Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework

The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D Jg. 172; H. 1; S. 190 - 216
Hauptverfasser: Bridges, Thomas J., Derks, Gianne, Gottwald, Georg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.11.2002
Schlagworte:
ISSN:0167-2789, 1872-8022
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on exterior algebra spaces is introduced. The complete algorithm has several new features, including a rigorous numerical algorithm for choosing starting values, a new method for numerical analytic continuation of starting vectors, the role of the Grassmannian G 2( C 5) in choosing the numerical integrator, and the role of the Hodge star operator for relating ⋀ 2( C 5) and ⋀ 3( C 5) and deducing a range of numerically computable forms for the Evans function. The algorithm is illustrated by computing the stability and instability of solitary waves of the fifth-order KdV equation with polynomial nonlinearity.
AbstractList The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on exterior algebra spaces is introduced. The complete algorithm has several new features, including a rigorous numerical algorithm for choosing starting values, a new method for numerical analytic continuation of starting vectors, the role of the Grassmannian G 2( C 5) in choosing the numerical integrator, and the role of the Hodge star operator for relating ⋀ 2( C 5) and ⋀ 3( C 5) and deducing a range of numerically computable forms for the Evans function. The algorithm is illustrated by computing the stability and instability of solitary waves of the fifth-order KdV equation with polynomial nonlinearity.
Author Bridges, Thomas J.
Derks, Gianne
Gottwald, Georg
Author_xml – sequence: 1
  givenname: Thomas J.
  surname: Bridges
  fullname: Bridges, Thomas J.
– sequence: 2
  givenname: Gianne
  surname: Derks
  fullname: Derks, Gianne
  email: g.derks@surrey.ac.uk
– sequence: 3
  givenname: Georg
  surname: Gottwald
  fullname: Gottwald, Georg
BookMark eNqFUMlOwzAUtFCRaAufgOQjHAJekjiBA0IVm6jEocDVcuwX1ZDGYLut-vckBfXApZe36c1oZkZo0LoWEDql5IISml_OuiISJoryjLBzQvIsS_gBGtJCsKQgjA3QcPdyhEYhfBBCqOBiiKpZVJVtbNxg1Rps27DbXY2D6yblN3itVhD6S5wDrm0d54nzBjx-Nu8YvpcqWtdeYYXb5QK81arBtVcLWDv_eYwOa9UEOPnrY_R2f_c6eUymLw9Pk9tporngMam41qUxWcmqlCiRdhPwEjJTZ4ooo2iu05LmFcsLSnLOTVYJoZgWaZGyglI-Rte_vNq7EDzUUnfie2HRK9tISmQfl9zGJfssJGFyG5fkHTr7h_7ydtF534u7-cVBZ21lwcugLbQajPWgozTO7mH4AfLEhVM
CitedBy_id crossref_primary_10_1016_j_jde_2008_07_028
crossref_primary_10_4213_rm9690
crossref_primary_10_1007_s10884_015_9440_3
crossref_primary_10_1137_S0036141004439350
crossref_primary_10_1007_s00220_009_0885_2
crossref_primary_10_1016_j_physd_2010_03_006
crossref_primary_10_1016_j_physd_2006_07_003
crossref_primary_10_1016_S0252_9602_10_60058_6
crossref_primary_10_1137_040605953
crossref_primary_10_1137_10081441X
crossref_primary_10_1016_j_physd_2025_134628
crossref_primary_10_1016_j_jde_2022_06_019
crossref_primary_10_1016_j_physd_2006_01_024
crossref_primary_10_1137_140975590
crossref_primary_10_1007_s00211_006_0004_7
crossref_primary_10_1007_s00332_008_9023_0
crossref_primary_10_1140_epjp_s13360_024_04951_4
crossref_primary_10_1007_s00020_013_2117_6
crossref_primary_10_1016_j_physd_2009_05_008
crossref_primary_10_1137_050640849
crossref_primary_10_1137_19M1259705
crossref_primary_10_1016_j_cnsns_2019_105073
crossref_primary_10_1007_s10444_012_9273_0
crossref_primary_10_1088_1402_4896_ab5290
crossref_primary_10_1016_j_physd_2020_132653
crossref_primary_10_1016_j_matcom_2022_06_020
crossref_primary_10_1016_j_physd_2017_12_002
crossref_primary_10_1088_1361_6544_ad8698
crossref_primary_10_1137_040605308
crossref_primary_10_1070_RM9953
crossref_primary_10_1090_S0033_569X_2010_01209_1
crossref_primary_10_1007_s00033_015_0538_6
crossref_primary_10_1016_S0997_7546_03_00036_0
crossref_primary_10_1111_sapm_12136
crossref_primary_10_1007_s13160_020_00428_w
crossref_primary_10_1016_j_physd_2015_05_010
crossref_primary_10_1090_S0033_569X_2011_01221_6
crossref_primary_10_1088_0305_4470_39_47_002
crossref_primary_10_1007_s00220_010_1095_7
crossref_primary_10_1016_j_jmaa_2017_08_021
crossref_primary_10_1137_23M1598106
crossref_primary_10_1137_050628271
crossref_primary_10_1088_0305_4470_39_19_S02
crossref_primary_10_1007_s00205_010_0363_1
crossref_primary_10_1007_s00220_008_0487_4
crossref_primary_10_1016_j_mechrescom_2018_05_002
crossref_primary_10_1007_s00220_010_1175_8
crossref_primary_10_1007_s00332_024_10098_4
crossref_primary_10_1016_j_matpur_2009_10_001
crossref_primary_10_1016_j_mbs_2015_05_009
crossref_primary_10_1007_s00028_020_00630_w
crossref_primary_10_1016_j_physd_2013_06_001
crossref_primary_10_1016_j_physd_2021_132872
crossref_primary_10_1137_18M1196121
crossref_primary_10_1016_j_physd_2008_04_009
crossref_primary_10_1007_s00285_010_0379_z
crossref_primary_10_1016_j_cnsns_2013_10_027
crossref_primary_10_1007_s42064_022_0144_2
crossref_primary_10_1111_sapm_12755
crossref_primary_10_1016_j_jde_2005_09_001
crossref_primary_10_1016_j_physd_2008_03_008
crossref_primary_10_1137_17M113770X
crossref_primary_10_1016_j_jde_2010_07_019
crossref_primary_10_1016_j_physd_2016_05_016
crossref_primary_10_1137_19M1251977
crossref_primary_10_1007_s00205_008_0153_1
crossref_primary_10_1137_080714804
crossref_primary_10_1007_s11232_012_0108_4
crossref_primary_10_1137_140980223
crossref_primary_10_1007_s00205_008_0195_4
crossref_primary_10_4213_rm9953
crossref_primary_10_1007_s00205_008_0112_x
crossref_primary_10_1016_j_physd_2022_133610
crossref_primary_10_1016_j_jde_2006_10_006
crossref_primary_10_1016_j_jde_2008_10_006
crossref_primary_10_1007_s40819_020_00907_1
Cites_doi 10.1007/BF00417931
10.1016/0165-2125(94)90003-5
10.1016/S0375-9601(99)00712-4
10.1007/s002220050303
10.1016/0021-9991(79)90091-3
10.1017/S0022112079000835
10.1007/BF01395882
10.1016/S0375-9601(98)00917-7
10.1103/PhysRevLett.80.5117
10.1088/0951-7715/11/2/009
10.1137/S0036141099361494
10.1080/01630569908816889
10.1137/0523064
10.1090/S0025-5718-00-01237-0
10.1137/1.9780898719543
10.1007/s002110100365
10.1016/S0997-7546(98)80023-X
10.1016/0167-2789(93)90197-9
10.1007/PL00004235
10.1143/JPSJ.33.260
10.1098/rspa.2000.0665
10.1016/0375-9601(95)00752-0
10.1016/0375-9601(90)90307-A
10.1093/imanum/7.1.1
10.1007/978-1-4757-2189-8
10.1098/rspa.1999.0437
10.1512/iumj.1975.24.24096
10.1016/S0167-2789(98)00172-9
10.21711/231766362002/rmc222
10.1016/S0375-9601(96)00772-4
10.1016/S0167-2789(98)00245-0
10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
10.1016/S0010-4655(99)00241-6
10.1017/S0022112097005193
10.1016/S0167-2789(97)00209-1
10.1137/S0036141099361834
10.1016/S0167-2789(01)00283-4
10.1007/978-1-4757-3946-6
10.1007/s002110050020
10.1016/0025-5564(77)90076-1
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
Copyright_xml – notice: 2002 Elsevier Science B.V.
