Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework

The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D Jg. 172; H. 1; S. 190 - 216
Hauptverfasser: Bridges, Thomas J., Derks, Gianne, Gottwald, Georg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.11.2002
Schlagworte:
ISSN:0167-2789, 1872-8022
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on exterior algebra spaces is introduced. The complete algorithm has several new features, including a rigorous numerical algorithm for choosing starting values, a new method for numerical analytic continuation of starting vectors, the role of the Grassmannian G 2( C 5) in choosing the numerical integrator, and the role of the Hodge star operator for relating ⋀ 2( C 5) and ⋀ 3( C 5) and deducing a range of numerically computable forms for the Evans function. The algorithm is illustrated by computing the stability and instability of solitary waves of the fifth-order KdV equation with polynomial nonlinearity.
ISSN:0167-2789
1872-8022
DOI:10.1016/S0167-2789(02)00655-3