Human Gait Recognition System Based on Support Vector Machine Algorithm and Using Wearable Sensors

Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and materials Ročník 31; číslo 4; s. 1335
Hlavní autoři: Wang, Fangzheng, Yan, Lei, Xiao, Jiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo MYU Scientific Publishing Division 01.01.2019
Témata:
ISSN:0914-4935
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The system acquires plantar pressure and acceleration signals of human legs. In the experiment, we collected the pressure signals of both feet and the movement data of the waist, left thigh, left calf, right thigh, and right calf of five test subjects. We investigated the gaits of standing, level walking, going up the stairs, going down the stairs, going up the slope, and going down the slope. The gait recognition accuracy of support vector machine (SVM), back propagation (BP) neural network and radial basis function (RBF) neural network were compared. The different sliding window sizes of SVM algorithm were analyzed. The results showed that the recognition rate was higher for the SVM algorithm with an average recognition accuracy of 96.5%. The accurate recognition of the human gait provides a good theoretical basis for the design of an exoskeleton robot control strategy.
AbstractList Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately. Therefore, in order to accurately control the exoskeleton movement, a multisensor fusion gait recognition system was developed in this study. The system acquires plantar pressure and acceleration signals of human legs. In the experiment, we collected the pressure signals of both feet and the movement data of the waist, left thigh, left calf, right thigh, and right calf of five test subjects. We investigated the gaits of standing, level walking, going up the stairs, going down the stairs, going up the slope, and going down the slope. The gait recognition accuracy of support vector machine (SVM), back propagation (BP) neural network and radial basis function (RBF) neural network were compared. The different sliding window sizes of SVM algorithm were analyzed. The results showed that the recognition rate was higher for the SVM algorithm with an average recognition accuracy of 96.5%. The accurate recognition of the human gait provides a good theoretical basis for the design of an exoskeleton robot control strategy.
Author Xiao, Jiang
Yan, Lei
Wang, Fangzheng
Author_xml – sequence: 1
  givenname: Fangzheng
  surname: Wang
  fullname: Wang, Fangzheng
– sequence: 2
  givenname: Lei
  surname: Yan
  fullname: Yan, Lei
– sequence: 3
  givenname: Jiang
  surname: Xiao
  fullname: Xiao, Jiang
BookMark eNp1kDFPwzAQRj0UiVK6MltiTrAdJ3HGUkGL1AqJUhgjx7m0rhK72M7Qf09KmZCYTid97zvdu0EjYw0gdEdJTAUv-MNmto4ZoUXMmBAjNCYF5REvkvQaTb0_EEKoSEnGsjGqln0nDV5IHfAbKLszOmhr8ObkA3T4UXqo8Xnvj0frAv4AFazDa6n22gCetTvrdNh3WJoab702O_wJ0smqBbwB463zt-iqka2H6e-coO3z0_t8Ga1eFy_z2SpSSZ6ESEJFWNowrvK8krRu6iQRnFUc6jwDwoQUFQUBRQO14lUNkipayGSIkaJI82SC7i-9R2e_evChPNjemeFkyRjLRZKTNBtS_JJSznrvoCmVDvL8c3BStyUl5Y_EcpBYniWWZ4kDFv_Bjk530p3-A74BO694Bg
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3104464
crossref_primary_10_3390_app9142869
crossref_primary_10_1016_j_medengphy_2021_03_005
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_1007_s11042_023_15079_5
crossref_primary_10_1109_JSEN_2023_3332897
crossref_primary_10_1007_s11042_020_08928_0
crossref_primary_10_1097_PXR_0000000000000251
crossref_primary_10_1155_2022_9933018
ContentType Journal Article
Copyright Copyright MYU Scientific Publishing Division 2019
Copyright_xml – notice: Copyright MYU Scientific Publishing Division 2019
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.18494/SAM.2019.2288
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_18494_SAM_2019_2288
GroupedDBID 123
AAYXX
ADBBV
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
FRP
GROUPED_DOAJ
OK1
TUS
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c373t-aeb025f24c77ba1dfd33842b4ed76e028a8b1e8e9fedc4bdea1c19a3d33099573
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466581900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0914-4935
IngestDate Sun Jun 29 12:39:18 EDT 2025
Sat Nov 29 02:59:28 EST 2025
Tue Nov 18 22:07:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-aeb025f24c77ba1dfd33842b4ed76e028a8b1e8e9fedc4bdea1c19a3d33099573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://myukk.org/SM2017/sm_pdf/SM1860.pdf
PQID 2227837056
PQPubID 2049510
ParticipantIDs proquest_journals_2227837056
crossref_citationtrail_10_18494_SAM_2019_2288
crossref_primary_10_18494_SAM_2019_2288
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Sensors and materials
PublicationYear 2019
Publisher MYU Scientific Publishing Division
Publisher_xml – name: MYU Scientific Publishing Division
SSID ssj0001850626
Score 2.275923
Snippet Human gait recognition is very important for controlling exoskeletons and achieving smooth transformations. Gait information must be obtained accurately....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1335
SubjectTerms Acceleration
Algorithms
Back propagation networks
Basis functions
Exoskeletons
Feet
Gait
Gait recognition
Multisensor fusion
Neural networks
Plantar pressure
Radial basis function
Robot control
Support vector machines
Thigh
Walking
Title Human Gait Recognition System Based on Support Vector Machine Algorithm and Using Wearable Sensors
URI https://www.proquest.com/docview/2227837056
Volume 31
WOSCitedRecordID wos000466581900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0914-4935
  databaseCode: DOA
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0001850626
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOCBiIwUA-IHGYDEvs1PaxIMYuTJPYj96CHTtrpCqdujJN_PW8ZztZioY0DrukjeVYqd_X5-89-71HyPuc20IbVTO3VxRMuEIwu8c9MwbI-dhznYkqFJuQh4dqOtVHo9HPLhbmai7bVl1f64t7FTW0gbAxdPY_xN0PCg3wHYQOVxA7XO8k-OiW_2YaPG-cTgehUggpm3c_w6rlcIcAy3kC9d49DW57LEA0Q8I5mZ8vls1qFitnxAMFZzBFIcLqB9i8i7T9kwhtagq9gfzGH3jjpY-aZB8-f898WiRRx6SIB990LdPGxD0ggOv50BWB0U-9KyL5FDPBhI75Rzr1yrMBjMRAV4J1XNyqxJXQAveRJ9_x6J3-mOex8t96tuy_VrH-bCFaNThCCc-X-HyJzz8gm7kstBoY3cELhwn7Qk2-_t1TZk8c4tPaK6wzl_WFO7CR46fkSTIj6CSK_xkZ-fY5eTxILrlFbAACRSDQARBoBAINQKB4H4FAIxBoAgLtgUBBtDQAgXZAoEnqL8jJ_tfjLwcsVdRgFZd8xYy3wHHrXFRSWpO52nGuRG6Fd3LsgWoaZTOvvK69q4R13mRVpg2HbmBJFJK_JBvtovWvCK29zcdOKQscU0gDYzipa8Wd9oIbW28T1s1WWaV081j1ZF7eLqBt8qHvfxETrfyz5043-WX6312WIaSbS6Dzr-880Bvy6AbFO2Rjtfzl35KH1dWquVy-C0D5A-nlfe0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+Recognition+System+Based+on+Support+Vector+Machine+Algorithm+and+Using+Wearable+Sensors&rft.jtitle=Sensors+and+materials&rft.au=Wang%2C+Fangzheng&rft.au=Yan%2C+Lei&rft.au=Xiao%2C+Jiang&rft.date=2019-01-01&rft.issn=0914-4935&rft.volume=31&rft.issue=4&rft.spage=1335&rft_id=info:doi/10.18494%2FSAM.2019.2288&rft.externalDBID=n%2Fa&rft.externalDocID=10_18494_SAM_2019_2288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-4935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-4935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-4935&client=summon