DBID AAYXX
CITATION
DOI 10.1016/S0167-2789(02)00655-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 216
ExternalDocumentID 10_1016_S0167_2789_02_00655_3
S0167278902006553
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c373t-b3cc9dd592b40a74d59e39e5df5a0ada16c4916b26810633d5b77a2c748428113
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000179357700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-2789
IngestDate Tue Nov 18 21:10:33 EST 2025
Sat Nov 29 03:57:19 EST 2025
Fri Feb 23 02:16:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evans function
Fifth-order KdV
Linear stability
Numerical exterior algebra
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-b3cc9dd592b40a74d59e39e5df5a0ada16c4916b26810633d5b77a2c748428113
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_S0167_2789_02_00655_3
crossref_primary_10_1016_S0167_2789_02_00655_3
elsevier_sciencedirect_doi_10_1016_S0167_2789_02_00655_3
PublicationCentury 2000
PublicationDate 2002-11-15
PublicationDateYYYYMMDD 2002-11-15
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-15
  day: 15
PublicationDecade 2000
PublicationTitle Physica. D
PublicationYear 2002
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bridges, Reich (BIB15) 2001; 156
Champneys (BIB18) 1998; 112
Kichenassamy, Olver (BIB39) 1992; 23
Bridges (BIB11) 1999; 455
Haragus-Courcelle, Ill’ichev (BIB31) 1998; 17
Barashenkov, Zemlyanaya (BIB8) 2000; 126
Champneys, Groves (BIB19) 1997; 342
P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.
Gardner, Zumbrun (BIB28) 1998; 51
Kawahara (BIB37) 1972; 33
Groves (BIB30) 1998; 11
Soffer, Weinstein (BIB46) 1999; 136
Afendikov, Bridges (BIB2) 2001; 457
Pego, Smereka, Weinstein (BIB45) 1993; 67
Ascher, Chin, Reich (BIB6) 1994; 67
Evans (BIB26) 1975; 24
T.J. Bridges, G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations, SIAM J. Math. Anal. 33 (2002) 1356–1378.
M. Liefvendahl, G. Kreiss, Numerical investigation of examples of unstable viscous shock waves, in: Proceedings of Eight International Conference on Hyper. Problems Hyp’2000, Universität of Magdeburg, 2000.
Bridges, Derks (BIB12) 1999; 251
Alexander, Sachs (BIB4) 1995; 2
M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, New York, 1975.
Cooper (BIB21) 1987; 7
Alexander, Gardner, Jones (BIB3) 1990; 410
Levandosky (BIB40) 1999; 125
J. Harris, Algebraic Geometry, Springer, Berlin, 1992.
Ying, Katz (BIB48) 1988; 53
Benzoni-Gavage, Serre, Zumbrun (BIB9) 2001; 32
Ng, Reid (BIB44) 1979; 30
Ill’ichev, Semenov (BIB33) 1992; 3
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000.
Ablowitz, Segur (BIB1) 1979; 92
Evans, Feroe (BIB27) 1977; 37
T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Heidelberg, 1984.
Swinton, Elgin (BIB47) 1990; 145
H.B. Keller, Numerical Solution of Two-Point Boundary-Value Problems, CBMS-NSF Conference Series, vol. 24, SIAM, Philadelphia, 1974.
R.O. Wells, Differential Analysis on Complex Manifolds, Springer, Berlin, 1980.
Bridges, Derks (BIB13) 2001; 156
Beyn, Lorenz (BIB10) 1999; 20
Karpman (BIB35) 1996; 210
Barashenkov, Pelinovsky, Zemlyanaya (BIB7) 1998; 80
E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
L. Allen, T.J. Bridges, Numerical exterior algebra and the compound matrix method, Numer. Math. 92 (2002) 197–232.
Brin (BIB16) 2001; 70
Kapitula, Sandstede (BIB34) 1998; 124
J.R. Magnus, H. Neudecker, Matrix Differential Calculus, Wiley, New York, 1988.
Dey, Khare, Kumar (BIB23) 1996; 223
L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, Preprint, Indiana University, 2002.
Dias, Kuznetsov (BIB24) 1999; 263
Craig, Groves (BIB22) 1994; 19
10.1016/S0167-2789(02)00655-3_BIB20
Haragus-Courcelle (10.1016/S0167-2789(02)00655-3_BIB31) 1998; 17
Craig (10.1016/S0167-2789(02)00655-3_BIB22) 1994; 19
Bridges (10.1016/S0167-2789(02)00655-3_BIB12) 1999; 251
Champneys (10.1016/S0167-2789(02)00655-3_BIB18) 1998; 112
Groves (10.1016/S0167-2789(02)00655-3_BIB30) 1998; 11
Ng (10.1016/S0167-2789(02)00655-3_BIB44) 1979; 30
Kapitula (10.1016/S0167-2789(02)00655-3_BIB34) 1998; 124
Afendikov (10.1016/S0167-2789(02)00655-3_BIB2) 2001; 457
10.1016/S0167-2789(02)00655-3_BIB17
10.1016/S0167-2789(02)00655-3_BIB14
Barashenkov (10.1016/S0167-2789(02)00655-3_BIB7) 1998; 80
Champneys (10.1016/S0167-2789(02)00655-3_BIB19) 1997; 342
10.1016/S0167-2789(02)00655-3_BIB32
Bridges (10.1016/S0167-2789(02)00655-3_BIB11) 1999; 455
Bridges (10.1016/S0167-2789(02)00655-3_BIB15) 2001; 156
Kichenassamy (10.1016/S0167-2789(02)00655-3_BIB39) 1992; 23
10.1016/S0167-2789(02)00655-3_BIB29
10.1016/S0167-2789(02)00655-3_BIB5
Beyn (10.1016/S0167-2789(02)00655-3_BIB10) 1999; 20
10.1016/S0167-2789(02)00655-3_BIB25
10.1016/S0167-2789(02)00655-3_BIB42
Karpman (10.1016/S0167-2789(02)00655-3_BIB35) 1996; 210
10.1016/S0167-2789(02)00655-3_BIB41
10.1016/S0167-2789(02)00655-3_BIB43
Brin (10.1016/S0167-2789(02)00655-3_BIB16) 2001; 70
Pego (10.1016/S0167-2789(02)00655-3_BIB45) 1993; 67
Bridges (10.1016/S0167-2789(02)00655-3_BIB13) 2001; 156
Levandosky (10.1016/S0167-2789(02)00655-3_BIB40) 1999; 125
Ill’ichev (10.1016/S0167-2789(02)00655-3_BIB33) 1992; 3
Benzoni-Gavage (10.1016/S0167-2789(02)00655-3_BIB9) 2001; 32
10.1016/S0167-2789(02)00655-3_BIB38
Evans (10.1016/S0167-2789(02)00655-3_BIB27) 1977; 37
Gardner (10.1016/S0167-2789(02)00655-3_BIB28) 1998; 51
10.1016/S0167-2789(02)00655-3_BIB36
Dias (10.1016/S0167-2789(02)00655-3_BIB24) 1999; 263
Dey (10.1016/S0167-2789(02)00655-3_BIB23) 1996; 223
Ablowitz (10.1016/S0167-2789(02)00655-3_BIB1) 1979; 92
Soffer (10.1016/S0167-2789(02)00655-3_BIB46) 1999; 136
Ascher (10.1016/S0167-2789(02)00655-3_BIB6) 1994; 67
Kawahara (10.1016/S0167-2789(02)00655-3_BIB37) 1972; 33
Alexander (10.1016/S0167-2789(02)00655-3_BIB3) 1990; 410
Barashenkov (10.1016/S0167-2789(02)00655-3_BIB8) 2000; 126
10.1016/S0167-2789(02)00655-3_BIB49
Alexander (10.1016/S0167-2789(02)00655-3_BIB4) 1995; 2
Ying (10.1016/S0167-2789(02)00655-3_BIB48) 1988; 53
Evans (10.1016/S0167-2789(02)00655-3_BIB26) 1975; 24
Cooper (10.1016/S0167-2789(02)00655-3_BIB21) 1987; 7
Swinton (10.1016/S0167-2789(02)00655-3_BIB47) 1990; 145
References_xml – reference: W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000.
– volume: 112
  start-page: 158
  year: 1998
  end-page: 186
  ident: BIB18
  article-title: Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics
  publication-title: Physica D
– volume: 33
  start-page: 260
  year: 1972
  end-page: 264
  ident: BIB37
  article-title: Oscillatory solitary waves in dispersive media
  publication-title: J. Phys. Soc. Jpn.
– volume: 145
  start-page: 428
  year: 1990
  end-page: 433
  ident: BIB47
  article-title: Stability of travelling pulse to a laser equation
  publication-title: Phys. Lett. A
– volume: 156
  start-page: 1
  year: 2001
  end-page: 87
  ident: BIB13
  article-title: The symplectic Evans matrix, and the linearization about solitary waves and fronts
  publication-title: Arch. Rat. Mech. Anal.
– reference: J.R. Magnus, H. Neudecker, Matrix Differential Calculus, Wiley, New York, 1988.
– reference: J. Harris, Algebraic Geometry, Springer, Berlin, 1992.
– volume: 156
  start-page: 219
  year: 2001
  end-page: 238
  ident: BIB15
  article-title: Computing Lyapunov exponents on a Stiefel manifold
  publication-title: Physica D
– volume: 23
  start-page: 1141
  year: 1992
  end-page: 1166
  ident: BIB39
  article-title: Existence and nonexistence of solitary wave solutions to higher order model evolution equations
  publication-title: SIAM J. Math. Anal.
– volume: 136
  start-page: 9
  year: 1999
  end-page: 74
  ident: BIB46
  article-title: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
  publication-title: Inven. Math.
– volume: 19
  start-page: 367
  year: 1994
  end-page: 389
  ident: BIB22
  article-title: Hamiltonian long-wave approximations to the water-wave problem
  publication-title: Wave Motion
– volume: 51
  start-page: 797
  year: 1998
  end-page: 855
  ident: BIB28
  article-title: The gap lemma and geometric criteria for instability of shock profiles
  publication-title: Commun. Pure Appl. Math.
– volume: 32
  start-page: 929
  year: 2001
  end-page: 962
  ident: BIB9
  article-title: Alternate Evans functions and viscous shock waves
  publication-title: SIAM J. Math. Anal.
– reference: R.O. Wells, Differential Analysis on Complex Manifolds, Springer, Berlin, 1980.
– reference: T.J. Bridges, G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations, SIAM J. Math. Anal. 33 (2002) 1356–1378.
– volume: 455
  start-page: 3019
  year: 1999
  end-page: 3040
  ident: BIB11
  article-title: The Orr–Sommerfeld equation on a manifold
  publication-title: Proc. Roy. Soc. London A
– volume: 3
  start-page: 307
  year: 1992
  end-page: 326
  ident: BIB33
  article-title: Stability of solitary waves in dispersive media described by a fifth-order evolution equation
  publication-title: Theor. Comp. Fluid Dyn.
– volume: 7
  start-page: 1
  year: 1987
  end-page: 13
  ident: BIB21
  article-title: Stability of Runge–Kutta methods for trajectory problems
  publication-title: IMA J. Numer. Anal.
– volume: 67
  start-page: 131
  year: 1994
  end-page: 149
  ident: BIB6
  article-title: Stabilization of DAEs and invariant manifolds
  publication-title: Numer. Math.
– volume: 24
  start-page: 1169
  year: 1975
  end-page: 1190
  ident: BIB26
  article-title: Nerve axon equations IV. The stable and unstable impulse
  publication-title: Indiana Univ. Math. J.
– volume: 124
  start-page: 58
  year: 1998
  end-page: 103
  ident: BIB34
  article-title: Stability for bright solitary wave solutions to perturbed nonlinear Schrödinger equations
  publication-title: Physica D
– volume: 70
  start-page: 1071
  year: 2001
  end-page: 1088
  ident: BIB16
  article-title: Numerical testing of the stability of viscous shock waves
  publication-title: Math. Comp.
– volume: 30
  start-page: 125
  year: 1979
  end-page: 136
  ident: BIB44
  article-title: An initial-value method for eigenvalue problems using compound matrices
  publication-title: J. Comp. Phys.
– volume: 223
  start-page: 449
  year: 1996
  end-page: 452
  ident: BIB23
  article-title: Stationary solutions of the fifth-order KdV-type equations and their stabilization
  publication-title: Phys. Lett. A
– reference: H.B. Keller, Numerical Solution of Two-Point Boundary-Value Problems, CBMS-NSF Conference Series, vol. 24, SIAM, Philadelphia, 1974.
– volume: 11
  start-page: 341
  year: 1998
  end-page: 353
  ident: BIB30
  article-title: Solitary-wave solutions to a class of fifth-order model equations
  publication-title: Nonlinearity
– volume: 342
  start-page: 199
  year: 1997
  end-page: 229
  ident: BIB19
  article-title: A global investigation of solitary-wave solutions to a two-parameter model for water waves
  publication-title: J. Fluid Mech.
– reference: M. Liefvendahl, G. Kreiss, Numerical investigation of examples of unstable viscous shock waves, in: Proceedings of Eight International Conference on Hyper. Problems Hyp’2000, Universität of Magdeburg, 2000.
– volume: 410
  start-page: 167
  year: 1990
  end-page: 212
  ident: BIB3
  article-title: A topological invariant arising in the stability analysis of traveling waves
  publication-title: J. Reine Angew. Math.
– volume: 251
  start-page: 363
  year: 1999
  end-page: 372
  ident: BIB12
  article-title: Hodge duality and the Evans function
  publication-title: Phys. Lett. A
– volume: 92
  start-page: 691
  year: 1979
  end-page: 715
  ident: BIB1
  article-title: On the evolution of packets of water waves
  publication-title: J. Fluid Mech.
– reference: P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.
– reference: L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, Preprint, Indiana University, 2002.
– volume: 37
  start-page: 23
  year: 1977
  end-page: 50
  ident: BIB27
  article-title: Local stability theory of the nerve impulse
  publication-title: Math. Biosci.
– volume: 126
  start-page: 22
  year: 2000
  end-page: 27
  ident: BIB8
  article-title: Oscillatory instabilities of gap solitons: a numerical study
  publication-title: Comp. Phys. Commun.
– volume: 263
  start-page: 98
  year: 1999
  end-page: 104
  ident: BIB24
  article-title: Nonlinear stability of solitons in the fifth-order Korteweg–de Vries equation
  publication-title: Phys. Lett. A
– reference: L. Allen, T.J. Bridges, Numerical exterior algebra and the compound matrix method, Numer. Math. 92 (2002) 197–232.
– volume: 67
  start-page: 45
  year: 1993
  end-page: 65
  ident: BIB45
  article-title: Oscillatory instability of traveling waves for a KdV–Burgers equation
  publication-title: Physica D
– volume: 20
  start-page: 201
  year: 1999
  end-page: 244
  ident: BIB10
  article-title: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals
  publication-title: Numer. Func. Anal. Optim.
– reference: T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Heidelberg, 1984.
– volume: 457
  start-page: 257
  year: 2001
  end-page: 272
  ident: BIB2
  article-title: Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow
  publication-title: Proc. R. Soc. Lond. A
– volume: 2
  start-page: 471
  year: 1995
  end-page: 507
  ident: BIB4
  article-title: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation
  publication-title: Nonlin. World
– volume: 210
  start-page: 77
  year: 1996
  end-page: 84
  ident: BIB35
  article-title: Stabilization of soliton instabilities by higher-order dispersion: KdV-type equations
  publication-title: Phys. Lett. A
– reference: M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, New York, 1975.
– volume: 53
  start-page: 143
  year: 1988
  end-page: 163
  ident: BIB48
  article-title: A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain
  publication-title: Numer. Math.
– volume: 125
  start-page: 222
  year: 1999
  end-page: 240
  ident: BIB40
  article-title: A stability analysis for fifth-order water-wave models
  publication-title: Physica D
– reference: E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
– volume: 17
  start-page: 739
  year: 1998
  end-page: 768
  ident: BIB31
  article-title: Three-dimensional solitary waves in the presence of additional surface effects
  publication-title: Euro. J. Mech. B
– volume: 80
  start-page: 5117
  year: 1998
  end-page: 5120
  ident: BIB7
  article-title: Vibrations and oscillatory instabilities of gap solitons
  publication-title: Phys. Rev. Lett.
– ident: 10.1016/S0167-2789(02)00655-3_BIB20
– volume: 3
  start-page: 307
  year: 1992
  ident: 10.1016/S0167-2789(02)00655-3_BIB33
  article-title: Stability of solitary waves in dispersive media described by a fifth-order evolution equation
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/BF00417931
– volume: 19
  start-page: 367
  year: 1994
  ident: 10.1016/S0167-2789(02)00655-3_BIB22
  article-title: Hamiltonian long-wave approximations to the water-wave problem
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(94)90003-5
– volume: 263
  start-page: 98
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB24
  article-title: Nonlinear stability of solitons in the fifth-order Korteweg–de Vries equation
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00712-4
– ident: 10.1016/S0167-2789(02)00655-3_BIB43
– volume: 136
  start-page: 9
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB46
  article-title: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
  publication-title: Inven. Math.
  doi: 10.1007/s002220050303
– volume: 30
  start-page: 125
  year: 1979
  ident: 10.1016/S0167-2789(02)00655-3_BIB44
  article-title: An initial-value method for eigenvalue problems using compound matrices
  publication-title: J. Comp. Phys.
  doi: 10.1016/0021-9991(79)90091-3
– volume: 92
  start-page: 691
  year: 1979
  ident: 10.1016/S0167-2789(02)00655-3_BIB1
  article-title: On the evolution of packets of water waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112079000835
– volume: 53
  start-page: 143
  year: 1988
  ident: 10.1016/S0167-2789(02)00655-3_BIB48
  article-title: A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain
  publication-title: Numer. Math.
  doi: 10.1007/BF01395882
– volume: 251
  start-page: 363
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB12
  article-title: Hodge duality and the Evans function
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00917-7
– volume: 80
  start-page: 5117
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB7
  article-title: Vibrations and oscillatory instabilities of gap solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5117
– volume: 11
  start-page: 341
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB30
  article-title: Solitary-wave solutions to a class of fifth-order model equations
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/11/2/009
– ident: 10.1016/S0167-2789(02)00655-3_BIB14
  doi: 10.1137/S0036141099361494
– volume: 20
  start-page: 201
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB10
  article-title: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals
  publication-title: Numer. Func. Anal. Optim.
  doi: 10.1080/01630569908816889
– volume: 23
  start-page: 1141
  year: 1992
  ident: 10.1016/S0167-2789(02)00655-3_BIB39
  article-title: Existence and nonexistence of solitary wave solutions to higher order model evolution equations
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0523064
– volume: 70
  start-page: 1071
  year: 2001
  ident: 10.1016/S0167-2789(02)00655-3_BIB16
  article-title: Numerical testing of the stability of viscous shock waves
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-00-01237-0
– ident: 10.1016/S0167-2789(02)00655-3_BIB25
– ident: 10.1016/S0167-2789(02)00655-3_BIB42
– ident: 10.1016/S0167-2789(02)00655-3_BIB29
  doi: 10.1137/1.9780898719543
– ident: 10.1016/S0167-2789(02)00655-3_BIB36
– ident: 10.1016/S0167-2789(02)00655-3_BIB5
  doi: 10.1007/s002110100365
– volume: 17
  start-page: 739
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB31
  article-title: Three-dimensional solitary waves in the presence of additional surface effects
  publication-title: Euro. J. Mech. B
  doi: 10.1016/S0997-7546(98)80023-X
– volume: 67
  start-page: 45
  year: 1993
  ident: 10.1016/S0167-2789(02)00655-3_BIB45
  article-title: Oscillatory instability of traveling waves for a KdV–Burgers equation
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90197-9
– volume: 156
  start-page: 1
  year: 2001
  ident: 10.1016/S0167-2789(02)00655-3_BIB13
  article-title: The symplectic Evans matrix, and the linearization about solitary waves and fronts
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/PL00004235
– volume: 33
  start-page: 260
  year: 1972
  ident: 10.1016/S0167-2789(02)00655-3_BIB37
  article-title: Oscillatory solitary waves in dispersive media
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.33.260
– volume: 457
  start-page: 257
  year: 2001
  ident: 10.1016/S0167-2789(02)00655-3_BIB2
  article-title: Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.2000.0665
– volume: 210
  start-page: 77
  year: 1996
  ident: 10.1016/S0167-2789(02)00655-3_BIB35
  article-title: Stabilization of soliton instabilities by higher-order dispersion: KdV-type equations
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(95)00752-0
– ident: 10.1016/S0167-2789(02)00655-3_BIB41
– volume: 145
  start-page: 428
  year: 1990
  ident: 10.1016/S0167-2789(02)00655-3_BIB47
  article-title: Stability of travelling pulse to a laser equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(90)90307-A
– volume: 7
  start-page: 1
  year: 1987
  ident: 10.1016/S0167-2789(02)00655-3_BIB21
  article-title: Stability of Runge–Kutta methods for trajectory problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/7.1.1
– ident: 10.1016/S0167-2789(02)00655-3_BIB32
  doi: 10.1007/978-1-4757-2189-8
– volume: 455
  start-page: 3019
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB11
  article-title: The Orr–Sommerfeld equation on a manifold
  publication-title: Proc. Roy. Soc. London A
  doi: 10.1098/rspa.1999.0437
– volume: 24
  start-page: 1169
  year: 1975
  ident: 10.1016/S0167-2789(02)00655-3_BIB26
  article-title: Nerve axon equations IV. The stable and unstable impulse
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1975.24.24096
– volume: 124
  start-page: 58
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB34
  article-title: Stability for bright solitary wave solutions to perturbed nonlinear Schrödinger equations
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00172-9
– ident: 10.1016/S0167-2789(02)00655-3_BIB17
  doi: 10.21711/231766362002/rmc222
– volume: 223
  start-page: 449
  year: 1996
  ident: 10.1016/S0167-2789(02)00655-3_BIB23
  article-title: Stationary solutions of the fifth-order KdV-type equations and their stabilization
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(96)00772-4
– volume: 125
  start-page: 222
  year: 1999
  ident: 10.1016/S0167-2789(02)00655-3_BIB40
  article-title: A stability analysis for fifth-order water-wave models
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00245-0
– volume: 51
  start-page: 797
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB28
  article-title: The gap lemma and geometric criteria for instability of shock profiles
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
– volume: 2
  start-page: 471
  year: 1995
  ident: 10.1016/S0167-2789(02)00655-3_BIB4
  article-title: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation
  publication-title: Nonlin. World
– volume: 126
  start-page: 22
  year: 2000
  ident: 10.1016/S0167-2789(02)00655-3_BIB8
  article-title: Oscillatory instabilities of gap solitons: a numerical study
  publication-title: Comp. Phys. Commun.
  doi: 10.1016/S0010-4655(99)00241-6
– volume: 342
  start-page: 199
  year: 1997
  ident: 10.1016/S0167-2789(02)00655-3_BIB19
  article-title: A global investigation of solitary-wave solutions to a two-parameter model for water waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097005193
– volume: 112
  start-page: 158
  year: 1998
  ident: 10.1016/S0167-2789(02)00655-3_BIB18
  article-title: Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00209-1
– volume: 410
  start-page: 167
  year: 1990
  ident: 10.1016/S0167-2789(02)00655-3_BIB3
  article-title: A topological invariant arising in the stability analysis of traveling waves
  publication-title: J. Reine Angew. Math.
– volume: 32
  start-page: 929
  year: 2001
  ident: 10.1016/S0167-2789(02)00655-3_BIB9
  article-title: Alternate Evans functions and viscous shock waves
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141099361834
– volume: 156
  start-page: 219
  year: 2001
  ident: 10.1016/S0167-2789(02)00655-3_BIB15
  article-title: Computing Lyapunov exponents on a Stiefel manifold
  publication-title: Physica D
  doi: 10.1016/S0167-2789(01)00283-4
– ident: 10.1016/S0167-2789(02)00655-3_BIB49
  doi: 10.1007/978-1-4757-3946-6
– ident: 10.1016/S0167-2789(02)00655-3_BIB38
– volume: 67
  start-page: 131
  year: 1994
  ident: 10.1016/S0167-2789(02)00655-3_BIB6
  article-title: Stabilization of DAEs and invariant manifolds
  publication-title: Numer. Math.
  doi: 10.1007/s002110050020
– volume: 37
  start-page: 23
  year: 1977
  ident: 10.1016/S0167-2789(02)00655-3_BIB27
  article-title: Local stability theory of the nerve impulse
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(77)90076-1
SSID ssj0001737
Score 2.0366378
Snippet The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 190
SubjectTerms Evans function
Fifth-order KdV
Linear stability
Numerical exterior algebra
Title Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework
URI https://dx.doi.org/10.1016/S0167-2789(02)00655-3
Volume 172
WOSCitedRecordID wos000179357700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001737
  issn: 0167-2789
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB9J4QDBAjJv8wAMocknspE54G2hchjRNYqC-RY7tiIkq3dp021_gX3N8iZOpiJvES5RacSz5fD3-fHLOZ4SexZoxWTFFpjqtSUoFJ7AFY0QlUkgRK1hipD1sgh8e5rNZcTQafe9qYc7nvGnyy8vi9L-aGtrA2KZ09i_MHV4KDXAPRocrmB2uf2R4oI824bUTVlqF38ALVybdzSTKXQgvN2uIZ31St1-JVeGMPqovkT5bh6QPETVr91VnHtVdJteQ0h45S0_63OHXTjqizz-KDiaBMOvlNxeMB1z2n_TfLdr2wgepbZj-SjSCmrI8V4_pQmQbZTIuagne2JTcukXHedqcgyuO6VVXzOkG5pxjTdyhon6Npq4-c8P9u0jEpzAekHQjMFsYopUR1q95IRPRPmurgal9iF1DW5RnRT5GW3sf9mcHYVlPuBNg7d7dl4O97Ad8HtMXfrCfE50BeTm-jW75XQfec2i5g0a62UE3B1qUO-iGs-PqLqoCgjAgCA8QhBc17hCELYJMCyAIDxCEAUG4Q9ArLHDADw74uYc-v90_fvOe-KM4iGSctaRiUhZKZQWt0ljwFO40K3Sm6kzEQolkKlPYaFTUyNtNGVNZxbmg0ijV0jxJ2H00bhaNfoAw54oxluVKCaCWPKm45hUsLDJh0tDzXZR281ZKr1NvjkuZl4OExCkvzXSXMS3tdJdsF01Ct1Mn1PK7DnlnlNKzTcciS0DTr7s-_Peuj9B2_7d5jMbtcq2foOvyvD1ZLZ96zP0Az3SdSA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+instability+of+solitary+waves+of+the+fifth-order+KdV+equation%3A+a+numerical+framework&rft.jtitle=Physica.+D&rft.au=Bridges%2C+Thomas+J.&rft.au=Derks%2C+Gianne&rft.au=Gottwald%2C+Georg&rft.date=2002-11-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=172&rft.issue=1&rft.spage=190&rft.epage=216&rft_id=info:doi/10.1016%2FS0167-2789%2802%2900655-3&rft.externalDocID=S0167278902006553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon