A Survey of Vectorization Methods in Topological Data Analysis
Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehen...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 12; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods. |
|---|---|
| AbstractList | Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods. Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods. |
| Author | Paluzo-Hidalgo, Eduardo Ali, Dashti Asaad, Aras Jimenez, Maria-Jose Soriano-Trigueros, Manuel Nanda, Vidit |
| Author_xml | – sequence: 1 givenname: Dashti surname: Ali fullname: Ali, Dashti organization: Koya University., Iraq – sequence: 2 givenname: Aras surname: Asaad fullname: Asaad, Aras organization: Koya University., Iraq – sequence: 3 givenname: Maria-Jose surname: Jimenez fullname: Jimenez, Maria-Jose organization: Mathematical Institute, University of Oxford, United Kingdom – sequence: 4 givenname: Vidit surname: Nanda fullname: Nanda, Vidit organization: Mathematical Institute, University of Oxford, United Kingdom – sequence: 5 givenname: Eduardo surname: Paluzo-Hidalgo fullname: Paluzo-Hidalgo, Eduardo organization: Departamento de Matematica Aplicada I, Universidad de Sevilla, Spain – sequence: 6 givenname: Manuel surname: Soriano-Trigueros fullname: Soriano-Trigueros, Manuel organization: Departamento de Matematica Aplicada I, Universidad de Sevilla, Spain |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gHhY8OJla5LZj-QilPpVaFGwel2y2VlN2W5qsivUX-_24yA9OJdh4HlnhqdPjmtbIyEXjA4Zo_Jm_jKaTYacchgCUAGSHZEeZwkNJZf8mPQoS3goBBenpO_9glIWxRR65HYUvLbuG9eBLYN31I115kc1xtbBDJtPW_jA1MHcrmxlP4xWVXCnGhWMalWtvfFn5KRUlcfzfR-Qt4f7-fgpnD4_TsajaaghhSbUCaVKao4cck5LqjQUCtISWMF0ClBEqUjiHPJuRtSxiGQuUeQKSy1TxmFArnd7V85-teibbGm8xqpSNdrWZ1zEMqEgedqhVwfowrau-3dDiTiJo646iu8o7az3Dsts5cxSuXXGaLZRmm2VZhul2V5pFxIHIW2arazGKVP9H73cRQ0i_rnFIU4jAb_HEIU5 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1137_24M1696469 crossref_primary_10_3390_app14052197 crossref_primary_10_1007_s10278_025_01575_7 crossref_primary_10_1371_journal_pone_0318108 crossref_primary_10_1007_s00521_024_10787_x crossref_primary_10_1016_j_knosys_2025_113125 crossref_primary_10_1007_s00285_025_02253_6 crossref_primary_10_1109_TCE_2024_3396177 crossref_primary_10_1016_j_jfranklin_2024_107249 crossref_primary_10_1109_JIOT_2024_3412980 crossref_primary_10_1016_j_atech_2025_101094 crossref_primary_10_1007_s10462_024_10710_9 crossref_primary_10_3390_sym16091236 crossref_primary_10_3390_e26080701 |
| Cites_doi | 10.1016/j.patcog.2014.06.023 10.3934/fods.2021033 10.4310/HHA.2016.v18.n1.a21 10.1007/978-3-319-23231-7_27 10.1609/aaai.v36i7.20673 10.1109/ICPR.2002.1044854 10.1007/s10462-020-09897-4 10.1007/s00454-004-1146-y 10.3390/math10173086 10.1145/2582112.2582128 10.1007/978-1-4757-1793-8 10.3389/frai.2021.681174 10.1007/s00454-014-9604-7 10.3390/math10214039 10.1007/s10208-018-9379-y 10.1109/TPAMI.1986.4767851 10.1109/TKDE.2018.2790386 10.4310/CIS.2018.v18.n4.a4 10.2139/ssrn.3275996 10.1137/16M1100472 10.1007/s41468-020-00048-w 10.1007/978-3-319-94463-0 10.1080/10618600.2019.1573686 10.1007/978-3-319-42545-0 10.1145/2462356.2462402 10.1109/TPAMI.2018.2885516 10.1016/j.cag.2020.05.029 10.1007/978-3-030-31351-7_15 10.1007/978-3-319-29228-1_11 10.1007/BF00994018 10.1016/j.jsc.2016.03.009 10.1007/b97315 10.1109/CVPR.2015.7299106 10.1007/978-3-642-40193-0_6 10.1016/j.patcog.2020.107509 10.1090/S0273-0979-09-01249-X 10.1090/S0273-0979-07-01191-3 10.1109/ICMLA.2019.00202 10.1109/ICMLA.2019.00186 10.1007/s10444-021-09893-4 10.1017/9781009099950 10.1007/978-3-030-43408-3_5 10.1111/j.1467-8659.2009.01515.x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2023.3308391 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TPAMI_2023_3308391 10235748 |
| Genre | orig-research |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c373t-c600a9c2e23b20f0ac3da37f31d1c733d47865b3b1d1eec5849b9e8baefc97123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104973300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 06:55:17 EDT 2025 Mon Jun 30 05:42:55 EDT 2025 Sat Nov 29 02:58:25 EST 2025 Tue Nov 18 21:32:39 EST 2025 Wed Aug 27 02:21:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-c600a9c2e23b20f0ac3da37f31d1c733d47865b3b1d1eec5849b9e8baefc97123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7316-117X 0000-0001-9243-6749 0000-0002-4280-5945 0000-0003-2521-1552 0000-0001-9578-8838 0000-0003-2449-1433 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10235748 |
| PQID | 2885654444 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2859603927 proquest_journals_2885654444 crossref_primary_10_1109_TPAMI_2023_3308391 ieee_primary_10235748 crossref_citationtrail_10_1109_TPAMI_2023_3308391 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref15 ref59 ref58 ref53 ref52 dlotko (ref57) 2022 ref11 ref55 chevyrev (ref42) 2016 hofer (ref14) 2019; 20 ref17 ref19 ref18 ferri (ref40) 1999; 9 ho (ref63) 1995 carriere (ref10) 2017 ref51 ref50 ref46 giusti (ref12) 2021 ref45 ref48 ref47 ref41 ref44 moor (ref16) 2020 ref9 ref3 ref6 ref5 ref35 ref34 ref37 ref36 perea (ref38) 2022 royer (ref54) 2021 ref32 adams (ref49) 2017; 18 ref2 ref1 ref39 bubenik (ref43) 2015; 16 pedregosa (ref61) 2011; 12 asaad (ref33) 2022; 10 ref24 ref23 ref26 ref25 ref20 xiao (ref8) 2017 ref22 ref21 (ref60) 2022 edelsbrunner (ref31) 2010 ref28 ref27 ref29 pickup (ref7) 2014 carrière (ref13) 2020 hatcher (ref30) 2002 oudot (ref4) 2017; 209 ref62 |
| References_xml | – volume: 20 start-page: 1 year: 2019 ident: ref14 article-title: Learning representations of persistence barcodes publication-title: J Mach Learn Res – year: 2022 ident: ref60 publication-title: GUDHI The GUDHI Project User and Reference Manual – ident: ref34 doi: 10.1016/j.patcog.2014.06.023 – ident: ref51 doi: 10.3934/fods.2021033 – ident: ref37 doi: 10.4310/HHA.2016.v18.n1.a21 – ident: ref41 doi: 10.1007/978-3-319-23231-7_27 – ident: ref15 doi: 10.1609/aaai.v36i7.20673 – ident: ref6 doi: 10.1109/ICPR.2002.1044854 – ident: ref55 doi: 10.1007/s10462-020-09897-4 – ident: ref23 doi: 10.1007/s00454-004-1146-y – year: 2022 ident: ref57 article-title: Cubical complex publication-title: GUDHI User and Reference Manual – ident: ref22 doi: 10.3390/math10173086 – start-page: 2786 year: 2020 ident: ref13 article-title: PersLay: A neural network layer for persistence diagrams and new graph topological signatures publication-title: Proc Int Conf Artif Intell Statist – ident: ref45 doi: 10.1145/2582112.2582128 – year: 2002 ident: ref30 publication-title: Algebraic Topology – ident: ref28 doi: 10.1007/978-1-4757-1793-8 – ident: ref21 doi: 10.3389/frai.2021.681174 – ident: ref25 doi: 10.1007/s00454-014-9604-7 – volume: 209 year: 2017 ident: ref4 publication-title: Persistence Theory From Quiver Representations to Data Analysis – volume: 10 year: 2022 ident: ref33 article-title: Persistent homology for breast tumor classification using mammogram scans publication-title: Mathematics doi: 10.3390/math10214039 – ident: ref39 doi: 10.1007/s10208-018-9379-y – ident: ref59 doi: 10.1109/TPAMI.1986.4767851 – start-page: 7045 year: 2020 ident: ref16 article-title: Topological autoencoders publication-title: Proc Int Conf Mach Learn – year: 2010 ident: ref31 publication-title: Computational Topology An Introduction – ident: ref56 doi: 10.1109/TKDE.2018.2790386 – volume: 16 start-page: 77 year: 2015 ident: ref43 article-title: Statistical topological data analysis using persistence landscapes publication-title: J Mach Learn Res – ident: ref47 doi: 10.4310/CIS.2018.v18.n4.a4 – start-page: 664 year: 2017 ident: ref10 article-title: Sliced Wasserstein kernel for persistence diagrams publication-title: Proc Int Conf Mach Learn – ident: ref18 doi: 10.2139/ssrn.3275996 – ident: ref27 doi: 10.1137/16M1100472 – year: 2022 ident: ref38 article-title: Approximating continuous functions on persistence diagrams using template functions publication-title: Found Comput Math – start-page: 278 year: 1995 ident: ref63 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition – ident: ref50 doi: 10.1007/s41468-020-00048-w – ident: ref5 doi: 10.1007/978-3-319-94463-0 – ident: ref46 doi: 10.1080/10618600.2019.1573686 – year: 2021 ident: ref12 article-title: Signatures, Lipschitz-free spaces, and paths of persistence diagrams – ident: ref24 doi: 10.1007/978-3-319-42545-0 – ident: ref26 doi: 10.1145/2462356.2462402 – start-page: 101 year: 2014 ident: ref7 article-title: SHREC'14 track: Shape retrieval of non-rigid 3D human models publication-title: Proc 7th Eurographics Workshop 3D Object Retrieval – ident: ref11 doi: 10.1109/TPAMI.2018.2885516 – ident: ref48 doi: 10.1016/j.cag.2020.05.029 – ident: ref19 doi: 10.1007/978-3-030-31351-7_15 – ident: ref35 doi: 10.1007/978-3-319-29228-1_11 – ident: ref62 doi: 10.1007/BF00994018 – start-page: 1000 year: 2021 ident: ref54 article-title: ATOL: Measure vectorization for automatic topologically-oriented learning publication-title: Proc 24th Int Conf Artif Intell Statist – ident: ref44 doi: 10.1016/j.jsc.2016.03.009 – ident: ref29 doi: 10.1007/b97315 – ident: ref9 doi: 10.1109/CVPR.2015.7299106 – volume: 18 start-page: 218 year: 2017 ident: ref49 article-title: Persistence images: A stable vector representation of persistent homology publication-title: J Mach Learn Res – ident: ref3 doi: 10.1007/978-3-642-40193-0_6 – volume: 12 start-page: 2825 year: 2011 ident: ref61 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref36 doi: 10.1016/j.patcog.2020.107509 – ident: ref2 doi: 10.1090/S0273-0979-09-01249-X – ident: ref1 doi: 10.1090/S0273-0979-07-01191-3 – ident: ref53 doi: 10.1109/ICMLA.2019.00202 – volume: 9 start-page: 16 year: 1999 ident: ref40 article-title: Representing size functions by complex polynomials publication-title: Proc Math Met Pattern Recognit – ident: ref52 doi: 10.1109/ICMLA.2019.00186 – ident: ref20 doi: 10.1007/s10444-021-09893-4 – ident: ref32 doi: 10.1017/9781009099950 – ident: ref17 doi: 10.1007/978-3-030-43408-3_5 – ident: ref58 doi: 10.1111/j.1467-8659.2009.01515.x – year: 2017 ident: ref8 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms – year: 2016 ident: ref42 article-title: A primer on the signature method in machine learning |
| SSID | ssj0014503 |
| Score | 2.6210742 |
| Snippet | Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Applications programs barcodes Cognitive tasks Data analysis Homology persistent homology Supervised learning Topological data analysis Topology vectorization methods |
| Title | A Survey of Vectorization Methods in Topological Data Analysis |
| URI | https://ieeexplore.ieee.org/document/10235748 https://www.proquest.com/docview/2885654444 https://www.proquest.com/docview/2859603927 |
| Volume | 45 |
| WOSCitedRecordID | wos001104973300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i6SgRv0rXdpE16ERYfKKgIrrK3kqRTEKQr-xD8907SdlkRBXtqSVrCTKb5JpOZD-DE1RSLVSICblQRiNTkgY7jJMDQWKGsTtCXXXy5kw8PajBIH-tkdZ8Lg4j-8Bl23K2P5edDO3VbZWeRL84i1CIsSimrZK1ZyEDEngaZIAyZOPkRTYZMmJ71H3v3tx1HFN4h950gQfRtFfK0Kj_-xX6BuV7_59A2YK1GkqxXqX4TFrDcgvWGpYHVRrsFq3MlB7fhvMeepqMP_GTDgr34Lfs6E5PdezLpMXstWb-iTnAKZJd6ollTu2QHnq-v-hc3Qc2hEFgu-SSwBGh0arvY5aYbFqG2PNdcFjzKIys5z4VUSWy4oWdES3AkNSkqo7GwqaRlbReWymGJe8BEiEWsrYvDGmEFyVHmiSaDR6UVqrgFUSPTzNYFxh3PxVvmHY0wzbweMqeHrNZDC05n77xX5TX-7L3jJD_XsxJ6C9qN7rLaBMdZVykCq4KuFhzPmsl4XERElzicuj4xeXAEEeX-L58-gBU3guoASxuWJqMpHsKy_Zi8jkdHNA8H6sjPwy_dmtfG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSD6xPXZwRv0rVtkja9CIsPFHcXwVW8lSSdgiBd2YfgvzdJ20URBXtq6bSEmU4zk8l8H8CJxRTjImIeVSL3WKIyT3IeeegrzYSWETrYxadu3O-L5-fkvmpWd70wiOg2n2HbnrpafjbUU7tUdhY4cBYm5mGBMxYGZbvWrGjAuCNCNkGMcXKTSdQ9Mn5yNrjv9G7bliq8bRJ4ExQE3-YhR6zy42_sppjr5j8HtwarVSxJOqXx12EOiw1o1jwNpHLbDVj5Ajq4Cecd8jAdveMHGebkyS3aV72YpOfopMfkpSCDkjzBmpBcyokkNXrJFjxeXw0ubryKRcHTNKYTT5uQRiY6xJCq0M99qWkmaZzTIAt0TGnGYhFxRZW5RtQmIElUgkJJzHUSm4ltGxrFsMAdIMzHnEttK7GKaWb0GGeRNC6PQgoUvAVBrdNUVxDjluniNXWphp-kzg6ptUNa2aEFp7Nn3kqAjT-lt6zmv0iWSm_Bfm27tHLCcRoKYcJVZo4WHM9uG_exNRFZ4HBqZbjJ4UyQGO_-8uojWLoZ9Lpp97Z_twfLdjTldpZ9aExGUzyARf0-eRmPDt3X-AkpItol |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Vectorization+Methods+in+Topological+Data+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Dashti%2C+Ali&rft.au=Aras+Asaad&rft.au=Maria-Jose+Jimenez&rft.au=Nanda%2C+Vidit&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=45&rft.issue=12&rft.spage=14069&rft_id=info:doi/10.1109%2FTPAMI.2023.3308391&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |