Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks

Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the a...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) Vol. 13; no. 8; p. 673
Main Authors: Lee, Seungjoo, Kim, YoungSeok, Choi, Hyun-Jun, Ji, Bongjun
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2025
Subjects:
ISSN:2075-1702, 2075-1702
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery.
AbstractList Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery.
Audience Academic
Author Choi, Hyun-Jun
Ji, Bongjun
Kim, YoungSeok
Lee, Seungjoo
Author_xml – sequence: 1
  givenname: Seungjoo
  orcidid: 0009-0002-7284-3800
  surname: Lee
  fullname: Lee, Seungjoo
– sequence: 2
  givenname: YoungSeok
  surname: Kim
  fullname: Kim, YoungSeok
– sequence: 3
  givenname: Hyun-Jun
  orcidid: 0000-0003-3647-0621
  surname: Choi
  fullname: Choi, Hyun-Jun
– sequence: 4
  givenname: Bongjun
  surname: Ji
  fullname: Ji, Bongjun
BookMark eNpdUU1rWzEQFCWFJmnuPT7o-SXSk_SkdzTOJ4QEQn0sYvXlyLUlV5IJ-feR41BKdg-7DLPDsHOCjmKKDqEfBJ9TOuGLDZjnEF0hFEs8CvoFHQ9Y8J4IPBz9t39DZ6WscKuJUMnkMfq9iMblCiHW1372Atl117Bb1-4ywDKmEkqXfPeUKtQQl908bbbZlZJy6RZlj1zuYN3fZNg-d7NaXawhxe7B1ZeU_5Tv6KuHdXFnH_MULa6vfs1v-_vHm7v57L43VNDaA9OMjAyc4NpLTMUI1nDNhOYgLPFy1IYINjjivQTBABtHLGFGW64xHukpujvo2gQrtc1hA_lVJQjqHUh5qSDXYNZOsWkYpRmxZINlQnrQngOwaRqt9FbrpvXzoLXN6e_OlapWaZdjs6_owBhmfOJDY50fWEtooiH6VDOY1tZtgmnp-NDwmeT7Nw8CtwN8ODA5lZKd_2eTYLUPUX0Okb4BAOqTgQ
Cites_doi 10.1016/j.jfranklin.2012.05.004
10.1109/ICDM50108.2020.00093
10.1016/j.cosrev.2019.08.002
10.1016/j.measurement.2020.108774
10.1109/TCYB.2023.3256080
10.1115/IMECE1998-1020
10.3390/pr8070790
10.1109/ICDSAAI59313.2023.10452465
10.1016/j.ejor.2013.07.040
10.1109/TIE.2017.2774777
10.1016/S0967-0661(97)00049-X
10.1109/TEC.2005.847955
10.11591/ijpeds.v12.i2.pp1205-1215
10.1016/j.arcontrol.2004.12.002
10.1109/NAPS58826.2023.10318740
10.1109/ICMECH.2006.252551
10.1115/1.4000147
10.1205/cerd.82.10.1337.46744
10.1109/TEC.2016.2558183
10.1088/1361-6501/ac56f0
10.3390/s21082708
10.1016/j.eswa.2023.122182
10.1016/S1665-6423(15)30014-6
10.3390/math9182336
10.1155/2021/9927151
10.1016/j.rser.2017.08.007
10.1109/TPEL.2009.2038268
10.1109/59.962408
10.1016/j.jsv.2018.04.036
10.1111/j.1539-6924.1993.tb01071.x
10.1088/1748-9326/ac55b6
10.1016/j.measurement.2012.10.026
10.1007/s10462-021-09993-z
10.1016/j.ijhydene.2022.03.208
10.1115/GT2012-68005
10.1006/jsvi.1995.0588
10.1109/IEA.2018.8387124
10.1109/TASE.2020.3035620
10.1016/j.jsv.2024.118562
10.1016/j.jsv.2012.05.006
10.1016/j.cej.2025.165121
10.1016/j.rser.2022.112701
10.1016/j.ijrefrig.2009.08.006
10.1109/MED.2008.4602224
10.1109/TIE.2012.2189534
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/machines13080673
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_49268c60842d478fabf5aa4996d8fdbb
A853848270
10_3390_machines13080673
GeographicLocations New York
United States
GeographicLocations_xml – name: New York
– name: United States
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
7TB
8FD
ABUWG
AZQEC
COVID
DWQXO
FR3
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c373t-a4b4164ae75bf80376adc5b47b5a7d1f86bc1742e1ff8a74a0ce1d14cbd5b0063
IEDL.DBID PIMPY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001558054100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1702
IngestDate Fri Oct 03 12:35:14 EDT 2025
Sat Nov 01 15:06:34 EDT 2025
Tue Nov 04 18:12:19 EST 2025
Sat Nov 29 07:12:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-a4b4164ae75bf80376adc5b47b5a7d1f86bc1742e1ff8a74a0ce1d14cbd5b0063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-7284-3800
0000-0003-3647-0621
OpenAccessLink https://www.proquest.com/publiccontent/docview/3244045952?pq-origsite=%requestingapplication%
PQID 3244045952
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_49268c60842d478fabf5aa4996d8fdbb
proquest_journals_3244045952
gale_infotracacademiconefile_A853848270
crossref_primary_10_3390_machines13080673
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_45) 2012; 46
(ref_24) 1993; 13
Hu (ref_61) 2022; 33
ref_14
Kumar (ref_29) 2021; 2021
Sree (ref_53) 2014; 5
ref_56
ref_55
ref_10
ref_52
ref_51
Li (ref_32) 2023; 54
Stevens (ref_12) 2018; 71
Matania (ref_19) 2024; 590
Chen (ref_38) 1995; 188
ref_18
Capisani (ref_40) 2012; 59
Isermann (ref_42) 2005; 29
Han (ref_11) 2004; 82
Yan (ref_60) 2020; 19
Payne (ref_26) 2010; 77
Widell (ref_13) 2009; 33
Huang (ref_59) 2022; 55
Wen (ref_57) 2017; 65
Jackson (ref_9) 2022; 17
ref_25
Bazdar (ref_4) 2022; 167
ref_20
ref_63
ref_62
Soother (ref_30) 2021; 69
Zhang (ref_58) 2021; 171
ref_28
ref_27
(ref_48) 2015; 13
Hmida (ref_39) 2012; 349
ref_36
Zhu (ref_34) 2025; 519
ref_35
Kurz (ref_16) 2010; 132
Patton (ref_43) 1997; 5
Haddad (ref_47) 2016; 31
Nandi (ref_21) 2005; 20
ref_37
Hanga (ref_22) 2019; 34
Endrenyi (ref_23) 2001; 16
Mack (ref_50) 2018; 66
Silva (ref_17) 2013; 232
ref_46
ref_44
Dawoud (ref_8) 2017; 82
ref_1
Haugland (ref_15) 2011; 21
ref_2
Wu (ref_33) 2024; 238
Salmasi (ref_41) 2010; 25
Arsad (ref_3) 2022; 47
Priyanka (ref_6) 2020; 6
Wang (ref_49) 2012; 331
ref_5
Jyothi (ref_31) 2021; 12
ref_7
Li (ref_54) 2018; 428
References_xml – volume: 349
  start-page: 2369
  year: 2012
  ident: ref_39
  article-title: Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2012.05.004
– ident: ref_62
  doi: 10.1109/ICDM50108.2020.00093
– volume: 34
  start-page: 100191
  year: 2019
  ident: ref_22
  article-title: Machine learning and multi-agent systems in oil and gas industry applications: A survey
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2019.08.002
– volume: 171
  start-page: 108774
  year: 2021
  ident: ref_58
  article-title: Fault diagnosis of rotating machinery based on recurrent neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108774
– volume: 54
  start-page: 506
  year: 2023
  ident: ref_32
  article-title: Filter-informed spectral graph wavelet networks for multiscale feature extraction and intelligent fault diagnosis
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2023.3256080
– ident: ref_37
  doi: 10.1115/IMECE1998-1020
– ident: ref_28
  doi: 10.3390/pr8070790
– ident: ref_56
  doi: 10.1109/ICDSAAI59313.2023.10452465
– volume: 232
  start-page: 630
  year: 2013
  ident: ref_17
  article-title: A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.07.040
– ident: ref_1
– ident: ref_35
– volume: 21
  start-page: 524
  year: 2011
  ident: ref_15
  article-title: Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility
  publication-title: TOP
– volume: 69
  start-page: 393
  year: 2021
  ident: ref_30
  article-title: A Novel Method Based on UNET for Bearing Fault Diagnosis
  publication-title: Comput. Mater. Contin.
– volume: 65
  start-page: 5990
  year: 2017
  ident: ref_57
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 5
  start-page: 671
  year: 1997
  ident: ref_43
  article-title: Observer-based fault detection and isolation: Robustness and applications
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(97)00049-X
– volume: 20
  start-page: 719
  year: 2005
  ident: ref_21
  article-title: Condition monitoring and fault diagnosis of electrical motors—A review
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.847955
– volume: 12
  start-page: 1205
  year: 2021
  ident: ref_31
  article-title: Machine learning based multi class fault diagnosis tool for voltage source inverter driven induction motor
  publication-title: Int. J. Power Electron. Drive Syst.
  doi: 10.11591/ijpeds.v12.i2.pp1205-1215
– ident: ref_27
– volume: 29
  start-page: 71
  year: 2005
  ident: ref_42
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.12.002
– ident: ref_55
  doi: 10.1109/NAPS58826.2023.10318740
– ident: ref_44
  doi: 10.1109/ICMECH.2006.252551
– volume: 132
  start-page: 062402
  year: 2010
  ident: ref_16
  article-title: Assessment of Compressors in Gas Storage Applications
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4000147
– volume: 77
  start-page: 18
  year: 2010
  ident: ref_26
  article-title: Offshore operations and maintenance: A growing market
  publication-title: Pet. Econ.
– volume: 82
  start-page: 1337
  year: 2004
  ident: ref_11
  article-title: Optimization of the air-and gas-supply network of a chemical plant
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cerd.82.10.1337.46744
– volume: 31
  start-page: 924
  year: 2016
  ident: ref_47
  article-title: On the accuracy of fault detection and separation in permanent magnet synchronous machines using MCSA/MVSA and LDA
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2016.2558183
– volume: 33
  start-page: 065013
  year: 2022
  ident: ref_61
  article-title: A deep feature extraction approach for bearing fault diagnosis based on multi-scale convolutional autoencoder and generative adversarial networks
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac56f0
– ident: ref_10
  doi: 10.3390/s21082708
– volume: 238
  start-page: 122182
  year: 2024
  ident: ref_33
  article-title: Deep dual graph attention auto-encoder for community detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122182
– ident: ref_7
– volume: 13
  start-page: 160
  year: 2015
  ident: ref_48
  article-title: Fused empirical mode decomposition and MUSIC algorithms for detecting multiple combined faults in induction motors
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/S1665-6423(15)30014-6
– ident: ref_20
  doi: 10.3390/math9182336
– volume: 66
  start-page: 291
  year: 2018
  ident: ref_50
  article-title: Combining expert knowledge and unsupervised learning techniques for anomaly detection in aircraft flight data
  publication-title: At-Autom.
– volume: 2021
  start-page: 9927151
  year: 2021
  ident: ref_29
  article-title: The Importance of Feature Processing in Deep-Learning-Based Condition Monitoring of Motors
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/9927151
– volume: 82
  start-page: 2039
  year: 2017
  ident: ref_8
  article-title: Hybrid renewable microgrid optimization techniques: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.007
– volume: 25
  start-page: 1310
  year: 2010
  ident: ref_41
  article-title: An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI-based induction motors
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2038268
– volume: 5
  start-page: 124
  year: 2014
  ident: ref_53
  article-title: Anomaly detection using principal component analysis
  publication-title: J. Computer. Sci. Technol.
– ident: ref_14
– volume: 16
  start-page: 638
  year: 2001
  ident: ref_23
  article-title: The present status of maintenance strategies and the impact of maintenance on reliability
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.962408
– ident: ref_63
– volume: 428
  start-page: 72
  year: 2018
  ident: ref_54
  article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.04.036
– volume: 6
  start-page: 77
  year: 2020
  ident: ref_6
  article-title: Review analysis on cloud computing based smart grid technology in the oil pipeline sensor network system
  publication-title: Pet. Res.
– ident: ref_18
– volume: 71
  start-page: 1
  year: 2018
  ident: ref_12
  article-title: The role of oil and gas in the economic development of the global economy
  publication-title: Extr. Ind. Soc.
– volume: 13
  start-page: 215
  year: 1993
  ident: ref_24
  article-title: Learning from the Piper Alpha accident: A postmortem analysis of technical and organizational factors
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1993.tb01071.x
– volume: 17
  start-page: 031001
  year: 2022
  ident: ref_9
  article-title: Global fossil carbon emissions rebound near pre-COVID-19 levels
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac55b6
– volume: 46
  start-page: 1137
  year: 2012
  ident: ref_45
  article-title: Gear fault identification based on Hilbert–Huang transform and SOM neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.10.026
– ident: ref_25
– volume: 55
  start-page: 1289
  year: 2022
  ident: ref_59
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09993-z
– volume: 47
  start-page: 17285
  year: 2022
  ident: ref_3
  article-title: Hydrogen energy storage intergrated hybrid renewable energy systems: A review analysis for future research directions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2022.03.208
– ident: ref_5
  doi: 10.1115/GT2012-68005
– volume: 188
  start-page: 227
  year: 1995
  ident: ref_38
  article-title: Fault features of large rotating machinery and diagnosis using sensor fusion
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1995.0588
– ident: ref_51
  doi: 10.1109/IEA.2018.8387124
– ident: ref_2
– ident: ref_46
– volume: 19
  start-page: 387
  year: 2020
  ident: ref_60
  article-title: Chiller fault diagnosis based on VAE-enabled generative adversarial networks
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3035620
– volume: 590
  start-page: 118562
  year: 2024
  ident: ref_19
  article-title: A systematic literature review of deep learning for vibration-based fault diagnosis of critical rotating machinery: Limitations and challenges
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2024.118562
– volume: 331
  start-page: 4379
  year: 2012
  ident: ref_49
  article-title: Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.05.006
– volume: 519
  start-page: 165121
  year: 2025
  ident: ref_34
  article-title: Hybrid triboelectric-piezoelectric nanogenerator assisted intelligent condition monitoring for aero-engine pipeline system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.165121
– volume: 167
  start-page: 112701
  year: 2022
  ident: ref_4
  article-title: Compressed air energy storage in integrated energy systems: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112701
– ident: ref_36
– volume: 33
  start-page: 88
  year: 2009
  ident: ref_13
  article-title: Reducing power consumption in multi-compressor refrigeration systems
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.08.006
– ident: ref_52
  doi: 10.1109/MED.2008.4602224
– volume: 59
  start-page: 3979
  year: 2012
  ident: ref_40
  article-title: Manipulator fault diagnosis via higher order sliding-mode observers
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2189534
SSID ssj0000913848
Score 2.3060782
Snippet Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 673
SubjectTerms Accuracy
Attention
Bayesian analysis
Compressors
Decision trees
Deep learning
digital twin simulation
Digital twins
Energy consumption
Epistemology
Fault detection
Fault diagnosis
Forecasting
Forecasts and trends
Fourier transforms
Machine learning
Mathematical models
Misalignment
Neural networks
Parameter estimation
Parameter identification
Predictive maintenance
Preventive maintenance
Process controls
rotating compressor fault diagnosis
Rotating machinery
Rotor dynamics
Sensors
Simulation methods
Statistical inference
Support vector machines
Uncertainty analysis
vibration-based condition monitoring
Waveforms
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4keDCH4CMhG1fpgyA5NJlHz3b1cTWuHmQRMZBLaKpfIZDshplZxX9vV89ENgHJxevMHIr6uqqrqG--YuwdpoOr0DlhZVRCqqiFlioIrdNpAQcRbBZx_aqWSzg_19-2Vn0RJ2yQBx4cd0KCduBmBcjKSwURbWwQU50-8xC9tZR9C6W3mqmcg3VZg4RhLlmnvv7kJnMTQ5dyNtBylnv3UJbr_1dSzjfN4jnbG0tEPh9Me8GehNVLtrslHPiKXZwlrPIsv_8t5r-wDXyBm-uenw7MuauOryP_vqY5--qSU9BTW71uO545Avx0g9fiM4lV83nfD5RHvhwo4d0-O1t8-vHxixgXJQhXq7oXKG2qqyQG1dgIRcoZ6F1jpbINKl9GmFmXOo8qlDECKomFC6UvpbO-obCrD9jOar0Kh4wDBO_RNumdlrayCNoGVFFWEQNaNWHHd24zt4Mehkl9BLnYPHTxhH0gv_79jpSs84OErxnxNY_hO2HvCRVD8da36HD8bSCZS8pVZp7qDSAt02LCpnfAmTEQO5PqRZmqVt1UR__DmtfsWUULgDMDcMp2-nYT3rCn7md_1bVv8xn8A7WV5SA
  priority: 102
  providerName: Directory of Open Access Journals
Title Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
URI https://www.proquest.com/docview/3244045952
https://doaj.org/article/49268c60842d478fabf5aa4996d8fdbb
Volume 13
WOSCitedRecordID wos001558054100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BwgEOlFdFaBv5gIQ4WNlsvLH3hFKaABJEUaFSOaDV-FVVKtmyuwFx6W_H492UhwQnLntY-2BpZj7P2J-_AXiKwXElGsO18JIL6XOeC-l4ngdvUUZ5paOI61u5XKrT03zVPY-uO1rlFhMjULdqz8TbDiA8sqWhE_NRSANESEbyLH1x-YVTDym6a-0aatyEPglvJT3or968W328PnMhDUwlVHtbOQnV_uhzZCy6OiC5opYtv-1OUcT_b1Ad95_Fzv9d-T242-WhbNY6zn244dYP4M4v6oQP4dNJcIhIGGi-89k3rBxb4OaiYUctPe-8ZqVnxyVd5q_PGCEL1e5lVbNIRGBHG7zgr0gRm82apuVVsmXLO68fwcli_uHla951Y-BmIicNR6FD8ibQyUx7lQRgQmsyLaTOUNqxV1NtQnmTurH3CqXAxLixHQujbUaxPdmF3rpcu8fAlHLWos7CWC50qlHl2qH0IvXoUMsBPN9aobhsRTeKUKyQxYo_LTaAQzLT9TySy44_yuqs6KKvIFVEZaaJEqkVUnnUPkMMxd7UKm-1HsAzMnJBQd1UaLB7mxCWS_JYxSwkNYoEU5MB7G-NXHTRXhc_bfrk38N7cDul_sGRQLgPvabauAO4Zb4253U1hP7hfLk6HsZzgSGxUN_T92o-7Bz5B2cBBDU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyRgwRt1oIAXIMTCaiZxxs4CoSnToVWHqKpaqRtkrl9VpXZSkgxVf4pvxM6jPCTYdcE2jqIkPr4vH58L8Ao9cDlqTRVznDLuMpoxbmmWebQILZxQjYjrnOe5ODrK9lbge38WJtAqe5vYGGpT6FAj3_COn_nwI0vj9-dfaegaFXZX-xYaLSx27eWFT9mqdztTP7-v43i2dfBhm3ZdBahOeFJTZMoHIQwtT5UTkV9gaHSqGFcpcjNyYqy0D9NjO3JOIGcYaTsyI6aVSQNGE__cG7DKEjZOB7C6uZXv7V9VdYLKpmCi3Q9NkizaOGs4kbbyvkKEpjC_-b-mTcDfnEHj4Wb3_rd_cx_udrE0mbTgfwArdvEQ7vyisPgIPh96UDekh_qSTi6wtGSGy9OaTFuK4UlFCkf2i0BIWByTYB1D_aEoK9KQKch0iaf0Y1D1JpO6brmhJG-589VjOLyW73sCg0WxsGtAhLDGoEr9WMZUrFBkyiJ3LHZoUfEhvO3nWZ63wiHSJ1wBE_JPTAxhMwDh6r4g-d1cKMpj2VkQGZQdhR5HgsWGceFQuRTRJ6xjI5xRaghvAoxkMEx1iRq78xX-dYPEl5z4wEwE0ddoCOs9jGRnsSr5E0NP_z38Em5tH3yay_lOvvsMbsehH3JDiFyHQV0u7XO4qb_VJ1X5olscBL5cN-Z-ADDVUnc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4RgwRt1oIAXIMTCmkzijJ0FQlOmA1WraFRRqRvkXr-qSmXSJhmq_hpfh51HeUiw64JtHEVJfO7LPj4X4BV64HLUmirmOGXcZTRj3NIs82gRWjihGhHXPZ7n4vAwW6zB9_4sTKBV9j6xcdSm0GGNfOQDP_PpR5bGI9fRIhaz-fuzcxo6SIWd1r6dRguRXXt54cu36t3OzM_16zieb3_-8Il2HQaoTnhSU2TKJyQMLU-VE5E3NjQ6VYyrFLkZOzFR2qfssR07J5AzjLQdmzHTyqQBr4l_7g1Y54kvegawvrWdL_avVniC4qZgot0bTZIsGn1t-JG28nFDhAYxv8XCpmXA3wJDE-3m9_7n_3Qf7nY5Npm2RvEA1uzyIdz5RXnxEXw58GBvyBD1JZ1eYGnJHFenNZm11MOTihSO7BeBqLA8JsFrhnWJoqxIQ7IgsxWe0o9B7ZtM67rljJK85dRXj-HgWr7vCQyWxdJuABHCGoMq9WMZU7FCkSmL3LHYoUXFh_C2n3N51gqKSF-IBXzIP_ExhK0Aiqv7ghR4c6Eoj2XnWWRQfBR6EgkWG8aFQ-VSRF_IToxwRqkhvAmQksFh1SVq7M5d-NcN0l9y6hM2EcRgoyFs9pCSnSer5E88Pf338Eu45YEm93by3WdwOw5tkhue5CYM6nJln8NN_a0-qcoXnZ0QOLpuyP0Aqh9bOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Aware+Fault+Diagnosis+of+Rotating+Compressors+Using+Dual-Graph+Attention+Networks&rft.jtitle=Machines+%28Basel%29&rft.au=Lee%2C+Seungjoo&rft.au=Kim%2C+YoungSeok&rft.au=Choi%2C+Hyun-Jun&rft.au=Ji%2C+Bongjun&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Fmachines13080673&rft.externalDocID=A853848270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon