A general mixed-integer programming framework for efficient modeling, integration and optimization of thermodynamic cycle-based energy systems
[Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five c...
Uložené v:
| Vydané v: | Energy conversion and management Ročník 250; s. 114905 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
15.12.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five components mixed refrigerant is simultaneously optimized with the LNG process.
Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems. |
|---|---|
| AbstractList | Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems. [Display omitted] •Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is embedded.•Novel model for multistream heat exchanger with streams’ phase unknown a priori.•Multi-step algorithm to facilitate model solution.•Five components mixed refrigerant is simultaneously optimized with the LNG process. Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO2 Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems. Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits. However, off-the-shelf software is often limited by long computational time, inflexibility for modeling and numerical difficulties. Here, we present an equation-based optimization framework featuring: (1) an inclusive modeling structure applicable to various thermodynamic cycles design problems; (2) versatile thermodynamic properties estimation for different working fluids; (3) capability of working fluids optimization with complex composition; (4) an efficient formulation method to model potential phase change of streams in simple/complicated heat exchangers; (5) a systematic optimization strategy to improve solution efficiency. The framework is formulated as mixed-integer nonlinear programming models, and its performance is demonstrated by two thermodynamic cycle optimization problems and one system design problem, including a supercritical CO₂ Brayton cycle, cryogenic cycle (PRICO), and concentrated solar power (CSP) system. The Brayton cycle case serves as an illustrative example to show thermodynamic cycle design combining the consideration of stream properties calculation, unit operations, and flowsheet optimization. The PRICO example shows the efficacy of the proposed framework in simultaneously optimizing flowsheet and working fluids composition with complex heat exchangers and stream phase unknown a priori. The CSP case demonstrates that the framework can be extended to system optimization problems with high accuracy multi-parameter equation of state. Results prove that the framework is efficient and effective in solving thermodynamic cycle and related energy systems optimization problems. |
| ArticleNumber | 114905 |
| Author | Luo, Xianglong Chen, Jianyong Hui, Chi Wai Chen, Ying Liang, Yingzong Yang, Zhi |
| Author_xml | – sequence: 1 givenname: Yingzong surname: Liang fullname: Liang, Yingzong organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Chi Wai surname: Hui fullname: Hui, Chi Wai organization: Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong – sequence: 3 givenname: Xianglong surname: Luo fullname: Luo, Xianglong email: lxl-dte@gdut.edu.cn organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Jianyong surname: Chen fullname: Chen, Jianyong organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China – sequence: 5 givenname: Zhi surname: Yang fullname: Yang, Zhi organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China – sequence: 6 givenname: Ying surname: Chen fullname: Chen, Ying organization: School of Materials and Energy, Guangdong University of Technology, Guangzhou, China |
