A general mixed-integer programming framework for efficient modeling, integration and optimization of thermodynamic cycle-based energy systems

[Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy conversion and management Ročník 250; s. 114905
Hlavní autori: Liang, Yingzong, Hui, Chi Wai, Luo, Xianglong, Chen, Jianyong, Yang, Zhi, Chen, Ying
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 15.12.2021
Elsevier Science Ltd
Predmet:
ISSN:0196-8904, 1879-2227
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five components mixed refrigerant is simultaneously optimized with the LNG process. Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems.
AbstractList Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems.
[Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five components mixed refrigerant is simultaneously optimized with the LNG process. Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems.
Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO₂ Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems.
ArticleNumber 114905
Author Luo, Xianglong
Chen, Jianyong
Hui, Chi Wai
Chen, Ying
Liang, Yingzong
Yang, Zhi
Author_xml – sequence: 1
  givenname: Yingzong
  surname: Liang
  fullname: Liang, Yingzong
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Chi Wai
  surname: Hui
  fullname: Hui, Chi Wai
  organization: Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
– sequence: 3
  givenname: Xianglong
  surname: Luo
  fullname: Luo, Xianglong
  email: lxl-dte@gdut.edu.cn
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Jianyong
  surname: Chen
  fullname: Chen, Jianyong
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
– sequence: 5
  givenname: Zhi
  surname: Yang
  fullname: Yang, Zhi
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
– sequence: 6
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
BookMark eNqFkc1u1DAUhS1UJKY_r4AssWFBBttJnERiQVVBQarUDV1bjn0dPMT2YHsK4SF45noa2HTTla-s75xrn3OKTnzwgNBrSraUUP5-twWvgnfSbxlhdEtpM5D2BdrQvhsqxlh3gjaEDrzqB9K8Qqcp7QghdUv4Bv29xBN4iHLGzv4GXVmfYYKI9zFMUTpn_YRNGeBXiD-wCRGDMVZZ8Bm7oGEuwDv8qIoy2-Cx9BqHfbbO_lkvgsH5O8RCL146q7Ba1AzVKBNofFw-LTgtKYNL5-ilkXOCi3_nGbr7_Onb1Zfq5vb669XlTaXqrs6V6hraj8Qo0zSctqQd9cB6yToia9qxXnM9ctBDS4BSZWg3MD1qReqek6YxdX2G3q6-5Zs_D5CycDYpmGfpIRySYLzmXdsX74K-eYLuwiH68rpClVQ571lTKL5SKoaUIhixj9bJuAhKxLEmsRP_axLHmsRaUxF-eCJUNj_mlqO08_Pyj6scSlr3FqJIx24UaBtBZaGDfc7iAQyut88
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_137342
crossref_primary_10_3390_en17071769
crossref_primary_10_1016_j_enconman_2022_115446
crossref_primary_10_1016_j_enconman_2022_115740
crossref_primary_10_1016_j_fuel_2022_126924
crossref_primary_10_1016_j_jclepro_2023_140547
crossref_primary_10_1016_j_apenergy_2021_118277
crossref_primary_10_1016_j_apenergy_2024_123828
Cites_doi 10.1016/j.compchemeng.2014.05.013
10.1016/j.apenergy.2016.04.041
10.1115/1.3609190
10.1016/B978-0-444-64241-7.50070-7
10.1016/j.energy.2013.03.069
10.1063/1.555991
10.1146/annurev-chembioeng-080615-033546
10.1002/9781118894484
10.1016/j.compchemeng.2019.106653
10.1002/aic.12031
10.1016/j.compchemeng.2014.03.010
10.1016/j.rser.2020.109989
10.1016/0098-1354(85)80023-5
10.1021/ie800515u
10.1002/aic.690320114
10.1021/acs.iecr.7b00917
10.1016/j.enconman.2020.113307
10.1007/s11081-019-09454-1
10.1016/j.compchemeng.2010.07.028
10.1016/j.rser.2017.08.049
10.1016/j.apenergy.2017.02.048
10.1016/j.jclepro.2020.121927
10.1016/0009-2509(72)80096-4
10.1002/aic.15674
10.1021/i160057a011
10.1016/j.energy.2018.08.218
10.1002/aic.16507
10.1016/j.apenergy.2017.03.133
10.1002/aic.12565
10.1016/j.enconman.2020.113771
10.1016/j.enconman.2019.112276
10.1016/B978-0-444-64241-7.50363-3
10.1016/B978-0-444-64241-7.50056-2
10.1016/j.energy.2017.03.126
10.1021/acs.energyfuels.8b00971
10.1016/j.compchemeng.2013.05.002
10.1016/j.enconman.2019.111798
10.1016/j.energy.2020.116922
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Dec 15, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2021.114905
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_114905
S0196890421010815
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-c7418b0fcf4461505bd928a270a31728d6db6ed950e11cf1792dbdc0386044f33
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716993800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sun Sep 28 07:37:25 EDT 2025
Wed Aug 13 11:15:31 EDT 2025
Sat Nov 29 07:25:04 EST 2025
Tue Nov 18 20:43:05 EST 2025
Fri Feb 23 02:41:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat integration
Mixed-integer programming
Thermodynamic cycle
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-c7418b0fcf4461505bd928a270a31728d6db6ed950e11cf1792dbdc0386044f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2619666824
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2636758615
proquest_journals_2619666824
crossref_primary_10_1016_j_enconman_2021_114905
crossref_citationtrail_10_1016_j_enconman_2021_114905
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114905
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Lee, Mitsos (b0105) 2017; 127
Liang, Chen, Luo, Chen, Yang, Chen (b0115) 2020; 266
Smith (b0065) 2005
R. Rosenthal, GAMS—A User’s Guide (2017).
Crespi, Gavagnin, Sánchez, Martínez (b0020) 2017; 195
Petrollese, Dickes, Lemort (b0120) 2020; 224
Span, Wagner (b0210) 1996; 25
Xu, Smith (b0080) 2018
Peng, Robinson (b0195) 1976; 15
Chen, Grossmann (b0075) 2017; 8
Dincer I, Rosen MA, Ahmadi P. Optimization of energy systems, Wiley Online Library, 2017.
V. Lemort, ORC INSTALLATIONS (2018).
Pavão, Caballero, Ravagnani, Costa (b0180) 2020; 131
Lu, Luo, Wang, Chen, Liang, Yang (b0110) 2021; 230
Bongartz, Mitsos (b0040) 2019; 65
Soave (b0200) 1972; 27
Huang, Lu, Luo, Chen, Yang, Liang (b0130) 2020; 195
Hui (b0160) 2014; 65
Freeman, Hellgardt, Markides (b0100) 2017; 186
International Energy Agency, China Power System Transformation Assessing the benefit of optimised operations and advanced flexibility options (2019).
Su, Zhao, Deng (b0085) 2017; 202
Frangopoulos (b0035) 2018; 164
Iglesias Garcia, Ferreiro Garcia, Carbia Carril, Iglesias Garcia (b0015) 2018; 81
Gielen D, Gorini R, Wagner N, Leme R, Gutierrez L, Prakash G, Asmelash E, Janeiro L, Gallina G, Vale G. Global energy transformation: a roadmap to 2050 (2019).
Zhao, Mecheri, Neveux, Privat, Jaubert (b0250) 2017; 56
Zhang, Masuku, Biegler (b0145) 2018; 32
Ryu, Kong, de Lima, Pastore (b0150) 2020; 133
Miller, Siirola, Agarwal, Burgard, Lee, Eslick (b0135) 2018
Hasan, Jayaraman, Karimi, Alfadala (b0170) 2010; 56
Biegler LT, Grossmann IE, Westerberg AW. Systematic methods for chemical process design (1997).
Kamath, Biegler, Grossmann (b0175) 2012; 58
Angelino (b0245) 1968; 90
Victor, Kim, Smith (b0090) 2013; 55
Liang, Yeoh, Pahija, Lee, Hui (b0190) 2018
Huster, Schweidtmann, Mitsos (b0095) 2020; 21
Navarro-Amorós, Caballero, Ruiz-Femenia, Grossmann (b0165) 2013; 56
A. Drud, Conopt, Available in the GAMS software package (2006).
Biegler (b0070) 2017; 63
Del Nogal, Kim, Perry, Smith (b0240) 2008; 47
Grossmann (b0050) 1985; 9
(b0030) 1999
Hamedi, Karimi, Gundersen (b0185) 2020; 203
Yang, Kang, Luo, Chen, Liang, Wang (b0230) 2019; 198
Plus (b0140) 2003
Duran, Grossmann (b0155) 1986; 32
F. Del Nogal, J. Kim, S. Perry, R. Smith, Improved design of mixed refrigerant cycles using mathematical programming (2005) 1903-1915.
Avriel (b0045) 2003
Bussieck, Drud (b0225) 2001
Dowling, Biegler (b0055) 2015; 72
Kamath, Biegler, Grossmann (b0205) 2010; 34
Bongartz (10.1016/j.enconman.2021.114905_b0040) 2019; 65
10.1016/j.enconman.2021.114905_b0060
Petrollese (10.1016/j.enconman.2021.114905_b0120) 2020; 224
Su (10.1016/j.enconman.2021.114905_b0085) 2017; 202
Huang (10.1016/j.enconman.2021.114905_b0130) 2020; 195
10.1016/j.enconman.2021.114905_b0025
10.1016/j.enconman.2021.114905_b0220
Yang (10.1016/j.enconman.2021.114905_b0230) 2019; 198
Hui (10.1016/j.enconman.2021.114905_b0160) 2014; 65
Liang (10.1016/j.enconman.2021.114905_b0115) 2020; 266
Ryu (10.1016/j.enconman.2021.114905_b0150) 2020; 133
(10.1016/j.enconman.2021.114905_b0030) 1999
Hasan (10.1016/j.enconman.2021.114905_b0170) 2010; 56
Victor (10.1016/j.enconman.2021.114905_b0090) 2013; 55
Navarro-Amorós (10.1016/j.enconman.2021.114905_b0165) 2013; 56
10.1016/j.enconman.2021.114905_b0235
Hamedi (10.1016/j.enconman.2021.114905_b0185) 2020; 203
Del Nogal (10.1016/j.enconman.2021.114905_b0240) 2008; 47
Iglesias Garcia (10.1016/j.enconman.2021.114905_b0015) 2018; 81
Xu (10.1016/j.enconman.2021.114905_b0080) 2018
Freeman (10.1016/j.enconman.2021.114905_b0100) 2017; 186
Zhang (10.1016/j.enconman.2021.114905_b0145) 2018; 32
Frangopoulos (10.1016/j.enconman.2021.114905_b0035) 2018; 164
Dowling (10.1016/j.enconman.2021.114905_b0055) 2015; 72
Lu (10.1016/j.enconman.2021.114905_b0110) 2021; 230
Pavão (10.1016/j.enconman.2021.114905_b0180) 2020; 131
Angelino (10.1016/j.enconman.2021.114905_b0245) 1968; 90
Kamath (10.1016/j.enconman.2021.114905_b0205) 2010; 34
10.1016/j.enconman.2021.114905_b0005
10.1016/j.enconman.2021.114905_b0125
Plus (10.1016/j.enconman.2021.114905_b0140) 2003
Grossmann (10.1016/j.enconman.2021.114905_b0050) 1985; 9
Lee (10.1016/j.enconman.2021.114905_b0105) 2017; 127
Peng (10.1016/j.enconman.2021.114905_b0195) 1976; 15
Zhao (10.1016/j.enconman.2021.114905_b0250) 2017; 56
Soave (10.1016/j.enconman.2021.114905_b0200) 1972; 27
Chen (10.1016/j.enconman.2021.114905_b0075) 2017; 8
Span (10.1016/j.enconman.2021.114905_b0210) 1996; 25
Smith (10.1016/j.enconman.2021.114905_b0065) 2005
Biegler (10.1016/j.enconman.2021.114905_b0070) 2017; 63
10.1016/j.enconman.2021.114905_b0215
Duran (10.1016/j.enconman.2021.114905_b0155) 1986; 32
Avriel (10.1016/j.enconman.2021.114905_b0045) 2003
10.1016/j.enconman.2021.114905_b0010
Huster (10.1016/j.enconman.2021.114905_b0095) 2020; 21
Kamath (10.1016/j.enconman.2021.114905_b0175) 2012; 58
Bussieck (10.1016/j.enconman.2021.114905_b0225) 2001
Crespi (10.1016/j.enconman.2021.114905_b0020) 2017; 195
Miller (10.1016/j.enconman.2021.114905_b0135) 2018
Liang (10.1016/j.enconman.2021.114905_b0190) 2018
References_xml – reference: V. Lemort, ORC INSTALLATIONS (2018).
– volume: 164
  start-page: 1011
  year: 2018
  end-page: 1020
  ident: b0035
  article-title: Recent developments and trends in optimization of energy systems
  publication-title: Energy
– reference: Dincer I, Rosen MA, Ahmadi P. Optimization of energy systems, Wiley Online Library, 2017.
– volume: 32
  start-page: 7199
  year: 2018
  end-page: 7209
  ident: b0145
  article-title: Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischer-Tropsch processes
  publication-title: Energy Fuels
– reference: A. Drud, Conopt, Available in the GAMS software package (2006).
– volume: 203
  year: 2020
  ident: b0185
  article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes
  publication-title: Energy Convers Manage
– volume: 230
  year: 2021
  ident: b0110
  article-title: Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation
  publication-title: Energy Convers Manage
– start-page: 2209
  year: 2018
  end-page: 2214
  ident: b0135
  article-title: Next generation multi-scale process systems engineering framework, in
  publication-title: Comput Aided Chem Eng, Elsevier
– volume: 65
  start-page: 81
  year: 2014
  end-page: 88
  ident: b0160
  article-title: Optimization of heat integration with variable stream data and non-linear process constraints
  publication-title: Comput Chem Eng
– year: 1999
  ident: b0030
  publication-title: Thermodynamic Optimization of Complex Energy Systems
– volume: 21
  start-page: 517
  year: 2020
  end-page: 536
  ident: b0095
  article-title: Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation
  publication-title: Optimiz Eng
– volume: 9
  start-page: 463
  year: 1985
  end-page: 482
  ident: b0050
  article-title: Mixed-integer programming approach for the synthesis of integrated process flowsheets
  publication-title: Comput Chem Eng
– year: 2005
  ident: b0065
  article-title: Chemical process: design and integration
– volume: 55
  start-page: 114
  year: 2013
  end-page: 126
  ident: b0090
  article-title: Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles
  publication-title: Energy
– volume: 34
  start-page: 2085
  year: 2010
  end-page: 2096
  ident: b0205
  article-title: An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization
  publication-title: Comput Chem Eng
– year: 2001
  ident: b0225
  article-title: SBB: A new solver for mixed integer nonlinear programming
– volume: 198
  year: 2019
  ident: b0230
  article-title: Rigorous modelling and deterministic multi-objective optimization of a super-critical CO
  publication-title: Energy Convers Manage
– reference: Biegler LT, Grossmann IE, Westerberg AW. Systematic methods for chemical process design (1997).
– volume: 58
  start-page: 190
  year: 2012
  end-page: 204
  ident: b0175
  article-title: Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration
  publication-title: AIChE J
– reference: F. Del Nogal, J. Kim, S. Perry, R. Smith, Improved design of mixed refrigerant cycles using mathematical programming (2005) 1903-1915.
– volume: 25
  start-page: 1509
  year: 1996
  end-page: 1596
  ident: b0210
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J Phys Chem Ref Data
– reference: R. Rosenthal, GAMS—A User’s Guide (2017).
– volume: 56
  start-page: 930
  year: 2010
  end-page: 945
  ident: b0170
  article-title: Synthesis of heat exchanger networks with nonisothermal phase changes
  publication-title: AIChE J
– volume: 224
  year: 2020
  ident: b0120
  article-title: Experimentally-validated models for the off-design simulation of a medium-size solar organic Rankine cycle unit
  publication-title: Energy Convers Manage
– volume: 266
  start-page: 121927
  year: 2020
  ident: b0115
  article-title: Simultaneous optimization of combined supercritical CO
  publication-title: J Clean Prod
– reference: International Energy Agency, China Power System Transformation Assessing the benefit of optimised operations and advanced flexibility options (2019).
– volume: 47
  start-page: 8724
  year: 2008
  end-page: 8740
  ident: b0240
  article-title: Optimal design of mixed refrigerant cycles
  publication-title: Ind Eng Chem Res
– volume: 27
  start-page: 1197
  year: 1972
  end-page: 1203
  ident: b0200
  article-title: Equilibrium constants from a modified Redlich-Kwong equation of state
  publication-title: Chem Eng Sci
– volume: 63
  start-page: 1178
  year: 2017
  end-page: 1193
  ident: b0070
  article-title: New nonlinear programming paradigms for the future of process optimization
  publication-title: AIChE J
– volume: 133
  year: 2020
  ident: b0150
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput Chem Eng
– volume: 195
  start-page: 152
  year: 2017
  end-page: 183
  ident: b0020
  article-title: Supercritical carbon dioxide cycles for power generation: a review
  publication-title: Appl. Energy
– volume: 32
  start-page: 123
  year: 1986
  end-page: 138
  ident: b0155
  article-title: Simultaneous optimization and heat integration of chemical processes
  publication-title: AIChE J
– year: 2003
  ident: b0045
  article-title: Nonlinear programming: analysis and methods
– volume: 195
  year: 2020
  ident: b0130
  article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle
  publication-title: Energy
– volume: 15
  start-page: 59
  year: 1976
  end-page: 64
  ident: b0195
  article-title: A new two-constant equation of state
  publication-title: Ind Eng Chem Fundam
– volume: 81
  start-page: 760
  year: 2018
  end-page: 767
  ident: b0015
  article-title: A review of thermodynamic cycles used in low temperature recovery systems over the last two years
  publication-title: Renew Sustain Energy Rev
– volume: 127
  start-page: 489
  year: 2017
  end-page: 501
  ident: b0105
  article-title: Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification
  publication-title: Energy
– volume: 131
  year: 2020
  ident: b0180
  article-title: A pinch-based method for defining pressure manipulation routes in work and heat exchange networks
  publication-title: Renew Sustain Energy Rev
– volume: 65
  start-page: 1022
  year: 2019
  end-page: 1034
  ident: b0040
  article-title: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods
  publication-title: AIChE J.
– volume: 56
  start-page: 12
  year: 2013
  end-page: 26
  ident: b0165
  article-title: An alternative disjunctive optimization model for heat integration with variable temperatures
  publication-title: Comput Chem Eng
– volume: 56
  start-page: 6841
  year: 2017
  end-page: 6853
  ident: b0250
  article-title: Selection of a proper equation of state for the modeling of a supercritical CO
  publication-title: Ind Eng Chem Res
– start-page: 451
  year: 2018
  end-page: 456
  ident: b0080
  article-title: Design and optimization of plate heat exchanger networks
  publication-title: Comput Aided Chem Eng, Elsevier
– year: 2003
  ident: b0140
  article-title: Aspen Plus user guide
– reference: Gielen D, Gorini R, Wagner N, Leme R, Gutierrez L, Prakash G, Asmelash E, Janeiro L, Gallina G, Vale G. Global energy transformation: a roadmap to 2050 (2019).
– volume: 186
  start-page: 291
  year: 2017
  end-page: 303
  ident: b0100
  article-title: Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK
  publication-title: Appl Energy
– volume: 90
  start-page: 287
  year: 1968
  end-page: 295
  ident: b0245
  article-title: Carbon dioxide condensation cycles for power production
  publication-title: J Eng Power
– volume: 8
  start-page: 249
  year: 2017
  end-page: 283
  ident: b0075
  article-title: Recent developments and challenges in optimization-based process synthesis
  publication-title: Ann Rev Chem Biomol Eng
– volume: 72
  start-page: 3
  year: 2015
  end-page: 20
  ident: b0055
  article-title: A framework for efficient large scale equation-oriented flowsheet optimization
  publication-title: Comput Chem Eng
– volume: 202
  start-page: 618
  year: 2017
  end-page: 627
  ident: b0085
  article-title: Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model
  publication-title: Appl Energy
– start-page: 367
  year: 2018
  end-page: 372
  ident: b0190
  article-title: Energy-economic multi-objective modeling framework for simultaneous multistream heat exchangers and process optimization
  publication-title: Computer Aided Chem Eng, Elsevier
– year: 2005
  ident: 10.1016/j.enconman.2021.114905_b0065
– volume: 72
  start-page: 3
  year: 2015
  ident: 10.1016/j.enconman.2021.114905_b0055
  article-title: A framework for efficient large scale equation-oriented flowsheet optimization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.05.013
– ident: 10.1016/j.enconman.2021.114905_b0235
– volume: 186
  start-page: 291
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0100
  article-title: Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.041
– volume: 90
  start-page: 287
  year: 1968
  ident: 10.1016/j.enconman.2021.114905_b0245
  article-title: Carbon dioxide condensation cycles for power production
  publication-title: J Eng Power
  doi: 10.1115/1.3609190
– start-page: 451
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0080
  article-title: Design and optimization of plate heat exchanger networks
  publication-title: Comput Aided Chem Eng, Elsevier
  doi: 10.1016/B978-0-444-64241-7.50070-7
– volume: 55
  start-page: 114
  year: 2013
  ident: 10.1016/j.enconman.2021.114905_b0090
  article-title: Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2013.03.069
– ident: 10.1016/j.enconman.2021.114905_b0215
– volume: 25
  start-page: 1509
  issue: 6
  year: 1996
  ident: 10.1016/j.enconman.2021.114905_b0210
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555991
– volume: 8
  start-page: 249
  issue: 1
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0075
  article-title: Recent developments and challenges in optimization-based process synthesis
  publication-title: Ann Rev Chem Biomol Eng
  doi: 10.1146/annurev-chembioeng-080615-033546
– ident: 10.1016/j.enconman.2021.114905_b0025
  doi: 10.1002/9781118894484
– volume: 133
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0150
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106653
– ident: 10.1016/j.enconman.2021.114905_b0125
– volume: 56
  start-page: 930
  year: 2010
  ident: 10.1016/j.enconman.2021.114905_b0170
  article-title: Synthesis of heat exchanger networks with nonisothermal phase changes
  publication-title: AIChE J
  doi: 10.1002/aic.12031
– volume: 65
  start-page: 81
  year: 2014
  ident: 10.1016/j.enconman.2021.114905_b0160
  article-title: Optimization of heat integration with variable stream data and non-linear process constraints
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.03.010
– volume: 131
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0180
  article-title: A pinch-based method for defining pressure manipulation routes in work and heat exchange networks
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109989
– volume: 9
  start-page: 463
  issue: 5
  year: 1985
  ident: 10.1016/j.enconman.2021.114905_b0050
  article-title: Mixed-integer programming approach for the synthesis of integrated process flowsheets
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(85)80023-5
– ident: 10.1016/j.enconman.2021.114905_b0220
– volume: 47
  start-page: 8724
  issue: 22
  year: 2008
  ident: 10.1016/j.enconman.2021.114905_b0240
  article-title: Optimal design of mixed refrigerant cycles
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie800515u
– volume: 32
  start-page: 123
  issue: 1
  year: 1986
  ident: 10.1016/j.enconman.2021.114905_b0155
  article-title: Simultaneous optimization and heat integration of chemical processes
  publication-title: AIChE J
  doi: 10.1002/aic.690320114
– volume: 56
  start-page: 6841
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0250
  article-title: Selection of a proper equation of state for the modeling of a supercritical CO2 brayton cycle: consequences on the process design
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b00917
– volume: 224
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0120
  article-title: Experimentally-validated models for the off-design simulation of a medium-size solar organic Rankine cycle unit
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113307
– volume: 21
  start-page: 517
  issue: 2
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0095
  article-title: Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation
  publication-title: Optimiz Eng
  doi: 10.1007/s11081-019-09454-1
– volume: 34
  start-page: 2085
  issue: 12
  year: 2010
  ident: 10.1016/j.enconman.2021.114905_b0205
  article-title: An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2010.07.028
– volume: 81
  start-page: 760
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0015
  article-title: A review of thermodynamic cycles used in low temperature recovery systems over the last two years
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.08.049
– volume: 195
  start-page: 152
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0020
  article-title: Supercritical carbon dioxide cycles for power generation: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.048
– volume: 266
  start-page: 121927
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0115
  article-title: Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121927
– volume: 27
  start-page: 1197
  issue: 6
  year: 1972
  ident: 10.1016/j.enconman.2021.114905_b0200
  article-title: Equilibrium constants from a modified Redlich-Kwong equation of state
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(72)80096-4
– volume: 63
  start-page: 1178
  issue: 4
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0070
  article-title: New nonlinear programming paradigms for the future of process optimization
  publication-title: AIChE J
  doi: 10.1002/aic.15674
– volume: 15
  start-page: 59
  issue: 1
  year: 1976
  ident: 10.1016/j.enconman.2021.114905_b0195
  article-title: A new two-constant equation of state
  publication-title: Ind Eng Chem Fundam
  doi: 10.1021/i160057a011
– ident: 10.1016/j.enconman.2021.114905_b0005
– year: 2003
  ident: 10.1016/j.enconman.2021.114905_b0045
– ident: 10.1016/j.enconman.2021.114905_b0060
– volume: 164
  start-page: 1011
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0035
  article-title: Recent developments and trends in optimization of energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.218
– volume: 65
  start-page: 1022
  year: 2019
  ident: 10.1016/j.enconman.2021.114905_b0040
  article-title: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods
  publication-title: AIChE J.
  doi: 10.1002/aic.16507
– volume: 202
  start-page: 618
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0085
  article-title: Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.133
– year: 2001
  ident: 10.1016/j.enconman.2021.114905_b0225
– volume: 58
  start-page: 190
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2021.114905_b0175
  article-title: Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration
  publication-title: AIChE J
  doi: 10.1002/aic.12565
– volume: 230
  year: 2021
  ident: 10.1016/j.enconman.2021.114905_b0110
  article-title: Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113771
– ident: 10.1016/j.enconman.2021.114905_b0010
– volume: 203
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0185
  article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112276
– start-page: 2209
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0135
  article-title: Next generation multi-scale process systems engineering framework, in
  publication-title: Comput Aided Chem Eng, Elsevier
  doi: 10.1016/B978-0-444-64241-7.50363-3
– year: 1999
  ident: 10.1016/j.enconman.2021.114905_b0030
– start-page: 367
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0190
  article-title: Energy-economic multi-objective modeling framework for simultaneous multistream heat exchangers and process optimization
  publication-title: Computer Aided Chem Eng, Elsevier
  doi: 10.1016/B978-0-444-64241-7.50056-2
– year: 2003
  ident: 10.1016/j.enconman.2021.114905_b0140
– volume: 127
  start-page: 489
  year: 2017
  ident: 10.1016/j.enconman.2021.114905_b0105
  article-title: Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.126
– volume: 32
  start-page: 7199
  issue: 6
  year: 2018
  ident: 10.1016/j.enconman.2021.114905_b0145
  article-title: Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischer-Tropsch processes
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b00971
– volume: 56
  start-page: 12
  year: 2013
  ident: 10.1016/j.enconman.2021.114905_b0165
  article-title: An alternative disjunctive optimization model for heat integration with variable temperatures
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.05.002
– volume: 198
  year: 2019
  ident: 10.1016/j.enconman.2021.114905_b0230
  article-title: Rigorous modelling and deterministic multi-objective optimization of a super-critical CO2 power system based on equation of state and non-linear programming
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111798
– volume: 195
  year: 2020
  ident: 10.1016/j.enconman.2021.114905_b0130
  article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2020.116922
SSID ssj0003506
Score 2.4188643
Snippet [Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is...
Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114905
SubjectTerms administrative management
Brayton cycle
Carbon dioxide
Composition
Computer applications
computer software
Computing time
Design optimization
Energy
Energy conversion
equations
Equations of state
heat
Heat exchangers
Heat integration
Integer programming
Mixed integer
Mixed-integer programming
Nonlinear programming
Optimization
phase transition
solar energy
Solar power
streams
System effectiveness
system optimization
Systems design
systems engineering
Thermodynamic cycle
Thermodynamic cycles
Thermodynamic properties
Working fluids
Title A general mixed-integer programming framework for efficient modeling, integration and optimization of thermodynamic cycle-based energy systems
URI https://dx.doi.org/10.1016/j.enconman.2021.114905
https://www.proquest.com/docview/2619666824
https://www.proquest.com/docview/2636758615
Volume 250
WOSCitedRecordID wos000716993800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE8RKGiRuIUNjndj7x6jqggQqjgUEU7W2l5LrhKnSpoq5Ufwl_hrzOzDdVqg9MDFivaVtefLzngy8w0hr3UFakYmI4b0YUyAgmJayBEzealzBUcl15UtNpEeHsrpVH3u9X6GXJizWdo0crNRJ_9V1NAGwsbU2RuIu10UGuAzCB2uIHa4_pPgJ1gVGT1Ng3m9MSWzhBBmGSKx5jZ0MoRkOcZvSyOBQQG2Lo6vchKIJEK88gIOl7nP2vSRBUsY7yraD4pz2AZDnVgOjMsnXHXI0IPv3_XYUHfrp7Mrz6-E4HyqvRv7G2zm-8JrV4u-2gUJ1IOvum6Hr63Dd4qzZp3R-yH1BDrOQ7t3ccQIHOaSPIPXUyVMKlenOBzbsSOs9QcvvNYpm799VSc498TxEIlBG7ijIX7F8GLCNgn3JeXYhiyGaLjjLKyT4TqZW-cW2Y3TsQLNsDv5cDD92BoDfGzLu7Z30ElS__2O_mQfXbIUrPlzdJ_c8-8tdOLw9oD0TPOQ3O2wWT4iPybUI49uIY92kEdb5FFAHm2RRwPy3tAO7iigg3ZxRxcV3cId7eCOOtxRj7vH5Mu7g6P998yX-2AFT_kpK5BIKY-qohICyxSM81LFUsdppDlWUcPSZ4kp1Tgyo1FRgSaJy7wsIi6TSIiK8ydkp1k05imhWqsqzSMjE5WIXHOJJE8iEqOCS1FI3ifj8JCzwnPhY0mWWfZ3MffJ23beiWODuXaGCjLMvE3rbNUM4Hnt3L0g9MwfMKsMPR5JkshY9Mmrtht0Av7RpxuzWOMYjn4AeIjPbrzh5-TOxU9wj-ycLtfmBbldnJ3Wq-VLD-9fnc_kRQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+mixed-integer+programming+framework+for+efficient+modeling%2C+integration+and+optimization+of+thermodynamic+cycle-based+energy+systems&rft.jtitle=Energy+conversion+and+management&rft.au=Liang%2C+Yingzong&rft.au=Hui%2C+Chi+Wai&rft.au=Luo%2C+Xianglong&rft.au=Chen%2C+Jianyong&rft.date=2021-12-15&rft.issn=0196-8904&rft.volume=250&rft.spage=114905&rft_id=info:doi/10.1016%2Fj.enconman.2021.114905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon