1109/TNSRE.2013.2293575
– ident: bibr30-00202940231173748
  doi: 10.1073/pnas.87.23.9193
– ident: bibr1-00202940231173748
  doi: 10.1109/TKDE.2005.66
– volume: 3
  start-page: 1157
  year: 2003
  ident: bibr3-00202940231173748
  publication-title: J Mach Learn Res
– start-page: 507
  volume-title: Proceedings of the 18th international conference on neural information processing systems (NIPS’05)
  ident: bibr10-00202940231173748
– ident: bibr12-00202940231173748
  doi: 10.1016/j.jbi.2018.07.014
– ident: bibr29-00202940231173748
  doi: 10.1109/72.80236
– start-page: 127
  volume-title: Proceedings of the AAAI fall symposium on relevance
  ident: bibr2-00202940231173748
– volume: 49
  start-page: 735
  year: 2012
  ident: bibr33-00202940231173748
  publication-title: J Comput Res Dev
– ident: bibr8-00202940231173748
  doi: 10.1007/s10115-012-0487-8
– ident: bibr27-00202940231173748
  doi: 10.1109/5.58325
– ident: bibr31-00202940231173748
  doi: 10.1016/S0004-3702(96)00034-3
– ident: bibr23-00202940231173748
  doi: 10.1109/TNN.2008.2005601
– ident: bibr25-00202940231173748
  doi: 10.1016/j.patcog.2015.11.007
– ident: bibr6-00202940231173748
  doi: 10.1109/ACCESS.2022.3205618
– volume: 13
  start-page: 1393
  year: 2012
  ident: bibr14-00202940231173748
  publication-title: J Mach Learn Res
– ident: bibr16-00202940231173748
  doi: 10.1109/ACCESS.2020.2981265
– ident: bibr22-00202940231173748
  doi: 10.1109/TPAMI.2005.159
– ident: bibr7-00202940231173748
  doi: 10.3233/IDA-1997-1302
– start-page: 1200
  volume-title: International convention on information and communication technology, Electronics and Microelectronics (MIPRO)
  ident: bibr4-00202940231173748
– ident: bibr5-00202940231173748
  doi: 10.3389/fbinf.2022.927312
– volume: 13
  start-page: 27
  year: 2012
  ident: bibr24-00202940231173748
  publication-title: J Mach Learn Res
– start-page: 671
  volume-title: Proceedings of the 23rd national conference on Artificial intelligence
  ident: bibr15-00202940231173748
– ident: bibr17-00202940231173748
  doi: 10.1109/TIP.2020.3011253
– ident: bibr20-00202940231173748
  doi: 10.1109/72.298224
– volume-title: Neural networks and learning machines
  year: 2008
  ident: bibr26-00202940231173748
– start-page: 1151
  volume-title: Proceedings of the 24th international conference on machine learning (ICML’07)
  ident: bibr11-00202940231173748
– ident: bibr34-00202940231173748
  doi: 10.1109/TII.2008.2002920
– ident: bibr19-00202940231173748
  doi: 10.1109/TCYB.2020.3018815
– year: 2009
  ident: bibr28-00202940231173748
  publication-title: A study of clustering and data analysis methods based on one-dimensional SOM
– start-page: 823
  volume-title: Proceedings of the 24th international conference on machine learning (ICML’07)
  ident: bibr13-00202940231173748
– ident: bibr18-00202940231173748
  doi: 10.1109/TPAMI.2020.3002843
– ident: bibr9-00202940231173748
SSID ssj0000866626
ssib017845491
Score 2.285929
Snippet Feature selection plays an important role in algorithms for processing high-dimensional data. Traditional pattern classification and information theory methods...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1649
SubjectTerms Algorithms
Classification
Cluster analysis
Clustering
Feature selection
Information theory
Labels
Mapping
Neural networks
Pattern classification
Robustness (mathematics)
Tightness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCD-MTVVXIQBNlimmTzOKq4eHEVVNhbyavgpco-_P1O0la7gnjxVqY5DDNJ5huSfB9CZwAighWhzGQZZMahYc600j6zDIqdIdpay5PYhJxM1HSqHztSX_FOWE0PXAfuklooQHlgXhnOKdUWIL0nWuqIdfK8jLsvkbrTTKU9WAEsT1prEQ9lVPP2SDOxLYEtmgDb5DLyr6wUpcTdvwI4O3e8UtkZb6OtBi_iq9rPHbQWql202WER3EMhwrjlLOB50rSBQGNAotiml7bYRXgc7wOlFOBYtTyGj2THMAfSg_Qhfnq4H2JTeRzFsdPxAmQPRi0jkwKM2Ecv49vnm7usUU_IHJNskXnmhRSlI4xKWHTKCWIJ9ZrmQQlppIO9ymkZGCEOynzwlooRM1YZAy2U1-wA9aq3KhwizIOzOjee29LyUShVcDm3gvBSKAkB7KOLNnzFe02SUeQtj_jPWPfRdQzw18DIb50MkPWiyXrxV9b7aNCmp2gW3byg0M2PNEA2cOg8puz716_eHP2HN8doI6rQ108UB6i3mC3DCVp3H4vX-ew0zcxPg_3eBQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Feature selection for binary classification based on class labeling, SOM, and hierarchical clustering
URI https://journals.sagepub.com/doi/full/10.1177/00202940231173748
https://www.proquest.com/docview/2888596127
https://doaj.org/article/2b2441e3d8a44229b149d0979008011f
Volume 56
WOSCitedRecordID wos001006328100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866626
  issn: 0020-2940
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2051-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866626
  issn: 0020-2940
  databaseCode: P5Z
  dateStart: 20160201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2051-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866626
  issn: 0020-2940
  databaseCode: M7S
  dateStart: 20160201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2051-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866626
  issn: 0020-2940
  databaseCode: BENPR
  dateStart: 20160201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2051-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866626
  issn: 0020-2940
  databaseCode: PIMPY
  dateStart: 20160201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvBFL25UPSEioFvFj_TihFrWCQ5eIglS4RPEjFZfdsg9-PzPepA8keuESRbYVJZmx55vx-BuA1wgicjC547bLlmt0mLl3PvGg0Ni1lQ8h6FJswk6n7uzM133AbdmnVQ5rYlmo0zxSjPydRFdt4tEe2_cXvzhVjaLd1b6Exl3YJpYEUVL3Tgd9EtZpdH_EZcwF4bsxpQIboSQuvR42OgsHE7ZREyIeYYmV5YapKoz-N2DotcyvYoyOH_3vZzyGhz0MZQcbvXkCd_LsKTy4Rk74DDKhw_Uis2UplYPyYwhwWSgHeFkk1E1pRkWyjIxhYnhT2hmqVjnnvs9OP5_ss3aWGNXcLrsWqBQ4ak0EDTjiOXw7Pvr64SPvizLwqKxa8aSSsaaLlZIW57KLpgqVTF6K7IxtbcQlMHqbVVVFRA85BWkmqg2ubdEzS169gK3ZfJZfAtM5Bi_apEMX9CR3Lkehg6l0Z5xFCYzg7fD_m4sN90YjBnryv4U1gkOS0OVAos0uDfPFedPPwkYGRDMiq-RaraX0Af3DVHnrCTgL0Y1gd5Ba08_lZXMlshG8IZlfdf3zbV7d_qAduE9l6zdnGndha7VY5z24F3-vfi4XY9g-PJrWX8YlPjAuKo3XevIDe-pPJ_X3P2kP9v8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwBuxUMAHEBKqRfxYOz4gxKvqqt1lJYpUTmn8COKyW_YB4k_xG5nxJn0gwa0HbtHEiZL4m8cXe2YAnmAQkbxJDbdNslwjYeaudJF7hc6uLpz3XudmE3Y8Lg8P3WQDfnW5MLStsrOJ2VDHWaB_5C8kUrWBQ39sXx1_49Q1ilZXuxYaa1jspZ8_kLItXg7f4fw-lXLn_cHbXd52FeBBWbXkUUVjTRMKJS2CsQym8IWMTopUGlvbgDocnE2qKAK6vxS9NANV-7KukVpEKr6EJn9TE9h7sDkZjiafOwQLW2okXOLkLw8SBmNyzzeKy7h0ultazVWfUEYijLGEpTow55xj7iFwLvA9s9csu7-d6__bh7sB19pAm71ea8ZN2EjTW3D1TPnF25Ao_l3NE1vkZkCIUIYhPPM5RZkF4hW0kSpjl5G7jwwPspyh8uRM_m328cNom9XTyKireF6XQdjjqBWVoMARd-DThbznXehNZ9N0D5hOwTtRR-0brwepKVMQ2ptCN6a0OON9eN7Nd3W8ri5Sia4A-5_g6MMbQsTJQCoMngWz-ZeqtTOV9BiviaRiWSNCpfPIgGPhrCNqIETTh60OJVVrrRbVKUT68Iwwdnrqr09z_983egyXdw9G-9X-cLz3AK7gxWqdwbkFveV8lR7CpfB9-XUxf9SqEIOjiwbfb91fTjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+for+binary+classification+based+on+class+labeling%2C+SOM%2C+and+hierarchical+clustering&rft.jtitle=Measurement+and+control+%28London%29&rft.au=Zhao%2C+Zhengtian&rft.au=Zhiyuan+Rui&rft.au=Duan%2C+Xiaoyan&rft.date=2023-11-01&rft.pub=Sage+Publications+Ltd&rft.issn=0020-2940&rft.eissn=2051-8730&rft.volume=56&rft.issue=9-10&rft.spage=1649&rft.epage=1669&rft_id=info:doi/10.1177%2F00202940231173748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-2940&client=summon