| BookMark | eNqFkc1u1DAUhS1UJKY_r4AssWFBBttJnERiQVVBQarUDV1bjn0dPMT2YHsK4SF45noa2HTTla-s75xrn3OKTnzwgNBrSraUUP5-twWvgnfSbxlhdEtpM5D2BdrQvhsqxlh3gjaEDrzqB9K8Qqcp7QghdUv4Bv29xBN4iHLGzv4GXVmfYYKI9zFMUTpn_YRNGeBXiD-wCRGDMVZZ8Bm7oGEuwDv8qIoy2-Cx9BqHfbbO_lkvgsH5O8RCL146q7Ba1AzVKBNofFw-LTgtKYNL5-ilkXOCi3_nGbr7_Onb1Zfq5vb669XlTaXqrs6V6hraj8Qo0zSctqQd9cB6yToia9qxXnM9ctBDS4BSZWg3MD1qReqek6YxdX2G3q6-5Zs_D5CycDYpmGfpIRySYLzmXdsX74K-eYLuwiH68rpClVQ571lTKL5SKoaUIhixj9bJuAhKxLEmsRP_axLHmsRaUxF-eCJUNj_mlqO08_Pyj6scSlr3FqJIx24UaBtBZaGDfc7iAQyut88 |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137342 crossref_primary_10_3390_en17071769 crossref_primary_10_1016_j_enconman_2022_115446 crossref_primary_10_1016_j_enconman_2022_115740 crossref_primary_10_1016_j_fuel_2022_126924 crossref_primary_10_1016_j_jclepro_2023_140547 crossref_primary_10_1016_j_apenergy_2021_118277 crossref_primary_10_1016_j_apenergy_2024_123828 |
| Cites_doi | 10.1016/j.compchemeng.2014.05.013 10.1016/j.apenergy.2016.04.041 10.1115/1.3609190 10.1016/B978-0-444-64241-7.50070-7 10.1016/j.energy.2013.03.069 10.1063/1.555991 10.1146/annurev-chembioeng-080615-033546 10.1002/9781118894484 10.1016/j.compchemeng.2019.106653 10.1002/aic.12031 10.1016/j.compchemeng.2014.03.010 10.1016/j.rser.2020.109989 10.1016/0098-1354(85)80023-5 10.1021/ie800515u 10.1002/aic.690320114 10.1021/acs.iecr.7b00917 10.1016/j.enconman.2020.113307 10.1007/s11081-019-09454-1 10.1016/j.compchemeng.2010.07.028 10.1016/j.rser.2017.08.049 10.1016/j.apenergy.2017.02.048 10.1016/j.jclepro.2020.121927 10.1016/0009-2509(72)80096-4 10.1002/aic.15674 10.1021/i160057a011 10.1016/j.energy.2018.08.218 10.1002/aic.16507 10.1016/j.apenergy.2017.03.133 10.1002/aic.12565 10.1016/j.enconman.2020.113771 10.1016/j.enconman.2019.112276 10.1016/B978-0-444-64241-7.50363-3 10.1016/B978-0-444-64241-7.50056-2 10.1016/j.energy.2017.03.126 10.1021/acs.energyfuels.8b00971 10.1016/j.compchemeng.2013.05.002 10.1016/j.enconman.2019.111798 10.1016/j.energy.2020.116922 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Dec 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Dec 15, 2021 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2021.114905 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2021_114905 S0196890421010815 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-c7418b0fcf4461505bd928a270a31728d6db6ed950e11cf1792dbdc0386044f33 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716993800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Sun Sep 28 07:37:25 EDT 2025 Wed Aug 13 11:15:31 EDT 2025 Sat Nov 29 07:25:04 EST 2025 Tue Nov 18 20:43:05 EST 2025 Fri Feb 23 02:41:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heat integration Mixed-integer programming Thermodynamic cycle |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-c7418b0fcf4461505bd928a270a31728d6db6ed950e11cf1792dbdc0386044f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2619666824 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2636758615 proquest_journals_2619666824 crossref_primary_10_1016_j_enconman_2021_114905 crossref_citationtrail_10_1016_j_enconman_2021_114905 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114905 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Lee, Mitsos (b0105) 2017; 127 Liang, Chen, Luo, Chen, Yang, Chen (b0115) 2020; 266 Smith (b0065) 2005 R. Rosenthal, GAMS—A User’s Guide (2017). Crespi, Gavagnin, Sánchez, Martínez (b0020) 2017; 195 Petrollese, Dickes, Lemort (b0120) 2020; 224 Span, Wagner (b0210) 1996; 25 Xu, Smith (b0080) 2018 Peng, Robinson (b0195) 1976; 15 Chen, Grossmann (b0075) 2017; 8 Dincer I, Rosen MA, Ahmadi P. Optimization of energy systems, Wiley Online Library, 2017. V. Lemort, ORC INSTALLATIONS (2018). Pavão, Caballero, Ravagnani, Costa (b0180) 2020; 131 Lu, Luo, Wang, Chen, Liang, Yang (b0110) 2021; 230 Bongartz, Mitsos (b0040) 2019; 65 Soave (b0200) 1972; 27 Huang, Lu, Luo, Chen, Yang, Liang (b0130) 2020; 195 Hui (b0160) 2014; 65 Freeman, Hellgardt, Markides (b0100) 2017; 186 International Energy Agency, China Power System Transformation Assessing the benefit of optimised operations and advanced flexibility options (2019). Su, Zhao, Deng (b0085) 2017; 202 