Human Gait Recognition System Based on Support Vector Machine Algorithm and Using Wearable Sensors
Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The...
Uloženo v:
| Vydáno v: | Sensors and materials Ročník 31; číslo 4; s. 1335 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
MYU Scientific Publishing Division
01.01.2019
|
| Témata: | |
| ISSN: | 0914-4935 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The system acquires plantar pressure and acceleration signals of human legs. In the experiment, we collected the pressure signals of both feet and the movement data of the waist, left thigh, left calf, right thigh, and right calf of five test subjects. We investigated the gaits of standing, level walking, going up the stairs, going down the stairs, going up the slope, and going down the slope. The gait recognition accuracy of support vector machine (SVM), back propagation (BP) neural network and radial basis function (RBF) neural network were compared. The different sliding window sizes of SVM algorithm were analyzed. The results showed that the recognition rate was higher for the SVM algorithm with an average recognition accuracy of 96.5%. The accurate recognition of the human gait provides a good theoretical basis for the design of an exoskeleton robot control strategy. |
|---|---|
| AbstractList | Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The system acquires plantar pressure and acceleration signals of human legs. In the experiment, we collected the pressure signals of both feet and the movement data of the waist, left thigh, left calf, right thigh, and right calf of five test subjects. We investigated the gaits of standing, level walking, going up the stairs, going down the stairs, going up the slope, and going down the slope. The gait recognition accuracy of support vector machine (SVM), back propagation (BP) neural network and radial basis function (RBF) neural network were compared. The different sliding window sizes of SVM algorithm were analyzed. The results showed that the recognition rate was higher for the SVM algorithm with an average recognition accuracy of 96.5%. The accurate recognition of the human gait provides a good theoretical basis for the design of an exoskeleton robot control strategy. |
| Author | Xiao, Jiang Yan, Lei Wang, Fangzheng |
| Author_xml | – sequence: 1 givenname: Fangzheng surname: Wang fullname: Wang, Fangzheng – sequence: 2 givenname: Lei surname: Yan fullname: Yan, Lei – sequence: 3 givenname: Jiang surname: Xiao fullname: Xiao, Jiang |
| BookMark | eNp1kDFPwzAQRj0UiVK6MltiTrAdJ3HGUkGL1AqJUhgjx7m0rhK72M7Qf09KmZCYTid97zvdu0EjYw0gdEdJTAUv-MNmto4ZoUXMmBAjNCYF5REvkvQaTb0_EEKoSEnGsjGqln0nDV5IHfAbKLszOmhr8ObkA3T4UXqo8Xnvj0frAv4AFazDa6n22gCetTvrdNh3WJoab702O_wJ0smqBbwB463zt-iqka2H6e-coO3z0_t8Ga1eFy_z2SpSSZ6ESEJFWNowrvK8krRu6iQRnFUc6jwDwoQUFQUBRQO14lUNkipayGSIkaJI82SC7i-9R2e_evChPNjemeFkyRjLRZKTNBtS_JJSznrvoCmVDvL8c3BStyUl5Y_EcpBYniWWZ4kDFv_Bjk530p3-A74BO694Bg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3104464 crossref_primary_10_3390_app9142869 crossref_primary_10_1016_j_medengphy_2021_03_005 crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_1007_s11042_023_15079_5 crossref_primary_10_1109_JSEN_2023_3332897 crossref_primary_10_1007_s11042_020_08928_0 crossref_primary_10_1097_PXR_0000000000000251 crossref_primary_10_1155_2022_9933018 |
| ContentType | Journal Article |
| Copyright | Copyright MYU Scientific Publishing Division 2019 |
| Copyright_xml | – notice: Copyright MYU Scientific Publishing Division 2019 |
| DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| DOI | 10.18494/SAM.2019.2288 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_18494_SAM_2019_2288 |
| GroupedDBID | 123 AAYXX ADBBV ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION FRP GROUPED_DOAJ OK1 TUS 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| ID | FETCH-LOGICAL-c373t-aeb025f24c77ba1dfd33842b4ed76e028a8b1e8e9fedc4bdea1c19a3d33099573 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466581900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0914-4935 |
| IngestDate | Sun Jun 29 12:39:18 EDT 2025 Sat Nov 29 02:59:28 EST 2025 Tue Nov 18 22:07:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-aeb025f24c77ba1dfd33842b4ed76e028a8b1e8e9fedc4bdea1c19a3d33099573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://myukk.org/SM2017/sm_pdf/SM1860.pdf |
| PQID | 2227837056 |
| PQPubID | 2049510 |
| ParticipantIDs | proquest_journals_2227837056 crossref_citationtrail_10_18494_SAM_2019_2288 crossref_primary_10_18494_SAM_2019_2288 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Sensors and materials |
| PublicationYear | 2019 |
| Publisher | MYU Scientific Publishing Division |
| Publisher_xml | – name: MYU Scientific Publishing Division |
| SSID | ssj0001850626 |
| Score | 2.275923 |
| Snippet | Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately.... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1335 |
| SubjectTerms | Acceleration Algorithms Back propagation networks Basis functions Exoskeletons Feet Gait Gait recognition Multisensor fusion Neural networks Plantar pressure Radial basis function Robot control Support vector machines Thigh Walking |
| Title | Human Gait Recognition System Based on Support Vector Machine Algorithm and Using Wearable Sensors |
| URI | https://www.proquest.com/docview/2227837056 |
| Volume | 31 |
| WOSCitedRecordID | wos000466581900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0914-4935 databaseCode: DOA dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0001850626 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOCBiIwUA-IHGYDEvs1PaxIMYuTJPYj96CHTtrpCqdujJN_PW8ZztZioY0DrukjeVYqd_X5-89-71HyPuc20IbVTO3VxRMuEIwu8c9MwbI-dhznYkqFJuQh4dqOtVHo9HPLhbmai7bVl1f64t7FTW0gbAxdPY_xN0PCg3wHYQOVxA7XO8k-OiW_2YaPG-cTgehUggpm3c_w6rlcIcAy3kC9d49DW57LEA0Q8I5mZ8vls1qFitnxAMFZzBFIcLqB9i8i7T9kwhtagq9gfzGH3jjpY-aZB8-f898WiRRx6SIB990LdPGxD0ggOv50BWB0U-9KyL5FDPBhI75Rzr1yrMBjMRAV4J1XNyqxJXQAveRJ9_x6J3-mOex8t96tuy_VrH-bCFaNThCCc-X-HyJzz8gm7kstBoY3cELhwn7Qk2-_t1TZk8c4tPaK6wzl_WFO7CR46fkSTIj6CSK_xkZ-fY5eTxILrlFbAACRSDQARBoBAINQKB4H4FAIxBoAgLtgUBBtDQAgXZAoEnqL8jJ_tfjLwcsVdRgFZd8xYy3wHHrXFRSWpO52nGuRG6Fd3LsgWoaZTOvvK69q4R13mRVpg2HbmBJFJK_JBvtovWvCK29zcdOKQscU0gDYzipa8Wd9oIbW28T1s1WWaV081j1ZF7eLqBt8qHvfxETrfyz5043-WX6312WIaSbS6Dzr-880Bvy6AbFO2Rjtfzl35KH1dWquVy-C0D5A-nlfe0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+Recognition+System+Based+on+Support+Vector+Machine+Algorithm+and+Using+Wearable+Sensors&rft.jtitle=Sensors+and+materials&rft.au=Wang%2C+Fangzheng&rft.au=Yan%2C+Lei&rft.au=Xiao%2C+Jiang&rft.date=2019-01-01&rft.issn=0914-4935&rft.volume=31&rft.issue=4&rft.spage=1335&rft_id=info:doi/10.18494%2FSAM.2019.2288&rft.externalDBID=n%2Fa&rft.externalDocID=10_18494_SAM_2019_2288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-4935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-4935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-4935&client=summon |