Frangopoulos (b0035) 2018; 164 Iglesias Garcia, Ferreiro Garcia, Carbia Carril, Iglesias Garcia (b0015) 2018; 81 Gielen D, Gorini R, Wagner N, Leme R, Gutierrez L, Prakash G, Asmelash E, Janeiro L, Gallina G, Vale G. Global energy transformation: a roadmap to 2050 (2019). Zhao, Mecheri, Neveux, Privat, Jaubert (b0250) 2017; 56 Zhang, Masuku, Biegler (b0145) 2018; 32 Ryu, Kong, de Lima, Pastore (b0150) 2020; 133 Miller, Siirola, Agarwal, Burgard, Lee, Eslick (b0135) 2018 Hasan, Jayaraman, Karimi, Alfadala (b0170) 2010; 56 Biegler LT, Grossmann IE, Westerberg AW. Systematic methods for chemical process design (1997). Kamath, Biegler, Grossmann (b0175) 2012; 58 Angelino (b0245) 1968; 90 Victor, Kim, Smith (b0090) 2013; 55 Liang, Yeoh, Pahija, Lee, Hui (b0190) 2018 Huster, Schweidtmann, Mitsos (b0095) 2020; 21 Navarro-Amorós, Caballero, Ruiz-Femenia, Grossmann (b0165) 2013; 56 A. Drud, Conopt, Available in the GAMS software package (2006). Biegler (b0070) 2017; 63 Del Nogal, Kim, Perry, Smith (b0240) 2008; 47 Grossmann (b0050) 1985; 9 (b0030) 1999 Hamedi, Karimi, Gundersen (b0185) 2020; 203 Yang, Kang, Luo, Chen, Liang, Wang (b0230) 2019; 198 Plus (b0140) 2003 Duran, Grossmann (b0155) 1986; 32 F. Del Nogal, J. Kim, S. Perry, R. Smith, Improved design of mixed refrigerant cycles using mathematical programming (2005) 1903-1915. Avriel (b0045) 2003 Bussieck, Drud (b0225) 2001 Dowling, Biegler (b0055) 2015; 72 Kamath, Biegler, Grossmann (b0205) 2010; 34 Bongartz (10.1016/j.enconman.2021.114905_b0040) 2019; 65 10.1016/j.enconman.2021.114905_b0060 Petrollese (10.1016/j.enconman.2021.114905_b0120) 2020; 224 Su (10.1016/j.enconman.2021.114905_b0085) 2017; 202 Huang (10.1016/j.enconman.2021.114905_b0130) 2020; 195 10.1016/j.enconman.2021.114905_b0025 10.1016/j.enconman.2021.114905_b0220 Yang (10.1016/j.enconman.2021.114905_b0230) 2019; 198 Hui (10.1016/j.enconman.2021.114905_b0160) 2014; 65 Liang (10.1016/j.enconman.2021.114905_b0115) 2020; 266 Ryu (10.1016/j.enconman.2021.114905_b0150) 2020; 133 (10.1016/j.enconman.2021.114905_b0030) 1999 Hasan (10.1016/j.enconman.2021.114905_b0170) 2010; 56 Victor (10.1016/j.enconman.2021.114905_b0090) 2013; 55 Navarro-Amorós (10.1016/j.enconman.2021.114905_b0165) 2013; 56 10.1016/j.enconman.2021.114905_b0235 Hamedi (10.1016/j.enconman.2021.114905_b0185) 2020; 203 Del Nogal (10.1016/j.enconman.2021.114905_b0240) 2008; 47 Iglesias Garcia (10.1016/j.enconman.2021.114905_b0015) 2018; 81 Xu (10.1016/j.enconman.2021.114905_b0080) 2018 Freeman (10.1016/j.enconman.2021.114905_b0100) 2017; 186 Zhang (10.1016/j.enconman.2021.114905_b0145) 2018; 32 Frangopoulos (10.1016/j.enconman.2021.114905_b0035) 2018; 164 Dowling (10.1016/j.enconman.2021.114905_b0055) 2015; 72 Lu (10.1016/j.enconman.2021.114905_b0110) 2021; 230 Pavão (10.1016/j.enconman.2021.114905_b0180) 2020; 131 Angelino (10.1016/j.enconman.2021.114905_b0245) 1968; 90 Kamath (10.1016/j.enconman.2021.114905_b0205) 2010; 34 10.1016/j.enconman.2021.114905_b0005 10.1016/j.enconman.2021.114905_b0125 Plus (10.1016/j.enconman.2021.114905_b0140) 2003 Grossmann (10.1016/j.enconman.2021.114905_b0050) 1985; 9 Lee (10.1016/j.enconman.2021.114905_b0105) 2017; 127 Peng (10.1016/j.enconman.2021.114905_b0195) 1976; 15 Zhao (10.1016/j.enconman.2021.114905_b0250) 2017; 56 Soave (10.1016/j.enconman.2021.114905_b0200) 1972; 27 Chen (10.1016/j.enconman.2021.114905_b0075) 2017; 8 Span (10.1016/j.enconman.2021.114905_b0210) 1996; 25 Smith (10.1016/j.enconman.2021.114905_b0065) 2005 Biegler (10.1016/j.enconman.2021.114905_b0070) 2017; 63 10.1016/j.enconman.2021.114905_b0215 Duran (10.1016/j.enconman.2021.114905_b0155) 1986; 32 Avriel (10.1016/j.enconman.2021.114905_b0045) 2003 10.1016/j.enconman.2021.114905_b0010 Huster (10.1016/j.enconman.2021.114905_b0095) 2020; 21 Kamath (10.1016/j.enconman.2021.114905_b0175) 2012; 58 Bussieck (10.1016/j.enconman.2021.114905_b0225) 2001 Crespi (10.1016/j.enconman.2021.114905_b0020) 2017; 195 Miller (10.1016/j.enconman.2021.114905_b0135) 2018 Liang (10.1016/j.enconman.2021.114905_b0190) 2018 |
| References_xml | – reference: V. Lemort, ORC INSTALLATIONS (2018). – volume: 164 start-page: 1011 year: 2018 end-page: 1020 ident: b0035 article-title: Recent developments and trends in optimization of energy systems publication-title: Energy – reference: Dincer I, Rosen MA, Ahmadi P. Optimization of energy systems, Wiley Online Library, 2017. – volume: 32 start-page: 7199 year: 2018 end-page: 7209 ident: b0145 article-title: Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischer-Tropsch processes publication-title: Energy Fuels – reference: A. Drud, Conopt, Available in the GAMS software package (2006). – volume: 203 year: 2020 ident: b0185 article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes publication-title: Energy Convers Manage – volume: 230 year: 2021 ident: b0110 article-title: Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation publication-title: Energy Convers Manage – start-page: 2209 year: 2018 end-page: 2214 ident: b0135 article-title: Next generation multi-scale process systems engineering framework, in publication-title: Comput Aided Chem Eng, Elsevier – volume: 65 start-page: 81 year: 2014 end-page: 88 ident: b0160 article-title: Optimization of heat integration with variable stream data and non-linear process constraints publication-title: Comput Chem Eng – year: 1999 ident: b0030 publication-title: Thermodynamic Optimization of Complex Energy Systems – volume: 21 start-page: 517 year: 2020 end-page: 536 ident: b0095 article-title: Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation publication-title: Optimiz Eng – volume: 9 start-page: 463 year: 1985 end-page: 482 ident: b0050 article-title: Mixed-integer programming approach for the synthesis of integrated process flowsheets publication-title: Comput Chem Eng – year: 2005 ident: b0065 article-title: Chemical process: design and integration – volume: 55 start-page: 114 year: 2013 end-page: 126 ident: b0090 article-title: Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles publication-title: Energy – volume: 34 start-page: 2085 year: 2010 end-page: 2096 ident: b0205 article-title: An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization publication-title: Comput Chem Eng – year: 2001 ident: b0225 article-title: SBB: A new solver for mixed integer nonlinear programming – volume: 198 year: 2019 ident: b0230 article-title: Rigorous modelling and deterministic multi-objective optimization of a super-critical CO publication-title: Energy Convers Manage – reference: Biegler LT, Grossmann IE, Westerberg AW. Systematic methods for chemical process design (1997). – volume: 58 start-page: 190 year: 2012 end-page: 204 ident: b0175 article-title: Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration publication-title: AIChE J – reference: F. Del Nogal, J. Kim, S. Perry, R. Smith, Improved design of mixed refrigerant cycles using mathematical programming (2005) 1903-1915. – volume: 25 start-page: 1509 year: 1996 end-page: 1596 ident: b0210 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J Phys Chem Ref Data – reference: R. Rosenthal, GAMS—A User’s Guide (2017). – volume: 56 start-page: 930 year: 2010 end-page: 945 ident: b0170 article-title: Synthesis of heat exchanger networks with nonisothermal phase changes publication-title: AIChE J – volume: 224 year: 2020 ident: b0120 article-title: Experimentally-validated models for the off-design simulation of a medium-size solar organic Rankine cycle unit publication-title: Energy Convers Manage – volume: 266 start-page: 121927 year: 2020 ident: b0115 article-title: Simultaneous optimization of combined supercritical CO publication-title: J Clean Prod – reference: International Energy Agency, China Power System Transformation Assessing the benefit of optimised operations and advanced flexibility options (2019). – volume: 47 start-page: 8724 year: 2008 end-page: 8740 ident: b0240 article-title: Optimal design of mixed refrigerant cycles publication-title: Ind Eng Chem Res – volume: 27 start-page: 1197 year: 1972 end-page: 1203 ident: b0200 article-title: Equilibrium constants from a modified Redlich-Kwong equation of state publication-title: Chem Eng Sci – volume: 63 start-page: 1178 year: 2017 end-page: 1193 ident: b0070 article-title: New nonlinear programming paradigms for the future of process optimization publication-title: AIChE J – volume: 133 year: 2020 ident: b0150 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput Chem Eng – volume: 195 start-page: 152 year: 2017 end-page: 183 ident: b0020 article-title: Supercritical carbon dioxide cycles for power generation: a review publication-title: Appl. Energy – volume: 32 start-page: 123 year: 1986 end-page: 138 ident: b0155 article-title: Simultaneous optimization and heat integration of chemical processes publication-title: AIChE J – year: 2003 ident: b0045 article-title: Nonlinear programming: analysis and methods – volume: 195 year: 2020 ident: b0130 article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle publication-title: Energy – volume: 15 start-page: 59 year: 1976 end-page: 64 ident: b0195 article-title: A new two-constant equation of state publication-title: Ind Eng Chem Fundam – volume: 81 start-page: 760 year: 2018 end-page: 767 ident: b0015 article-title: A review of thermodynamic cycles used in low temperature recovery systems over the last two years publication-title: Renew Sustain Energy Rev – volume: 127 start-page: 489 year: 2017 end-page: 501 ident: b0105 article-title: Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification publication-title: Energy – volume: 131 year: 2020 ident: b0180 article-title: A pinch-based method for defining pressure manipulation routes in work and heat exchange networks publication-title: Renew Sustain Energy Rev – volume: 65 start-page: 1022 year: 2019 end-page: 1034 ident: b0040 article-title: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods publication-title: AIChE J. – volume: 56 start-page: 12 year: 2013 end-page: 26 ident: b0165 article-title: An alternative disjunctive optimization model for heat integration with variable temperatures publication-title: Comput Chem Eng – volume: 56 start-page: 6841 year: 2017 end-page: 6853 ident: b0250 article-title: Selection of a proper equation of state for the modeling of a supercritical CO publication-title: Ind Eng Chem Res – start-page: 451 year: 2018 end-page: 456 ident: b0080 article-title: Design and optimization of plate heat exchanger networks publication-title: Comput Aided Chem Eng, Elsevier – year: 2003 ident: b0140 article-title: Aspen Plus user guide – reference: Gielen D, Gorini R, Wagner N, Leme R, Gutierrez L, Prakash G, Asmelash E, Janeiro L, Gallina G, Vale G. Global energy transformation: a roadmap to 2050 (2019). – volume: 186 start-page: 291 year: 2017 end-page: 303 ident: b0100 article-title: Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK publication-title: Appl Energy – volume: 90 start-page: 287 year: 1968 end-page: 295 ident: b0245 article-title: Carbon dioxide condensation cycles for power production publication-title: J Eng Power – volume: 8 start-page: 249 year: 2017 end-page: 283 ident: b0075 article-title: Recent developments and challenges in optimization-based process synthesis publication-title: Ann Rev Chem Biomol Eng – volume: 72 start-page: 3 year: 2015 end-page: 20 ident: b0055 article-title: A framework for efficient large scale equation-oriented flowsheet optimization publication-title: Comput Chem Eng – volume: 202 start-page: 618 year: 2017 end-page: 627 ident: b0085 article-title: Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model publication-title: Appl Energy – start-page: 367 year: 2018 end-page: 372 ident: b0190 article-title: Energy-economic multi-objective modeling framework for simultaneous multistream heat exchangers and process optimization publication-title: Computer Aided Chem Eng, Elsevier – year: 2005 ident: 10.1016/j.enconman.2021.114905_b0065 – volume: 72 start-page: 3 year: 2015 ident: 10.1016/j.enconman.2021.114905_b0055 article-title: A framework for efficient large scale equation-oriented flowsheet optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2014.05.013 – ident: 10.1016/j.enconman.2021.114905_b0235 – volume: 186 start-page: 291 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0100 article-title: Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.041 – volume: 90 start-page: 287 year: 1968 ident: 10.1016/j.enconman.2021.114905_b0245 article-title: Carbon dioxide condensation cycles for power production publication-title: J Eng Power doi: 10.1115/1.3609190 – start-page: 451 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0080 article-title: Design and optimization of plate heat exchanger networks publication-title: Comput Aided Chem Eng, Elsevier doi: 10.1016/B978-0-444-64241-7.50070-7 – volume: 55 start-page: 114 year: 2013 ident: 10.1016/j.enconman.2021.114905_b0090 article-title: Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles publication-title: Energy doi: 10.1016/j.energy.2013.03.069 – ident: 10.1016/j.enconman.2021.114905_b0215 – volume: 25 start-page: 1509 issue: 6 year: 1996 ident: 10.1016/j.enconman.2021.114905_b0210 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J Phys Chem Ref Data doi: 10.1063/1.555991 – volume: 8 start-page: 249 issue: 1 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0075 article-title: Recent developments and challenges in optimization-based process synthesis publication-title: Ann Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-080615-033546 – ident: 10.1016/j.enconman.2021.114905_b0025 doi: 10.1002/9781118894484 – volume: 133 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0150 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106653 – ident: 10.1016/j.enconman.2021.114905_b0125 – volume: 56 start-page: 930 year: 2010 ident: 10.1016/j.enconman.2021.114905_b0170 article-title: Synthesis of heat exchanger networks with nonisothermal phase changes publication-title: AIChE J doi: 10.1002/aic.12031 – volume: 65 start-page: 81 year: 2014 ident: 10.1016/j.enconman.2021.114905_b0160 article-title: Optimization of heat integration with variable stream data and non-linear process constraints publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2014.03.010 – volume: 131 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0180 article-title: A pinch-based method for defining pressure manipulation routes in work and heat exchange networks publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109989 – volume: 9 start-page: 463 issue: 5 year: 1985 ident: 10.1016/j.enconman.2021.114905_b0050 article-title: Mixed-integer programming approach for the synthesis of integrated process flowsheets publication-title: Comput Chem Eng doi: 10.1016/0098-1354(85)80023-5 – ident: 10.1016/j.enconman.2021.114905_b0220 – volume: 47 start-page: 8724 issue: 22 year: 2008 ident: 10.1016/j.enconman.2021.114905_b0240 article-title: Optimal design of mixed refrigerant cycles publication-title: Ind Eng Chem Res doi: 10.1021/ie800515u – volume: 32 start-page: 123 issue: 1 year: 1986 ident: 10.1016/j.enconman.2021.114905_b0155 article-title: Simultaneous optimization and heat integration of chemical processes publication-title: AIChE J doi: 10.1002/aic.690320114 – volume: 56 start-page: 6841 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0250 article-title: Selection of a proper equation of state for the modeling of a supercritical CO2 brayton cycle: consequences on the process design publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b00917 – volume: 224 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0120 article-title: Experimentally-validated models for the off-design simulation of a medium-size solar organic Rankine cycle unit publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113307 – volume: 21 start-page: 517 issue: 2 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0095 article-title: Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation publication-title: Optimiz Eng doi: 10.1007/s11081-019-09454-1 – volume: 34 start-page: 2085 issue: 12 year: 2010 ident: 10.1016/j.enconman.2021.114905_b0205 article-title: An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2010.07.028 – volume: 81 start-page: 760 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0015 article-title: A review of thermodynamic cycles used in low temperature recovery systems over the last two years publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.08.049 – volume: 195 start-page: 152 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0020 article-title: Supercritical carbon dioxide cycles for power generation: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.048 – volume: 266 start-page: 121927 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0115 article-title: Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121927 – volume: 27 start-page: 1197 issue: 6 year: 1972 ident: 10.1016/j.enconman.2021.114905_b0200 article-title: Equilibrium constants from a modified Redlich-Kwong equation of state publication-title: Chem Eng Sci doi: 10.1016/0009-2509(72)80096-4 – volume: 63 start-page: 1178 issue: 4 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0070 article-title: New nonlinear programming paradigms for the future of process optimization publication-title: AIChE J doi: 10.1002/aic.15674 – volume: 15 start-page: 59 issue: 1 year: 1976 ident: 10.1016/j.enconman.2021.114905_b0195 article-title: A new two-constant equation of state publication-title: Ind Eng Chem Fundam doi: 10.1021/i160057a011 – ident: 10.1016/j.enconman.2021.114905_b0005 – year: 2003 ident: 10.1016/j.enconman.2021.114905_b0045 – ident: 10.1016/j.enconman.2021.114905_b0060 – volume: 164 start-page: 1011 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0035 article-title: Recent developments and trends in optimization of energy systems publication-title: Energy doi: 10.1016/j.energy.2018.08.218 – volume: 65 start-page: 1022 year: 2019 ident: 10.1016/j.enconman.2021.114905_b0040 article-title: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods publication-title: AIChE J. doi: 10.1002/aic.16507 – volume: 202 start-page: 618 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0085 article-title: Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.133 – year: 2001 ident: 10.1016/j.enconman.2021.114905_b0225 – volume: 58 start-page: 190 issue: 1 year: 2012 ident: 10.1016/j.enconman.2021.114905_b0175 article-title: Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration publication-title: AIChE J doi: 10.1002/aic.12565 – volume: 230 year: 2021 ident: 10.1016/j.enconman.2021.114905_b0110 article-title: Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113771 – ident: 10.1016/j.enconman.2021.114905_b0010 – volume: 203 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0185 article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112276 – start-page: 2209 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0135 article-title: Next generation multi-scale process systems engineering framework, in publication-title: Comput Aided Chem Eng, Elsevier doi: 10.1016/B978-0-444-64241-7.50363-3 – year: 1999 ident: 10.1016/j.enconman.2021.114905_b0030 – start-page: 367 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0190 article-title: Energy-economic multi-objective modeling framework for simultaneous multistream heat exchangers and process optimization publication-title: Computer Aided Chem Eng, Elsevier doi: 10.1016/B978-0-444-64241-7.50056-2 – year: 2003 ident: 10.1016/j.enconman.2021.114905_b0140 – volume: 127 start-page: 489 year: 2017 ident: 10.1016/j.enconman.2021.114905_b0105 article-title: Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification publication-title: Energy doi: 10.1016/j.energy.2017.03.126 – volume: 32 start-page: 7199 issue: 6 year: 2018 ident: 10.1016/j.enconman.2021.114905_b0145 article-title: Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischer-Tropsch processes publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b00971 – volume: 56 start-page: 12 year: 2013 ident: 10.1016/j.enconman.2021.114905_b0165 article-title: An alternative disjunctive optimization model for heat integration with variable temperatures publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.05.002 – volume: 198 year: 2019 ident: 10.1016/j.enconman.2021.114905_b0230 article-title: Rigorous modelling and deterministic multi-objective optimization of a super-critical CO2 power system based on equation of state and non-linear programming publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.111798 – volume: 195 year: 2020 ident: 10.1016/j.enconman.2021.114905_b0130 article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2020.116922 |
| SSID | ssj0003506 |
| Score | 2.4188643 |
| Snippet | [Display omitted]
•Equation-based optimization is effective for thermodynamic cycle systems design.•Rigorous cubic/multi-parameter equation of state is... Thermodynamic cycles are imperative systems for energy conversion, and optimization has been an important tool to improve their thermo-economic benefits.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114905 |
| SubjectTerms | administrative management Brayton cycle Carbon dioxide Composition Computer applications computer software Computing time Design optimization Energy Energy conversion equations Equations of state heat Heat exchangers Heat integration Integer programming Mixed integer Mixed-integer programming Nonlinear programming Optimization phase transition solar energy Solar power streams System effectiveness system optimization Systems design systems engineering Thermodynamic cycle Thermodynamic cycles Thermodynamic properties Working fluids |
| Title | A general mixed-integer programming framework for efficient modeling, integration and optimization of thermodynamic cycle-based energy systems |
| URI | https://dx.doi.org/10.1016/j.enconman.2021.114905 https://www.proquest.com/docview/2619666824 https://www.proquest.com/docview/2636758615 |
| Volume | 250 |
| WOSCitedRecordID | wos000716993800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE8RKGiRuIUNjndj7x6jqggQqjgUEU7W2l5LrhKnSpoq5Ufwl_hrzOzDdVqg9MDFivaVtefLzngy8w0hr3UFakYmI4b0YUyAgmJayBEzealzBUcl15UtNpEeHsrpVH3u9X6GXJizWdo0crNRJ_9V1NAGwsbU2RuIu10UGuAzCB2uIHa4_pPgJ1gVGT1Ng3m9MSWzhBBmGSKx5jZ0MoRkOcZvSyOBQQG2Lo6vchKIJEK88gIOl7nP2vSRBUsY7yraD4pz2AZDnVgOjMsnXHXI0IPv3_XYUHfrp7Mrz6-E4HyqvRv7G2zm-8JrV4u-2gUJ1IOvum6Hr63Dd4qzZp3R-yH1BDrOQ7t3ccQIHOaSPIPXUyVMKlenOBzbsSOs9QcvvNYpm799VSc498TxEIlBG7ijIX7F8GLCNgn3JeXYhiyGaLjjLKyT4TqZW-cW2Y3TsQLNsDv5cDD92BoDfGzLu7Z30ElS__2O_mQfXbIUrPlzdJ_c8-8tdOLw9oD0TPOQ3O2wWT4iPybUI49uIY92kEdb5FFAHm2RRwPy3tAO7iigg3ZxRxcV3cId7eCOOtxRj7vH5Mu7g6P998yX-2AFT_kpK5BIKY-qohICyxSM81LFUsdppDlWUcPSZ4kp1Tgyo1FRgSaJy7wsIi6TSIiK8ydkp1k05imhWqsqzSMjE5WIXHOJJE8iEqOCS1FI3ifj8JCzwnPhY0mWWfZ3MffJ23beiWODuXaGCjLMvE3rbNUM4Hnt3L0g9MwfMKsMPR5JkshY9Mmrtht0Av7RpxuzWOMYjn4AeIjPbrzh5-TOxU9wj-ycLtfmBbldnJ3Wq-VLD-9fnc_kRQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+mixed-integer+programming+framework+for+efficient+modeling%2C+integration+and+optimization+of+thermodynamic+cycle-based+energy+systems&rft.jtitle=Energy+conversion+and+management&rft.au=Liang%2C+Yingzong&rft.au=Hui%2C+Chi+Wai&rft.au=Luo%2C+Xianglong&rft.au=Chen%2C+Jianyong&rft.date=2021-12-15&rft.issn=0196-8904&rft.volume=250&rft.spage=114905&rft_id=info:doi/10.1016%2Fj.enconman.2021.114905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |