Fifty years of Landsat science and impacts

Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 280; s. 113195
Hlavní autori: Wulder, Michael A., Roy, David P., Radeloff, Volker C., Loveland, Thomas R., Anderson, Martha C., Johnson, David M., Healey, Sean, Zhu, Zhe, Scambos, Theodore A., Pahlevan, Nima, Hansen, Matthew, Gorelick, Noel, Crawford, Christopher J., Masek, Jeffrey G., Hermosilla, Txomin, White, Joanne C., Belward, Alan S., Schaaf, Crystal, Woodcock, Curtis E., Huntington, Justin L., Lymburner, Leo, Hostert, Patrick, Gao, Feng, Lyapustin, Alexei, Pekel, Jean-Francois, Strobl, Peter, Cook, Bruce D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.10.2022
Predmet:
ISSN:0034-4257, 1879-0704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy. •50 years of Landsat missions and science.•Landsat critical for demonstrating capacity and science role of earth observation.•Science-quality data for understanding the earth system and policy development.•Quantitative documentation of global change during the Anthropocene.•Success due to dedicated calibration, geolocation, and collection reprocessing.
AbstractList Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy. •50 years of Landsat missions and science.•Landsat critical for demonstrating capacity and science role of earth observation.•Science-quality data for understanding the earth system and policy development.•Quantitative documentation of global change during the Anthropocene.•Success due to dedicated calibration, geolocation, and collection reprocessing.
Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy.
ArticleNumber 113195
Author Huntington, Justin L.
Loveland, Thomas R.
Healey, Sean
Belward, Alan S.
Zhu, Zhe
Woodcock, Curtis E.
Pahlevan, Nima
Radeloff, Volker C.
Scambos, Theodore A.
White, Joanne C.
Gao, Feng
Cook, Bruce D.
Gorelick, Noel
Lyapustin, Alexei
Hansen, Matthew
Wulder, Michael A.
Anderson, Martha C.
Strobl, Peter
Pekel, Jean-Francois
Johnson, David M.
Hostert, Patrick
Roy, David P.
Masek, Jeffrey G.
Crawford, Christopher J.
Hermosilla, Txomin
Schaaf, Crystal
Lymburner, Leo
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Wulder
  fullname: Wulder, Michael A.
  email: mike.wulder@nrcan-rncan.gc.ca
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 2
  givenname: David P.
  surname: Roy
  fullname: Roy, David P.
  organization: Department of Geography, Environment, & Spatial Sciences, Center for Global Change and Earth Observations, Michigan State University, USA
– sequence: 3
  givenname: Volker C.
  surname: Radeloff
  fullname: Radeloff, Volker C.
  organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 4
  givenname: Thomas R.
  surname: Loveland
  fullname: Loveland, Thomas R.
  organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 5
  givenname: Martha C.
  surname: Anderson
  fullname: Anderson, Martha C.
  organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
– sequence: 6
  givenname: David M.
  surname: Johnson
  fullname: Johnson, David M.
  organization: National Agricultural Statistics Service, United States Department of Agriculture, 1400 Independence Ave., SW, Washington, D.C. 20250, USA
– sequence: 7
  givenname: Sean
  surname: Healey
  fullname: Healey, Sean
  organization: US Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
– sequence: 8
  givenname: Zhe
  surname: Zhu
  fullname: Zhu, Zhe
  organization: Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, United States
– sequence: 9
  givenname: Theodore A.
  surname: Scambos
  fullname: Scambos, Theodore A.
  organization: Earth Science Observation Center, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 10
  givenname: Nima
  surname: Pahlevan
  fullname: Pahlevan, Nima
  organization: Science Systems and Applications, Inc., 10210 Greenbelt Rd., Lanham, MD 20706, USA
– sequence: 11
  givenname: Matthew
  surname: Hansen
  fullname: Hansen, Matthew
  organization: Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA
– sequence: 12
  givenname: Noel
  surname: Gorelick
  fullname: Gorelick, Noel
  organization: Google Switzerland, Brandschenkestrasse 110, Zurich 8002, Switzerland
– sequence: 13
  givenname: Christopher J.
  surname: Crawford
  fullname: Crawford, Christopher J.
  organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 14
  givenname: Jeffrey G.
  surname: Masek
  fullname: Masek, Jeffrey G.
  organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 15
  givenname: Txomin
  surname: Hermosilla
  fullname: Hermosilla, Txomin
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 16
  givenname: Joanne C.
  surname: White
  fullname: White, Joanne C.
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 17
  givenname: Alan S.
  surname: Belward
  fullname: Belward, Alan S.
  organization: European Commission, Joint Research Centre, 21027 Ispra, Italy
– sequence: 18
  givenname: Crystal
  surname: Schaaf
  fullname: Schaaf, Crystal
  organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
– sequence: 19
  givenname: Curtis E.
  surname: Woodcock
  fullname: Woodcock, Curtis E.
  organization: Department of Earth and Environment, Boston University, MA 02215, USA
– sequence: 20
  givenname: Justin L.
  surname: Huntington
  fullname: Huntington, Justin L.
  organization: Desert Research Institute, Reno, NV 89512, USA
– sequence: 21
  givenname: Leo
  surname: Lymburner
  fullname: Lymburner, Leo
  organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
– sequence: 22
  givenname: Patrick
  surname: Hostert
  fullname: Hostert, Patrick
  organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 23
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
– sequence: 24
  givenname: Alexei
  surname: Lyapustin
  fullname: Lyapustin, Alexei
  organization: Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 25
  givenname: Jean-Francois
  surname: Pekel
  fullname: Pekel, Jean-Francois
  organization: European Commission, Joint Research Centre, 21027 Ispra, Italy
– sequence: 26
  givenname: Peter
  surname: Strobl
  fullname: Strobl, Peter
  organization: European Commission, Joint Research Centre, 21027 Ispra, Italy
– sequence: 27
  givenname: Bruce D.
  surname: Cook
  fullname: Cook, Bruce D.
  organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
BookMark eNp9kMFKAzEQhoNUsK0-gLc9irDrTJJtNniSYlUoeNFzyKazkLLdrUkq9O3dsj156GkY-L-fmW_GJl3fEWP3CAUCLp62RYhUcOC8QBSoyys2xUrpHBTICZsCCJlLXqobNotxC4BlpXDKHle-ScfsSDbErG-yte020aYsOk-do2xYM7_bW5fiLbtubBvp7jzn7Hv1-rV8z9efbx_Ll3XuhBIpt0jO1ajqSmIDAIumrnTNN6CxpuGyRpSSW1FxVFIKrSshdV1ZVYIiAK3EnD2MvfvQ_xwoJrPz0VHb2o76QzRcYcWVAi2HKI5RF_oYAzVmH_zOhqNBMCcvZmsGL-bkxYxeBkb9Y5xPNvm-S8H69iL5PJI0fP_rKZizpY0P5JLZ9P4C_Qd-0Xwa
CitedBy_id crossref_primary_10_3390_rs17010037
crossref_primary_10_1016_j_jag_2024_104218
crossref_primary_10_1080_01431161_2023_2264496
crossref_primary_10_7717_peerj_15478
crossref_primary_10_1016_j_scs_2023_104458
crossref_primary_10_1029_2024GL108326
crossref_primary_10_1016_j_jag_2023_103403
crossref_primary_10_1016_j_pce_2025_103893
crossref_primary_10_1007_s12040_024_02388_y
crossref_primary_10_3390_f14081606
crossref_primary_10_3390_rs14235996
crossref_primary_10_1109_JSTARS_2024_3492025
crossref_primary_10_3390_rs17010155
crossref_primary_10_26468_trakyasobed_1479079
crossref_primary_10_1016_j_wds_2025_100225
crossref_primary_10_1109_LGRS_2023_3281646
crossref_primary_10_3390_rs16010068
crossref_primary_10_1016_j_ecoinf_2025_103107
crossref_primary_10_3390_fire8080335
crossref_primary_10_3390_a18080532
crossref_primary_10_3390_rs17111889
crossref_primary_10_1016_j_uclim_2025_102528
crossref_primary_10_1111_faf_12772
crossref_primary_10_3390_rs15030820
crossref_primary_10_1117_1_JRS_18_014531
crossref_primary_10_3390_ijgi13070239
crossref_primary_10_5194_tc_17_3535_2023
crossref_primary_10_3390_atmos15030318
crossref_primary_10_3390_rs17030558
crossref_primary_10_3390_hydrology10020041
crossref_primary_10_1016_j_rse_2023_113980
crossref_primary_10_1016_j_rse_2023_113616
crossref_primary_10_3390_rs15071935
crossref_primary_10_3390_geomatics5030027
crossref_primary_10_1016_j_rse_2024_114207
crossref_primary_10_1007_s40641_024_00194_8
crossref_primary_10_1038_s44264_025_00083_z
crossref_primary_10_1080_17538947_2024_2330684
crossref_primary_10_1016_j_isprsjprs_2023_06_002
crossref_primary_10_3390_rs15215203
crossref_primary_10_3390_rs16050768
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_1016_j_isprsjprs_2024_01_008
crossref_primary_10_3389_ffgc_2023_1330489
crossref_primary_10_3390_rs14164001
crossref_primary_10_1016_j_rsase_2024_101385
crossref_primary_10_1080_01431161_2024_2421942
crossref_primary_10_1080_17538947_2025_2510573
crossref_primary_10_1016_j_scitotenv_2023_167212
crossref_primary_10_3390_rs15194659
crossref_primary_10_3390_f16020194
crossref_primary_10_1016_j_rse_2022_113449
crossref_primary_10_1016_j_rse_2023_113529
crossref_primary_10_1016_j_ecolind_2024_112993
crossref_primary_10_1016_j_rse_2023_113887
crossref_primary_10_1016_j_ecoinf_2025_103245
crossref_primary_10_1016_j_isprsjprs_2023_07_015
crossref_primary_10_1017_jog_2023_18
crossref_primary_10_4000_12ddz
crossref_primary_10_3390_land13071074
crossref_primary_10_1016_j_compag_2024_109274
crossref_primary_10_1016_j_hydres_2024_09_002
crossref_primary_10_3390_rs15092295
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_34133_remotesensing_0698
crossref_primary_10_3390_f14030483
crossref_primary_10_1016_j_landurbplan_2025_105354
crossref_primary_10_3389_fmars_2023_1127720
crossref_primary_10_1016_j_jnc_2025_126918
crossref_primary_10_1111_mice_13277
crossref_primary_10_1016_j_jag_2023_103533
crossref_primary_10_1016_j_rse_2025_114929
crossref_primary_10_1007_s11356_023_30990_y
crossref_primary_10_1016_j_rse_2023_113755
crossref_primary_10_1016_j_rse_2024_114108
crossref_primary_10_1016_j_isprsjprs_2024_02_021
crossref_primary_10_1016_j_jenvman_2024_122919
crossref_primary_10_1016_j_isprsjprs_2025_04_031
crossref_primary_10_5194_essd_17_741_2025
crossref_primary_10_5194_essd_15_2983_2023
crossref_primary_10_3390_rs15030851
crossref_primary_10_3390_geosciences12110412
crossref_primary_10_1016_j_rse_2024_114461
crossref_primary_10_3389_fpls_2023_1129665
crossref_primary_10_3390_rs16071233
crossref_primary_10_3390_w15010020
crossref_primary_10_1038_s41467_023_41620_z
crossref_primary_10_1016_j_foreco_2023_121348
crossref_primary_10_1016_j_foreco_2024_121765
crossref_primary_10_1038_s44358_025_00084_3
crossref_primary_10_1117_1_JRS_18_014507
crossref_primary_10_1111_1365_2664_14830
crossref_primary_10_3390_rs14225748
crossref_primary_10_3390_rs15040940
crossref_primary_10_1002_wat2_70025
crossref_primary_10_1016_j_jenvman_2023_117513
crossref_primary_10_3389_fmars_2025_1570277
crossref_primary_10_1016_j_agrformet_2023_109731
crossref_primary_10_1016_j_isprsjprs_2023_10_017
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1016_j_ecss_2025_109275
crossref_primary_10_1080_17538947_2025_2489732
crossref_primary_10_3390_land14040765
crossref_primary_10_3846_jeelm_2023_19469
crossref_primary_10_1080_10106049_2025_2527932
crossref_primary_10_1016_j_rse_2024_114593
crossref_primary_10_3390_rs16132500
crossref_primary_10_3390_rs16244730
crossref_primary_10_3390_s25185746
crossref_primary_10_1016_j_actaastro_2025_05_050
crossref_primary_10_3389_feart_2022_1084540
crossref_primary_10_1080_22797254_2024_2398108
crossref_primary_10_1016_j_envc_2025_101168
crossref_primary_10_1016_j_rse_2024_114354
crossref_primary_10_1016_j_rse_2022_113266
crossref_primary_10_1080_10447318_2024_2357860
crossref_primary_10_1080_22797254_2025_2562069
crossref_primary_10_3390_rs15204980
crossref_primary_10_1177_27539687251357020
crossref_primary_10_1016_j_heliyon_2025_e41845
crossref_primary_10_1016_j_jag_2025_104403
crossref_primary_10_1016_j_rsase_2023_101119
crossref_primary_10_3390_su16051735
crossref_primary_10_1016_j_isprsjprs_2024_12_014
crossref_primary_10_1088_2752_664X_add5fd
crossref_primary_10_1016_j_isprsjprs_2023_10_007
crossref_primary_10_5194_bg_21_3617_2024
crossref_primary_10_3390_rs17152551
crossref_primary_10_1155_are_8811014
crossref_primary_10_3390_agronomy14091920
crossref_primary_10_5194_hess_28_2203_2024
crossref_primary_10_1080_07038992_2023_2293058
crossref_primary_10_1080_15481603_2024_2421574
crossref_primary_10_3390_f16050777
crossref_primary_10_1016_j_rse_2022_113276
crossref_primary_10_1016_j_rse_2023_113653
crossref_primary_10_3390_rs16081321
crossref_primary_10_3390_automation4010007
crossref_primary_10_1007_s12145_024_01497_y
crossref_primary_10_1016_j_rse_2024_114003
crossref_primary_10_1080_07038992_2023_2196356
crossref_primary_10_1007_s10661_024_13130_y
crossref_primary_10_3390_f14071466
crossref_primary_10_1016_j_jhydrol_2024_130749
crossref_primary_10_1016_j_foreco_2024_122358
crossref_primary_10_1016_j_envsoft_2024_106257
crossref_primary_10_1016_j_ejrh_2024_102121
crossref_primary_10_3390_f14051061
crossref_primary_10_1080_22797254_2024_2372855
crossref_primary_10_1016_j_rsase_2024_101335
crossref_primary_10_1038_s41598_025_11488_8
crossref_primary_10_31413_nat_v12i4_18355
crossref_primary_10_1016_j_agwat_2024_109039
crossref_primary_10_1038_s41598_023_32746_7
crossref_primary_10_1371_journal_pone_0289969
crossref_primary_10_3390_rs16193665
crossref_primary_10_1016_j_rsase_2023_101014
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_isprsjprs_2025_07_028
crossref_primary_10_1002_ppp_2249
crossref_primary_10_1111_nph_20407
crossref_primary_10_1016_j_isprsjprs_2024_05_016
crossref_primary_10_3390_land12091686
crossref_primary_10_3390_w17030385
crossref_primary_10_1016_j_landusepol_2024_107371
crossref_primary_10_1109_JSTARS_2025_3560071
crossref_primary_10_1061_JUPDDM_UPENG_5460
crossref_primary_10_1007_s10661_024_12476_7
crossref_primary_10_1002_gdj3_269
crossref_primary_10_1109_JSTARS_2023_3267102
crossref_primary_10_3390_fire8080316
crossref_primary_10_3390_rs17152698
crossref_primary_10_3390_atmos15050551
crossref_primary_10_5194_essd_16_5375_2024
crossref_primary_10_1016_j_rse_2022_113375
crossref_primary_10_1016_j_rsase_2025_101623
crossref_primary_10_1080_01431161_2023_2291000
crossref_primary_10_3390_w16213108
crossref_primary_10_5194_essd_16_5449_2024
crossref_primary_10_1038_s41597_025_05715_0
crossref_primary_10_1016_j_ecolind_2024_112134
crossref_primary_10_1016_j_measurement_2023_112961
crossref_primary_10_1080_23311886_2025_2555384
crossref_primary_10_1029_2023JG007678
crossref_primary_10_3390_land13030392
crossref_primary_10_1016_j_isprsjprs_2025_05_022
crossref_primary_10_1111_rec_14338
crossref_primary_10_1016_j_srs_2025_100231
crossref_primary_10_1016_j_ecolind_2023_110911
crossref_primary_10_1016_j_eswa_2025_128740
crossref_primary_10_1016_j_rse_2025_114679
crossref_primary_10_3390_rs15133303
crossref_primary_10_1016_j_infrared_2024_105629
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_1016_j_rse_2025_114797
crossref_primary_10_1016_j_jag_2023_103477
crossref_primary_10_1111_emr_12624
crossref_primary_10_1098_rsos_241248
crossref_primary_10_1108_WJE_09_2022_0395
crossref_primary_10_1007_s12665_025_12179_3
crossref_primary_10_1016_j_scitotenv_2024_177832
crossref_primary_10_1080_17538947_2025_2518571
crossref_primary_10_1080_17538947_2025_2523481
crossref_primary_10_1093_forestry_cpad055
crossref_primary_10_1002_rse2_416
crossref_primary_10_3390_rs16132406
crossref_primary_10_1016_j_rama_2025_06_015
crossref_primary_10_1109_TGRS_2023_3340043
crossref_primary_10_1016_j_isprsjprs_2025_01_028
crossref_primary_10_1016_j_ecoinf_2024_102702
crossref_primary_10_3390_environments10100170
crossref_primary_10_3390_rs15184585
crossref_primary_10_3390_rs14225688
crossref_primary_10_1109_ACCESS_2024_3467273
crossref_primary_10_3389_frsen_2025_1570580
crossref_primary_10_3390_rs15215160
crossref_primary_10_1126_science_adx5773
crossref_primary_10_1186_s13021_022_00214_w
crossref_primary_10_1002_nme_70064
crossref_primary_10_3390_rs16224184
crossref_primary_10_14358_PERS_24_00072R3
crossref_primary_10_1016_j_ecoinf_2025_103089
crossref_primary_10_1016_j_foreco_2024_122313
crossref_primary_10_1038_d41586_024_03053_6
crossref_primary_10_3390_drones7110659
crossref_primary_10_3390_s25051622
crossref_primary_10_3390_rs15030559
crossref_primary_10_3390_rs17071174
crossref_primary_10_1016_j_wasec_2023_100161
crossref_primary_10_3390_rs16162968
crossref_primary_10_1016_j_foreco_2025_123175
crossref_primary_10_3390_rs15112862
crossref_primary_10_1002_ece3_10358
crossref_primary_10_26848_rbgf_v18_1_p234_260
crossref_primary_10_1016_j_foreco_2024_122442
crossref_primary_10_1109_JSTARS_2024_3473937
crossref_primary_10_1088_1748_9326_ace2da
crossref_primary_10_1093_forestry_cpae003
crossref_primary_10_1088_1748_9326_ad3661
crossref_primary_10_1016_j_cj_2023_11_011
crossref_primary_10_1016_j_rse_2023_113918
crossref_primary_10_1038_s43017_024_00554_w
crossref_primary_10_1117_1_JRS_17_044512
crossref_primary_10_1080_22797254_2025_2540109
crossref_primary_10_1007_s11852_024_01030_9
crossref_primary_10_1016_j_landusepol_2025_107749
crossref_primary_10_1007_s12145_025_01892_z
crossref_primary_10_1016_j_foreco_2025_122990
crossref_primary_10_1016_j_landurbplan_2024_105220
crossref_primary_10_1080_10095020_2024_2336604
crossref_primary_10_1109_JSTARS_2024_3422795
crossref_primary_10_3389_fevo_2024_1505125
crossref_primary_10_3390_rs17162848
crossref_primary_10_1016_j_isprsjprs_2024_04_021
crossref_primary_10_3390_s25113570
crossref_primary_10_1016_j_rse_2025_114639
crossref_primary_10_3390_rs16173329
crossref_primary_10_1016_j_jag_2025_104815
crossref_primary_10_1038_s41467_024_52241_5
crossref_primary_10_3390_f15101679
crossref_primary_10_3390_rs17091513
crossref_primary_10_1002_rse2_340
crossref_primary_10_1016_j_watres_2025_124208
crossref_primary_10_1029_2023JG007506
crossref_primary_10_3390_rs15112882
crossref_primary_10_1109_ACCESS_2025_3599676
crossref_primary_10_1016_j_rse_2024_114198
crossref_primary_10_1016_j_rse_2024_114194
crossref_primary_10_1111_ecog_07394
crossref_primary_10_1016_j_jeem_2025_103219
crossref_primary_10_1016_j_ecolind_2023_110159
crossref_primary_10_1016_j_rse_2025_114995
crossref_primary_10_1109_TGRS_2024_3430981
crossref_primary_10_1080_10106049_2024_2322064
crossref_primary_10_1016_j_isprsjprs_2024_02_006
crossref_primary_10_5194_tc_17_2891_2023
crossref_primary_10_3390_land14061293
crossref_primary_10_3390_rs16061101
crossref_primary_10_1016_j_rse_2023_113931
crossref_primary_10_1016_j_ecolind_2024_112067
crossref_primary_10_1016_j_jag_2024_103738
crossref_primary_10_1111_nph_19951
crossref_primary_10_1016_j_fecs_2024_100228
crossref_primary_10_1016_j_uclim_2024_102035
crossref_primary_10_1080_17538947_2024_2409351
crossref_primary_10_1109_JSTARS_2023_3332420
crossref_primary_10_1016_j_jag_2024_104142
crossref_primary_10_5897_AJEST2025_3380
crossref_primary_10_1109_JSTARS_2024_3436811
crossref_primary_10_1016_j_jag_2022_103059
crossref_primary_10_1139_er_2024_0085
crossref_primary_10_1007_s10668_025_05990_2
crossref_primary_10_3389_fclim_2023_1250201
crossref_primary_10_1109_LGRS_2025_3533923
crossref_primary_10_34133_remotesensing_0728
crossref_primary_10_1007_s10531_025_03036_7
crossref_primary_10_1109_TGRS_2025_3570685
crossref_primary_10_3390_rs17030401
crossref_primary_10_3390_s24113488
crossref_primary_10_1016_j_rse_2024_114404
crossref_primary_10_3390_w16131762
crossref_primary_10_1109_LGRS_2025_3555017
crossref_primary_10_1007_s10980_025_02203_z
crossref_primary_10_1016_j_rse_2025_114740
crossref_primary_10_1029_2022EF003410
crossref_primary_10_1016_j_ecolind_2025_113208
crossref_primary_10_1038_s44304_025_00063_w
crossref_primary_10_1016_j_resconrec_2024_107751
crossref_primary_10_3390_su16156301
crossref_primary_10_1109_TGRS_2025_3531890
crossref_primary_10_5194_essd_17_2373_2025
crossref_primary_10_5194_essd_17_2933_2025
crossref_primary_10_1016_j_rse_2025_114736
crossref_primary_10_3390_rs14236026
crossref_primary_10_3389_ffgc_2023_1294552
crossref_primary_10_1029_2024JG008089
crossref_primary_10_1002_wat2_1725
crossref_primary_10_12688_openreseurope_20343_1
crossref_primary_10_3390_rs15245752
crossref_primary_10_1002_ppp3_70085
crossref_primary_10_1002_rra_4413
crossref_primary_10_1016_j_rsase_2025_101450
crossref_primary_10_1109_TIM_2025_3548212
crossref_primary_10_1007_s12665_025_12387_x
crossref_primary_10_3390_rs16244797
crossref_primary_10_1007_s10708_024_11214_3
crossref_primary_10_3390_atmos16070880
crossref_primary_10_1016_j_rsase_2025_101699
crossref_primary_10_1515_eng_2022_0583
crossref_primary_10_1109_TGRS_2025_3544837
crossref_primary_10_3390_rs16234517
crossref_primary_10_3390_su15054611
crossref_primary_10_1016_j_csag_2024_100008
crossref_primary_10_1016_j_rse_2024_114307
crossref_primary_10_1080_01431161_2025_2505254
crossref_primary_10_1109_TGRS_2024_3374451
crossref_primary_10_3390_app142412020
crossref_primary_10_1016_j_scitotenv_2024_171193
crossref_primary_10_1016_j_jag_2025_104583
crossref_primary_10_1016_j_scitotenv_2022_160016
crossref_primary_10_3390_land12091721
crossref_primary_10_1007_s10661_025_13649_8
crossref_primary_10_1111_1365_2745_14403
crossref_primary_10_1016_j_scitotenv_2024_178261
crossref_primary_10_1093_database_baaf018
crossref_primary_10_1080_01431161_2024_2326044
crossref_primary_10_3390_rs17132220
crossref_primary_10_1016_j_rse_2025_114723
crossref_primary_10_3390_rs15153847
crossref_primary_10_3375_2162_4399_45_3_9
Cites_doi 10.1016/j.rse.2009.01.007
10.1016/j.rse.2010.07.008
10.1080/20964471.2017.1398903
10.1088/1748-9326/aacd1c
10.1111/2041-210X.12545
10.1016/0034-4257(80)90028-0
10.1016/S0034-4257(95)00196-4
10.1016/S0169-5347(03)00070-3
10.3189/S0022143000002859
10.1016/j.rse.2011.08.024
10.1016/S0034-4257(96)00112-5
10.1016/j.rse.2017.03.047
10.1016/j.rse.2015.11.023
10.1080/01431161.2012.748992
10.1109/36.763274
10.3390/rs10091363
10.1016/j.rse.2011.10.028
10.1109/TGRS.2006.872081
10.1126/science.164.3877.262
10.3390/rs8020151
10.3390/rs13020227
10.1016/j.agrformet.2017.02.026
10.1016/j.rse.2021.112640
10.1002/2017GL075826
10.3189/S026030550000046X
10.1016/j.rse.2020.111872
10.2307/2937203
10.1016/j.rse.2009.02.004
10.1029/95WR02718
10.14358/PERS.87.8.533
10.1080/17474230802434187
10.1016/0034-4257(92)90101-O
10.3390/rs12111735
10.1002/2017GL074071
10.1109/TGRS.1984.6499157
10.1146/annurev-environ-012220-010822
10.1038/nature22049
10.1016/j.rse.2015.12.024
10.1111/gcb.15029
10.1016/j.rse.2017.04.012
10.1016/j.rse.2019.02.016
10.1038/s41467-021-22702-2
10.1016/j.rse.2012.02.017
10.1016/j.rse.2011.09.016
10.1016/j.rse.2019.02.015
10.1111/j.1600-0587.2008.05512.x
10.1038/ncomms12558
10.1038/d41586-019-01665-x
10.1016/j.rse.2016.08.022
10.1007/s10661-005-0763-0
10.1016/j.jastp.2016.03.007
10.3390/rs12162665
10.3390/rs61111127
10.2307/3809003
10.1016/0034-4257(84)90004-X
10.1016/j.rse.2018.07.024
10.1016/0034-4257(80)90024-3
10.5194/tc-13-2537-2019
10.1080/01431169108955281
10.3390/geosciences9030135
10.1016/j.rse.2018.09.002
10.3390/rs9090902
10.1109/TGRS.1987.289785
10.1126/science.254.5029.314
10.1016/j.isprsjprs.2016.04.001
10.1088/1748-9326/ac46ec
10.3390/rs12101634
10.1016/j.rse.2015.08.006
10.3390/rs12010134
10.1016/j.rse.2004.05.017
10.1126/science.260.5116.1905
10.1016/j.rse.2022.112904
10.1890/0012-9658(2000)081[2742:FYOROM]2.0.CO;2
10.1016/j.rse.2015.09.001
10.1016/j.rse.2014.01.001
10.1175/1520-0442(1989)002<0710:SB>2.0.CO;2
10.1111/j.1466-8238.2010.00584.x
10.1016/j.rse.2014.01.011
10.1111/gcb.15295
10.1016/j.rse.2011.09.024
10.1080/01431169208904193
10.1109/36.701075
10.1016/j.rse.2015.05.005
10.1016/j.rse.2020.111792
10.1073/pnas.0910275107
10.1016/0098-3004(95)00033-5
10.1016/j.rse.2022.112990
10.5194/tc-12-2211-2018
10.3390/rs11141640
10.1016/j.scitotenv.2020.141035
10.1016/j.rse.2021.112366
10.1016/j.rse.2016.02.052
10.1016/j.rse.2022.113011
10.1016/j.rse.2018.12.027
10.1016/j.rse.2018.06.026
10.1111/j.1751-5823.2005.tb00155.x
10.1016/j.rse.2020.111892
10.1016/j.rse.2017.09.029
10.1038/s41598-018-37265-4
10.1016/j.rse.2021.112517
10.1126/science.246.4928.321.b
10.1016/j.rse.2019.111558
10.3390/rs8080678
10.1016/j.biocon.2006.01.017
10.1016/j.rse.2013.09.012
10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
10.3390/s20226631
10.1016/j.foreco.2015.10.042
10.1109/LGRS.2005.857030
10.1080/01431168508948424
10.1016/j.rse.2017.06.019
10.1016/j.rse.2009.03.007
10.1016/j.rse.2011.06.026
10.1016/j.rse.2015.01.022
10.1126/science.1058104
10.1016/j.rse.2014.12.014
10.1016/0034-4257(80)90021-8
10.1016/j.rse.2016.04.008
10.1177/0309133307079054
10.1016/S0034-4257(03)00124-X
10.1029/94JC01398
10.1016/j.rse.2005.12.006
10.1890/130066
10.1038/s43016-021-00429-z
10.1016/j.cosust.2013.06.002
10.1016/j.rse.2021.112780
10.1038/nature20584
10.1126/science.287.5459.1770
10.1007/s10980-014-0034-y
10.1016/j.rse.2015.11.032
10.3390/rs12020224
10.1016/j.rse.2003.10.021
10.1080/01431160110075532
10.1016/S0034-4257(01)00263-2
10.1016/S0959-3780(01)00007-3
10.1016/j.rse.2019.111286
10.1016/j.rse.2015.10.034
10.1016/j.rse.2017.10.030
10.1126/sciadv.abg1620
10.1029/2001JC000823
10.3189/S0260305500015950
10.1364/AO.20.004175
10.3390/rs9111118
10.1016/j.rse.2003.11.005
10.1002/2015GL065564
10.1038/513030a
10.1016/j.rse.2016.01.023
10.1111/j.1467-8306.1975.tb01067.x
10.1080/01431169408954050
10.1109/TGRS.1985.289380
10.3390/rs12172840
10.1016/j.rse.2009.08.017
10.3390/rs61111244
10.1016/S0273-1177(01)00349-0
10.1016/j.rse.2012.01.010
10.1126/science.1244693
10.3390/s18072082
10.1088/1748-9326/2/4/045023
10.1080/01431160903486693
10.1080/01431160500309934
10.5194/tc-16-349-2022
10.1016/j.rse.2018.02.055
10.1016/j.rse.2017.03.035
10.1016/j.rse.2016.11.004
10.3354/cr01499
10.1111/gcb.12838
10.14214/sf.9986
10.1016/j.rse.2019.04.020
10.1016/j.ecolind.2012.09.014
10.1016/j.rse.2019.111356
10.1016/j.rse.2015.09.004
10.1016/0034-4257(87)90053-8
10.1016/j.rse.2021.112862
10.1016/j.rse.2020.112181
10.1080/01431161.2018.1452075
10.1016/S0034-4257(02)00078-0
10.1002/ldr.1084
10.1038/ngeo2785
10.14358/PERS.70.7.829
10.1016/j.rse.2013.01.021
10.1080/01431160600589179
10.1016/j.isprsjprs.2017.06.013
10.1080/07038992.2018.1437719
10.1016/j.rse.2004.03.019
10.1016/j.rse.2019.111214
10.1016/j.rse.2006.09.003
10.1088/1748-9326/9/2/025004
10.1016/j.rse.2015.10.014
10.1016/j.rse.2016.02.060
10.1016/S0034-4257(02)00084-6
10.1016/j.foreco.2020.118370
10.3390/rs9060584
10.1016/j.biocon.2014.11.048
10.1080/10106049.2011.562309
10.1890/03-5258
10.1016/j.rse.2018.06.021
10.1016/j.rse.2014.11.005
10.1016/j.rse.2020.111968
10.1016/j.scitotenv.2020.137409
10.1016/j.rse.2018.11.011
10.1126/science.320.5879.1011a
10.5194/tc-12-521-2018
10.1016/j.rse.2005.11.016
10.3189/S0260305500003001
10.1016/j.rse.2017.06.031
10.1016/j.rse.2014.02.001
10.1080/17538947.2016.1187673
10.1016/j.rse.2011.11.026
10.1109/TGRS.2018.2824828
10.3390/rs61010232
10.1126/science.208.4445.670
10.3390/rs14102418
10.1016/j.rse.2019.111510
10.1080/0143116031000101675
10.1016/j.rse.2020.112165
10.1117/1.JRS.9.096070
10.1016/j.rse.2017.01.008
10.1016/j.rse.2017.03.001
10.1016/j.rse.2020.112175
10.3390/rs11050521
10.1016/S0034-4257(01)00193-6
10.1016/j.rse.2016.01.001
10.1016/j.rse.2011.08.025
10.1016/S0034-4257(00)00169-3
10.1016/j.rse.2016.12.030
10.1016/S0034-4257(97)00140-5
10.1080/20964471.2019.1625528
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2022.113195
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2022_113195
S0034425722003054
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c373t-a1eccb17b841f0006fb89b2d091be319f3542a38217443998349b8a7507e00973
ISICitedReferencesCount 405
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860480000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Sep 28 11:16:58 EDT 2025
Tue Nov 18 22:14:05 EST 2025
Sat Nov 29 07:27:54 EST 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Human footprint
Satellite
Earth observation
Land cover
Land use
Open data
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-a1eccb17b841f0006fb89b2d091be319f3542a38217443998349b8a7507e00973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.rse.2022.113195
PQID 2718277094
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718277094
crossref_primary_10_1016_j_rse_2022_113195
crossref_citationtrail_10_1016_j_rse_2022_113195
elsevier_sciencedirect_doi_10_1016_j_rse_2022_113195
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Turner, Rondinini, Pettorelli, Mora, Leidner, Szantoi, Buchanan, Dech, Dwyer, Herold, Koh, Leimgruber, Taubenboeck, Wegmann, Wikelski, Woodcock (bb1090) 2015; 182
Ellis (bb0270) 2021; 46
Lawrence, Ripple (bb0685) 2000; 81
Pahlevan, Mangin, Balasubramanian, Smith, Alikas, Arai, Barbosa, Bélanger, Binding, Bresciani, Giardino, Gurlin, Fan, Harmel, Hunter, Ishikaza, Kratzer, Lehmann, Ligi, Ma, Martin-Lauzer, Olmanson, Oppelt, Pan, Peters, Reynaud, Sander de Carvalho, Simis, Spyrakos, Steinmetz, Stelzer, Sterckx, Tormos, Tyler, Vanhellemont, Warren (bb0850) 2021; 258
Townshend (bb1070) 1992; 13
Zalles, Hansen, Potapov, Parker, Stehman, Pickens, Parente, Ferreira, Song, Hernandez-Serna, Kommareddy (bb1260) 2021; 7
Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0260) 2018; 10
Beamish, Raynolds, Epstein, Frost, Macander, Bergstedt, Bartsch, Kruse, Miles, Tanis, Heim, Fuchs, Chabrillat, Shevtsova, Verdonen, Wagner (bb0040) 2020; 246
Wu, Snyder, Vadnais, Arora, Babcock, Stensaas, Doucette, Newman (bb1190) 2019; 231
Hakimdavar, Hubbard, Policelli, Pickens, Hansen, Fatoyinbo, Lagomasino, Pahlevan, Unninayar, Kavvada, Carroll, Smith, Hurwitz, Wood, Schollaert Uz (bb0435) 2020; 12
Steffen, Heinrichs (bb1040) 1994; 99
IPCC (bb0585) 2021
National Research Council (bb0820) 2013
Goward, Williams (bb0410) 1997; 63
Skole, Tucker (bb1020) 1993; 260
GCOS, 2016. The Global Observing System for Climate: Implementation Needs. World Meteorological Organisation. Geneva. GCOS-200. 341p.
He, Bradley, Cord, Rocchini, Tuanmu, Schmidtlein, Turner, Wegmann, Pettorelli (bb0470) 2015; 1
Gerace, Kleynhans, Eon, Montanaro (bb0350) 2020; 12
Wulder, White, Loveland, Woodcock, Belward, Cohen, Fosnight, Shaw, Masek, Roy (bb1210) 2016; 185
Doldirina (bb0225) 2015; 6
Franz, Bailey, Kuring, Werdell (bb0295) 2015; 9
Rosenthal, Dozier (bb0915) 1996; 32
OECD (bb0835) 2020
Williams, Miller (bb1160) 1979
Homer, Dewitz, Yang, Jin, Danielson, Xian, Coulston, Herold, Wickham, Megown (bb0545) 2015; 81
.
Zhang, Roy (bb1265) 2016; 186
Chen, Long, Liang, He, Zeng, Hao, Hong (bb0155) 2018; 215
Yan, Roy (bb1245) 2021; 252
Arvidson, Gasch, Goward (bb0020) 2001; 78
Li, Roy (bb0700) 2017; 9
Holden, Woodcock (bb0530) 2016; 185
Dolman, Belward, Briggs, Dowell, Eggleston, Hill, Richter, Simmons (bb0230) 2016; 99
Healey, Yang, Cohen, Pierce (bb0475) 2006; 101
Gao, Masek, Schwaller, Hall (bb0320) 2006; 44
Byrne, Crapper, Mayo (bb0105) 1980; 10
MacDonald, Hall (bb0740) 1980; 208
Vogelmann, Gallant, Shi, Zhu (bb1120) 2015; 185
Skakun, Wevers, Brockmann, Doxani, Aleksandrov, Batič, Frantz, Gascon, Gómez-Chova, Hagolle, López-Puigdollers, Louis, Lubej, Mateo-García, Osman, Peressutti, Pflug, Puc, Richter, Roger, Scaramuzza, Vermote, Vesel, Zupanc, Žust (bb1015) 2022; 274
Brown, Tollerud, Barber, Zhou, Dwyer, Vogelmann, Loveland, Woodcock, Stehman, Zhu, Pengra, Smith, Horton, Xian, Auch, Sohl, Sayler, Gallant, Zelenak, Reker, Rover (bb0085) 2020; 238
White, Wulder, Hermosilla, Coops, Hobart (bb1145) 2017; 194
Seehaus, Malz, Sommer, Lippl, Cochachin, Braun (bb0990) 2019; 13
Bullock, Woodcock, Olofsson (bb0090) 2020; 238
Sala, Stuart Chapin, Armesto, Berlow, Bloomfield, Dirzo, Huber-Sanwald, Huenneke, Jackson, Kinzig, Leemans, Lodge, Mooney, Oesterheld, Poff, Sykes, Walker, Walker, Wall (bb0960) 2000; 287
Senay, Friedrichs, Morton, Parrish, Schauer, Khand, Kagone, Boiko, Huntington (bb1000) 2022; 275
Zhu (bb1275) 2017; 130
Gibbs, Ruesch, Achard, Clayton, Holmgren, Ramankutty, Foley (bb0360) 2010; 107
Gascon, Bouzinac, Thépaut, Jung, Francesconi, Louis, Lonjou, Lafrance, Massera, Gaudel-Vacaresse, Languille, Alhammoud, Viallefont, Pflug, Bieniarz, Clerc, Pessiot, Trémas, Cadau, De Bonis, Isola, Martimort, Fernandez (bb0340) 2017; 9
Hu, Yang, Li, Gong, He, Weng, Koch, Thenkabail (bb0550) 2016; 8
Saarinen, White, Wulder, Kangas, Tuominen, Kankare, Holopainen, Hyyppä, Vastaranta (bb0955) 2018; 52
Pesaresi, Ehrlich, Ferri, Florczyk, Freire, Halkia, Julea, Kemper, Soille, Syrris (bb0875) 2016
Odum (bb0830) 1969; 164
Echeverria, Coomes, Salas, Rey-Benayas, Lara, Newton (bb0265) 2006; 130
Yan, Roy (bb1240) 2016; 172
Williams, Ferrigno, Kent, Schoonmaker (bb1165) 1982; 3
Wang, Schaaf, Sun, Kim, Erb, Gao, Román, Yang, Petroy, Taylor, Masek, Morisette, Zhang, Papuga (bb1125) 2017; 59
Roy, Wulder, Loveland, Woodcock, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb0930) 2014; 145
Zhu, Wang, Woodcock (bb1290) 2015; 159
Foody, Palubinskas, Lucas, Curran, Honzak (bb0290) 1996; 55
Cracknell (bb0210) 2001; 28
Huete, Liu, Batchily, Van Leeuwen (bb0565) 1997; 59
Sommer, Zucca, Grainger, Cherlet, Zougmore, Sokona, Hill, Della Peruta, Roehrig, Wang (bb1025) 2011; 22
Venter, Sanderson, Magrach, Allan, Beher, Jones, Possingham, Laurance, Wood, Fekete, Levy, Watson (bb1105) 2016; 7
Hansen, Franklin, Woudsma, Peterson (bb0455) 2001; 77
Leimgruber, Christen, Laborderie (bb0690) 2005; 106
Williams, Ferrigno, Swithinbank, Lucchitta, Seekins (bb1170) 1995; 21
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0245) 2012; 120
Gardner, Fahnestock, Scambos (bb0335) 2022
Markham, Helder (bb0760) 2012; 122
Yuan, Bauer (bb1255) 2007; 106
Zhu, Wulder, Roy, Woodcock, Hansen, Radeloff, Healey, Schaaf, Hostert, Strobl, Pekel, Lymburner, Pahlevan, Scambos (bb1295) 2019; 224
Chen, Lu, Luo, Pokhrel, Deb, Huang, Ran (bb0160) 2018; 204
IPCC (bb0580) 2019
Liu, Linderman, Ouyang, An, Yang, Zhang (bb0715) 2001; 292
Jackson, Chen, Cosh, Li, Anderson, Walthall, Doriaswamy, Hunt (bb0590) 2004; 92
Anderson, Allen, Morse, Kustas (bb0010) 2012; 122
Hermosilla, Wulder, White, Coops, Hobart (bb0495) 2015; 158
Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu, Li, Li, Fu, Liu, Xu, Wang, Cheng, Hu, Yao, Zhang, Zhu, Zhao, Zhang, Zheng, Ji, Zhang, Chen, Yan, Guo, Yu, Wang, Liu, Shi, Zhu, Chen, Yang, Tang, Xu, Giri, Clinton, Zhu, Chen, Chen (bb0380) 2013; 34
Wulder, Coops (bb1195) 2014; 513
Kennedy, Yang, Cohen (bb0635) 2010; 114
Vogelmann, Howard, Yang, Larson, Wylie, VanDriel (bb1115) 2001
Giuliani, Chatenoux, De Bono, Rodila, Richard, Allenbach, Dao, Peduzzi (bb0375) 2017; 1
Roy, Li, Zhang, Yan, Huang, Li (bb0945) 2017; 199
Kennedy, Yang, Braaten, Copass, Antonova, Jordan, Nelson (bb0650) 2015; 166
Comber, Wadsworth, Fisher (bb0175) 2008; 3
Caudill, McArdle (bb0115) 1979
Park, Lee, Jung (bb0860) 2016; 143–144
Barsi, Lee, Kvaran, Markham, Pedelty (bb0035) 2014; 6
Hermosilla, Wulder, White, Coops, Pickell, Bolton (bb0510) 2019; 222
Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Woodcock, Gopal, Schneider, Cooper, Baccini, Gao, Schaaf (bb0305) 2002; 83
Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb0935) 2016; 185
Zhu, Woodcock (bb1285) 2014; 144
Hermosilla, Wulder, White, Coops (bb0515) 2022; 268
Selkowitz, Forster (bb0995) 2016; 117
Storey, Rengarajan, Choate (bb1055) 2019; 11
Kuemmerle, Erb, Meyfroidt, Müller, Verburg, Estel, Haberl, Hostert, Jepsen, Kastner, Levers, Lindner, Plutzar, Verkerk, van der Zanden, Reenberg (bb0670) 2013; 5
Lindquist, D’Annunzio (bb0710) 2016; 8
Frost, Epstein, Walker (bb0315) 2014; 9
Hilker, Wulder, Coops, Linke, McDermid, Masek, Gao, White (bb0520) 2009; 113
Johnson (bb0600) 2019; 232
Pérez-Hoyos, Rembold, Kerdiles, Gallego (bb0870) 2017; 9
Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bb0640) 2012; 122
Moussavi, Pope, Halberstadt, Trusel, Cioffi, Abdalati (bb0810) 2020; 12
Markham, Arvidson, Barsi, Choate, Kaita, Levy, Lubke, Masek (bb0765) 2018
Laraby, Schott (bb0680) 2018; 216
MacDonald, Hall, Erb (bb0745) 1975
Coops, Shang, Wulder, White, Hermosilla (bb0195) 2020; 474
Weise, Höfer, Franke, Guelmami, Simonson, Muro, O’Connor, Strauch, Flink, Eberle, Mino, Thulin, Philipson, van Valkengoed, Truckenbrodt, Zander, Sánchez, Schröder, Thonfeld, Fitoka, Scott, Ling, Schwarz, Kunz, Thürmer, Plasmeijer, Hilarides (bb1130) 2020; 247
Elmes, Levy, Erb, Hall, Scambos, DiGirolamo, Schaaf (bb0275) 2021; 13
Gardner, Moholdt, Scambos, Fahnstock, Ligtenberg, Van Den Broeke, Nilsson (bb0330) 2018; 12
Potapov, Turubanova, Hansen, Tyukavina, Zalles, Khan, Song, Pickens, Shen, Cortez (bb0900) 2022; 3
Fritz, See, McCallum, You, Bun, Moltchanova, Duerauer, Albrecht, Schill, Perger, Havlik, Mosnier, Thornton, Wood-Sichra, Herrero, Becker-Reshef, Justice, Hansen, Gong, Abdel Aziz, Cipriani, Cumani, Cecchi, Conchedda, Ferreira, Gomez, Haffani, Kayitakire, Malanding, Mueller, Newby, Nonguierma, Olusegun, Ortner, Rajak, Rocha, Schepaschenko, Schepaschenko, Terekhov, Tiangwa, Vancutsem, Vintrou, Wenbin, Velde, Dunwoody, Kraxner, Obersteiner (bb0310) 2015; 21
Thenkabail, Ward, Lyon (bb1065) 1994; 15
Chen, Zhao, Li, Yin (bb0145) 2006; 104
Comiso, Steffen (bb0180) 2001; 106
MacDonald (bb0735) 1984; GE-22
Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0560) 2010; 114
Malakar, Hulley, Hook, Laraby, Cook, Schott (bb0755) 2018; 56
Ouma, Tateishi (bb0840) 2006; 27
Duro, Coops, Wulder, Han (bb0250) 2007; 31
Goward (bb0405) 1989; 2
Coppin, Jonckheere, Nackaerts, Muys, Lambin (bb0200) 2004; 25
Weng, Lu, Schubring (bb1140) 2004; 89
Badhwar (bb0025) 1984; 14
Nagendra, Lucas, Honrado, Jongman, Tarantino, Adamo, Mairota (bb0815) 2013; 33
Sanderson, Jaiteh, Levy, Redford, Wannebo, Woolmer (bb0965) 2002; 52
Song, Potapov, Krylov, King, Di Bella, Hudson, Khan, Adusei, Stehman, Hansen (bb1035) 2017; 190
Gross, Helder, Begeman, Leigh, Kaewmanee, Shah (bb0425) 2022; 14
Xian, Homer, Fry (bb1225) 2009; 113
White, Hermosilla, Wulder, Coops (bb1155) 2022; 271
Zhu, Woodcock (bb1280) 2012; 118
Deines, Kendall, Hyndman (bb0220) 2017; 44
Song, Woodcock, Seto, Lenney, Macomber (bb1030) 2001; 75
Wulder, Hilker, White, Coops, Masek, Pflugmacher, Crevier (bb1205) 2015; 170
Masek, Wulder, Markham, McCorkel, Crawford, Storey, Jenstrom (bb0790) 2020; 248
Kingslake, Ely, Das, Bell (bb0665) 2017; 544
Schneibel, Stellmes, Röder, Frantz, Kowalski, Haß, Hill (bb0975) 2017; 195
Yang, Anderson, Gao, Wo
Schneider (10.1016/j.rse.2022.113195_bb0980) 1985; 6
King (10.1016/j.rse.2022.113195_bb0660) 2017; 195
Seehaus (10.1016/j.rse.2022.113195_bb0990) 2019; 13
Seto (10.1016/j.rse.2022.113195_bb1005) 2002; 23
Hansen (10.1016/j.rse.2022.113195_bb0450) 2012; 122
Chander (10.1016/j.rse.2022.113195_bb0130) 2009; 113
Hall (10.1016/j.rse.2022.113195_bb0440) 1987; GE-25
Markham (10.1016/j.rse.2022.113195_bb0765) 2018
White (10.1016/j.rse.2022.113195_bb1150) 2019; 569
Kennedy (10.1016/j.rse.2022.113195_bb0650) 2015; 166
Woodcock (10.1016/j.rse.2022.113195_bb1180) 2008; 320
Gross (10.1016/j.rse.2022.113195_bb0425) 2022; 14
Anderson (10.1016/j.rse.2022.113195_bb0010) 2012; 122
Coops (10.1016/j.rse.2022.113195_bb0195) 2020; 474
Duro (10.1016/j.rse.2022.113195_bb0255) 2014; 144
Fraser (10.1016/j.rse.2022.113195_bb0300) 1985; GE-23
Dwyer (10.1016/j.rse.2022.113195_bb0260) 2018; 10
Giuliani (10.1016/j.rse.2022.113195_bb0375) 2017; 1
Hu (10.1016/j.rse.2022.113195_bb0555) 2020; 746
OECD (10.1016/j.rse.2022.113195_bb0835)
Pahlevan (10.1016/j.rse.2022.113195_bb0850) 2021; 258
Pekel (10.1016/j.rse.2022.113195_bb0865) 2016; 540
Jacobs (10.1016/j.rse.2022.113195_bb0595) 1997; 43
Carfagna (10.1016/j.rse.2022.113195_bb0110) 2006; 73
DeFries (10.1016/j.rse.2022.113195_bb0215) 2005; 15
Ouma (10.1016/j.rse.2022.113195_bb0840) 2006; 27
Friedl (10.1016/j.rse.2022.113195_bb0305) 2002; 83
Welch (10.1016/j.rse.2022.113195_bb1135) 1975; 65
Park (10.1016/j.rse.2022.113195_bb0860) 2016; 143–144
Brown (10.1016/j.rse.2022.113195_bb0085) 2020; 238
Echeverria (10.1016/j.rse.2022.113195_bb0265) 2006; 130
Woodcock (10.1016/j.rse.2022.113195_bb1185) 2020; 238
Jackson (10.1016/j.rse.2022.113195_bb0590) 2004; 92
Liu (10.1016/j.rse.2022.113195_bb0725) 2017; 237–238
Thenkabail (10.1016/j.rse.2022.113195_bb1065) 1994; 15
Zhu (10.1016/j.rse.2022.113195_bb1295) 2019; 224
Scambos (10.1016/j.rse.2022.113195_bb0970) 1992; 42
Yamazaki (10.1016/j.rse.2022.113195_bb1235) 2015; 171
Ju (10.1016/j.rse.2022.113195_bb0615) 2016; 176
Corbane (10.1016/j.rse.2022.113195_bb0205) 2019; 3
10.1016/j.rse.2022.113195_bb0345
Hermosilla (10.1016/j.rse.2022.113195_bb0500) 2016; 9
Hermosilla (10.1016/j.rse.2022.113195_bb0505) 2018; 44
Homer (10.1016/j.rse.2022.113195_bb0545) 2015; 81
Arvidson (10.1016/j.rse.2022.113195_bb0020) 2001; 78
Gardner (10.1016/j.rse.2022.113195_bb0335) 2022
Skole (10.1016/j.rse.2022.113195_bb1020) 1993; 260
Gong (10.1016/j.rse.2022.113195_bb0380) 2013; 34
Giri (10.1016/j.rse.2022.113195_bb0365) 2011; 20
Marshall (10.1016/j.rse.2022.113195_bb0780) 1989; 246
IPCC (10.1016/j.rse.2022.113195_bb0580)
Mack (10.1016/j.rse.2022.113195_bb0750) 1990
Healey (10.1016/j.rse.2022.113195_bb0480) 2018; 204
Huete (10.1016/j.rse.2022.113195_bb0565) 1997; 59
Elmes (10.1016/j.rse.2022.113195_bb0275) 2021; 13
Dolman (10.1016/j.rse.2022.113195_bb0230) 2016; 99
Tulbure (10.1016/j.rse.2022.113195_bb1080) 2021; 1–12
Pettorelli (10.1016/j.rse.2022.113195_bb0880) 2016; 7
Doldirina (10.1016/j.rse.2022.113195_bb0225) 2015; 6
Braaten (10.1016/j.rse.2022.113195_bb0080) 2015; 169
Cracknell (10.1016/j.rse.2022.113195_bb0210) 2001; 28
Haack (10.1016/j.rse.2022.113195_bb0430) 1987; 21
McCorkel (10.1016/j.rse.2022.113195_bb0800) 2019
Qiu (10.1016/j.rse.2022.113195_bb0905) 2021; 4
Pesaresi (10.1016/j.rse.2022.113195_bb0875) 2016
MacDonald (10.1016/j.rse.2022.113195_bb0745)
Malakar (10.1016/j.rse.2022.113195_bb0755) 2018; 56
Comber (10.1016/j.rse.2022.113195_bb0175) 2008; 3
Vogelmann (10.1016/j.rse.2022.113195_bb1120) 2015; 185
Homer (10.1016/j.rse.2022.113195_bb0540) 2004; 70
Gardner (10.1016/j.rse.2022.113195_bb0330) 2018; 12
Gibbs (10.1016/j.rse.2022.113195_bb0360) 2010; 107
Chakhar (10.1016/j.rse.2022.113195_bb0125) 2020; 12
Buma (10.1016/j.rse.2022.113195_bb0100) 2018; 18
Goward (10.1016/j.rse.2022.113195_bb0420) 2021; 87
Senay (10.1016/j.rse.2022.113195_bb1000) 2022; 275
Song (10.1016/j.rse.2022.113195_bb1035) 2017; 190
St-Louis (10.1016/j.rse.2022.113195_bb1045) 2009; 32
Kern (10.1016/j.rse.2022.113195_bb0655) 2022; 16
Melton (10.1016/j.rse.2022.113195_bb0805) 2021; 1–24
Gibbs (10.1016/j.rse.2022.113195_bb0355) 2007; 2
Lawrence (10.1016/j.rse.2022.113195_bb0685) 2000; 81
Hakimdavar (10.1016/j.rse.2022.113195_bb0435) 2020; 12
Drusch (10.1016/j.rse.2022.113195_bb0245) 2012; 120
Chen (10.1016/j.rse.2022.113195_bb0145) 2006; 104
Roy (10.1016/j.rse.2022.113195_bb0935) 2016; 185
Weng (10.1016/j.rse.2022.113195_bb1140) 2004; 89
Williams (10.1016/j.rse.2022.113195_bb1160) 1979
Joughin (10.1016/j.rse.2022.113195_bb0610) 2018; 12
Coppin (10.1016/j.rse.2022.113195_bb0200) 2004; 25
Pahlevan (10.1016/j.rse.2022.113195_bb0845) 2017; 190
Chen (10.1016/j.rse.2022.113195_bb0155) 2018; 215
Farwell (10.1016/j.rse.2022.113195_bb0285) 2021; 253
Liu (10.1016/j.rse.2022.113195_bb0720) 2014; 29
Chen (10.1016/j.rse.2022.113195_bb0150) 2014
Weise (10.1016/j.rse.2022.113195_bb1130) 2020; 247
Hall (10.1016/j.rse.2022.113195_bb0445) 1991; 72
Barsi (10.1016/j.rse.2022.113195_bb0035) 2014; 6
Frost (10.1016/j.rse.2022.113195_bb0315) 2014; 9
Caudill (10.1016/j.rse.2022.113195_bb0115) 1979
Duro (10.1016/j.rse.2022.113195_bb0250) 2007; 31
Goward (10.1016/j.rse.2022.113195_bb0405) 1989; 2
Kennedy (10.1016/j.rse.2022.113195_bb0645) 2014; 12
Sieber (10.1016/j.rse.2022.113195_bb1010) 2013; 133
Hermosilla (10.1016/j.rse.2022.113195_bb0515) 2022; 268
Zhu (10.1016/j.rse.2022.113195_bb1290) 2015; 159
Fahnestock (10.1016/j.rse.2022.113195_bb0280) 2016; 185
Turner (10.1016/j.rse.2022.113195_bb1090) 2015; 182
Gitelson (10.1016/j.rse.2022.113195_bb0370) 2012; 121
UNESG (10.1016/j.rse.2022.113195_bb1100) 2020
Li (10.1016/j.rse.2022.113195_bb0695) 2020; 20
Scott (10.1016/j.rse.2022.113195_bb0985) 1993; 123
Venter (10.1016/j.rse.2022.113195_bb1105) 2016; 7
Badhwar (10.1016/j.rse.2022.113195_bb0025) 1984; 14
Healey (10.1016/j.rse.2022.113195_bb0475) 2006; 101
Comiso (10.1016/j.rse.2022.113195_bb0180) 2001; 106
Hermosilla (10.1016/j.rse.2022.113195_bb0490) 2015; 170
Zhu (10.1016/j.rse.2022.113195_bb1285) 2014; 144
Gorelick (10.1016/j.rse.2022.113195_bb0400) 2017; 202
Fritz (10.1016/j.rse.2022.113195_bb0310) 2015; 21
Painter (10.1016/j.rse.2022.113195_bb0855) 2018; 45
White (10.1016/j.rse.2022.113195_bb1145) 2017; 194
Townshend (10.1016/j.rse.2022.113195_bb1070) 1992; 13
Potapov (10.1016/j.rse.2022.113195_bb0900) 2022; 3
Wulder (10.1016/j.rse.2022.113195_bb1200) 2012; 122
Sommer (10.1016/j.rse.2022.113195_bb1025) 2011; 22
Goward (10.1016/j.rse.2022.113195_bb0415) 2017
Claverie (10.1016/j.rse.2022.113195_bb0165) 2018; 219
Doraiswamy (10.1016/j.rse.2022.113195_bb0235) 2004; 92
Leimgruber (10.1016/j.rse.2022.113195_bb0690) 2005; 106
Zhu (10.1016/j.rse.2022.113195_bb1275) 2017; 130
Xian (10.1016/j.rse.2022.113195_bb1225) 2009; 113
Masek (10.1016/j.rse.2022.113195_bb0790) 2020; 248
Hermosilla (10.1016/j.rse.2022.113195_bb0510) 2019; 222
Liu (10.1016/j.rse.2022.113195_bb0730) 2018; 209
Turner (10.1016/j.rse.2022.113195_bb1085) 2003; 18
Lambin (10.1016/j.rse.2022.113195_bb0675) 2001; 11
National Research Council (10.1016/j.rse.2022.113195_bb0820) 2013
Pitts (10.1016/j.rse.2022.113195_bb0890) 1980; 10
Kennedy (10.1016/j.rse.2022.113195_bb0635) 2010; 114
Liu (10.1016/j.rse.2022.113195_bb0715) 2001; 292
Winkler (10.1016/j.rse.2022.113195_bb1175) 2021; 12
Saarinen (10.1016/j.rse.2022.113195_bb0955) 2018; 52
Bullock (10.1016/j.rse.2022.113195_bb0095) 2020; 26
IPCC (10.1016/j.rse.2022.113195_bb0585)
Matasci (10.1016/j.rse.2022.113195_bb0795) 2018; 216
Kingslake (10.1016/j.rse.2022.113195_bb0665) 2017; 544
Sanderson (10.1016/j.rse.2022.113195_bb0965) 2002; 52
Wulder (10.1016/j.rse.2022.113195_bb1220) 2019; 225
Cohen (10.1016/j.rse.2022.113195_bb0170) 2016; 360
Hoffman (10.1016/j.rse.2022.113195_bb0525) 2019; 11
Yan (10.1016/j.rse.2022.113195_bb1240) 2016; 172
Wulder (10.1016/j.rse.2022.113195_bb1195) 2014; 513
Roy (10.1016/j.rse.2022.113195_bb0920) 2010; 1
Kuemmerle (10.1016/j.rse.2022.113195_bb0670) 2013; 5
He (10.1016/j.rse.2022.113195_bb0470) 2015; 1
Tang (10.1016/j.rse.2022.113195_bb1060) 2020; 720
Pickens (10.1016/j.rse.2022.113195_bb0885) 2020; 243
Trefois (10.1016/j.rse.2022.113195_bb1075) 1995
Deines (10.1016/j.rse.2022.113195_bb0220) 2017; 44
Roy (10.1016/j.rse.2022.113195_bb0940) 2016; 176
Yuan (10.1016/j.rse.2022.113195_bb1255) 2007; 106
Skakun (10.1016/j.rse.2022.113195_bb1015) 2022; 274
Rudorff (10.1016/j.rse.2022.113195_bb0950) 1991; 12
Vermote (10.1016/j.rse.2022.113195_bb1110) 2015; 185
Hansen (10.1016/j.rse.2022.113195_bb0465) 2022; 17
Zhang (10.1016/j.rse.2022.113195_bb1265) 2016; 186
Laraby (10.1016/j.rse.2022.113195_bb0680) 2018; 216
Vogelmann (10.1016/j.rse.2022.113195_bb1115) 2001
Zhu (10.1016/j.rse.2022.113195_bb1280) 2012; 118
Odum (10.1016/j.rse.2022.113195_bb0830) 1969; 164
Bullock (10.1016/j.rse.2022.113195_bb0090) 2020; 238
Bleyhl (10.1016/j.rse.2022.113195_bb0055) 2017; 193
Byrne (10.1016/j.rse.2022.113195_bb0105) 1980; 10
Nagendra (10.1016/j.rse.2022.113195_bb0815) 2013; 33
CBD (10.1016/j.rse.2022.113195_bb0120)
Hansen (10.1016/j.rse.2022.113195_bb0455) 2001; 77
Anderson (10.1016/j.rse.2022.113195_bb0005) 2004; 92
Gong (10.1016/j.rse.2022.113195_bb0385) 2020; 236
Song (10.1016/j.rse.2022.113195_bb1030) 2001; 75
Kennedy (10.1016/j.rse.2022.113195_bb0640) 2012; 122
Li (10.1016/j.rse.2022.113195_bb0705) 1998; 63
Ellis (10.1016/j.rse.2022.113195_bb0270) 2021; 46
Gascon (10.1016/j.rse.2022.113195_bb0340) 2017; 9
Williams (10.1016/j.rse.2022.113195_bb1165) 1982; 3
Schneibel (10.1016/j.rse.2022.113195_bb0975) 2017; 195
Yan (10.1016/j.rse.2022.113195_bb1245) 2021; 252
Boryan (10.1016/j.rse.2022.113195_bb0070) 2011; 26
Hulley (10.1016/j.rse.2022.113195_bb0575) 2015; 42
Chen (10.1016/j.rse.2022.113195_bb0160) 2018; 204
Markham (10.1016/j.rse.2022.113195_bb0760) 2012; 122
Nunez (10.1016/j.rse.2022.113195_bb0825) 1999; 37
Li (10.1016/j.rse.2022.113195_bb0700) 2017; 9
Xu (10.1016/j.rse.2022.113195_bb1230) 2006; 27
Roy (10.1016/j.rse.2022.113195_bb0925) 2014; 140
Beamish (10.1016/j.rse.2022.113195_bb0040) 2020; 246
Homer (10.1016/j.rse.2022.113195_bb0535) 1993; 57
Wu (10.1016/j.rse.2022.113195_bb1190) 2019; 231
Rosenthal (10.1016/j.rse.2022.113195_bb0915) 1996; 32
Kauth (10.1016/j.rse.2022.113195_bb0630) 1976
Sala (10.1016/j.rse.2022.1
References_xml – volume: 21
  start-page: 965
  year: 1995
  end-page: 969
  ident: bb0015
  article-title: Mapping micro-urban heat islands using Landsat TM and a GIS
  publication-title: Comput. Geosci.
– volume: 31
  start-page: 235
  year: 2007
  end-page: 260
  ident: bb0250
  article-title: Development of a large area biodiversity monitoring system driven by remote sensing
  publication-title: Prog. Phys. Geogr.
– volume: 22
  start-page: 184
  year: 2011
  end-page: 197
  ident: bb1025
  article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales
  publication-title: L. Degrad. Dev.
– volume: 63
  start-page: 887
  year: 1997
  end-page: 900
  ident: bb0410
  article-title: Landsat and earth systems science: development of terrestrial monitoring
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 74
  start-page: 201
  year: 2018
  end-page: 216
  ident: bb0030
  article-title: Half-century perspectives on North American spring snowline and snow cover associations with the Pacific-North American teleconnection pattern
  publication-title: Clim. Res.
– volume: 12
  start-page: 2840
  year: 2020
  ident: bb0485
  article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth engine reduces landsat forest height signal saturation
  publication-title: Remote Sens.
– volume: 222
  start-page: 65
  year: 2019
  end-page: 77
  ident: bb0510
  article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 829
  year: 2004
  end-page: 840
  ident: bb0540
  article-title: Development of a 2001 national land-cover database for the United States
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 237–238
  start-page: 311
  year: 2017
  end-page: 325
  ident: bb0725
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
– volume: 133
  start-page: 38
  year: 2013
  end-page: 51
  ident: bb1010
  article-title: Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 1319
  year: 1992
  end-page: 1328
  ident: bb1070
  article-title: Land cover
  publication-title: Int. J. Remote Sens.
– volume: 15
  start-page: 49
  year: 1994
  end-page: 61
  ident: bb1065
  article-title: Landsat-5 thematic mapper models of soybean and corn crop characteristics
  publication-title: Int. J. Remote Sens.
– year: 1975
  ident: bb0745
  article-title: “The Use of LANDSAT Data in a Large Area Crop Inventory Experiment (LACIE)” In LARS Symposia, Paper 46
– volume: 55
  start-page: 205
  year: 1996
  end-page: 216
  ident: bb0290
  article-title: Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data
  publication-title: Remote Sens. Environ.
– volume: 190
  start-page: 289
  year: 2017
  end-page: 301
  ident: bb0845
  article-title: Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements
  publication-title: Remote Sens. Environ.
– volume: 232
  year: 2019
  ident: bb0600
  article-title: Using the Landsat archive to map crop cover history across the United States
  publication-title: Remote Sens. Environ.
– volume: 246
  start-page: 1
  year: 1989
  end-page: 4
  ident: bb0780
  article-title: Landsat: Cliff-hanging, again
  publication-title: Science (80-.)
– volume: 52
  start-page: 891
  year: 2002
  end-page: 904
  ident: bb0965
  article-title: The human footprint and the last of the wild
  publication-title: Bioscience
– volume: 3
  start-page: 19
  year: 2022
  end-page: 28
  ident: bb0900
  article-title: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century
  publication-title: Nat. Food
– volume: 12
  start-page: 2211
  year: 2018
  end-page: 2227
  ident: bb0610
  article-title: Greenland Ice Mapping Project: Ice flow velocity variation at sub-monthly to decadal timescales
  publication-title: Cryosphere
– volume: 39
  start-page: 4254
  year: 2018
  end-page: 4284
  ident: bb1215
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
– volume: GE-23
  start-page: 625
  year: 1985
  end-page: 633
  ident: bb0300
  article-title: The relative importance of aerosol scattering and absorption in remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 123
  start-page: 3
  year: 1993
  end-page: 41
  ident: bb0985
  article-title: Gap analysis: a geographic approach to protection of biological diversity
  publication-title: Wildl. Monogr.
– volume: 12
  start-page: 1634
  year: 2020
  ident: bb0435
  article-title: Monitoring water-related ecosystems with Earth observation data in support of sustainable development goal (SDG) 6 reporting
  publication-title: Remote Sens.
– volume: 107
  start-page: 16732
  year: 2010
  end-page: 16737
  ident: bb0360
  article-title: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s
  publication-title: Proc. Natl. Acad. Sci.
– volume: 1–24
  year: 2021
  ident: bb0805
  article-title: OpenET: filling a critical data gap in water management for the Western United States
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 89
  start-page: 467
  year: 2004
  end-page: 483
  ident: bb1140
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 97
  year: 1987
  end-page: 103
  ident: bb0240
  article-title: Snow mapping and classification from Landsat thematic mapper data
  publication-title: Ann. Glaciol.
– volume: 209
  start-page: 227
  year: 2018
  end-page: 239
  ident: bb0730
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 321
  year: 1982
  end-page: 326
  ident: bb1165
  article-title: Landsat images and mosaics of antarctica for mapping and glaciological studies
  publication-title: Ann. Glaciol.
– volume: 13
  start-page: 2537
  year: 2019
  end-page: 2556
  ident: bb0990
  article-title: Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations
  publication-title: Cryosphere
– volume: 18
  start-page: 2082
  year: 2018
  ident: bb0100
  article-title: Recent surface water extent of Lake Chad from multispectral sensors and GRACE
  publication-title: Sensors
– volume: 236
  year: 2020
  ident: bb0385
  article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018
  publication-title: Remote Sens. Environ.
– volume: 262
  year: 2021
  ident: bb0140
  article-title: Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference
  publication-title: Remote Sens. Environ.
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: bb0865
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– year: 2021
  ident: bb0585
  article-title: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte [Lead editor]
– volume: 23
  start-page: 1985
  year: 2002
  end-page: 2004
  ident: bb1005
  article-title: Monitoring land-use change in the Pearl River Delta using Landsat TM
  publication-title: Int. J. Remote Sens.
– volume: 106
  start-page: 375
  year: 2007
  end-page: 386
  ident: bb1255
  article-title: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 66
  year: 2012
  end-page: 74
  ident: bb0450
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bb0875
  article-title: Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. EUR 27741
– volume: 20
  start-page: 6631
  year: 2020
  ident: bb0695
  article-title: Global revisit interval analysis of Landsat-8 -9 and Sentinel-2A -2B data for terrestrial monitoring
  publication-title: Sensors
– volume: 185
  start-page: 57
  year: 2016
  end-page: 70
  ident: bb0935
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 134
  year: 2020
  ident: bb0810
  article-title: Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: towards continental generation of lake volumes
  publication-title: Remote Sens.
– volume: 185
  start-page: 84
  year: 2016
  end-page: 94
  ident: bb0280
  article-title: Rapid large-area mapping of ice flow using Landsat 8
  publication-title: Remote Sens. Environ.
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bb0930
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
– volume: 83
  start-page: 3
  year: 2002
  end-page: 15
  ident: bb0625
  article-title: An overview of MODIS Land data processing and product status
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 3025
  year: 2006
  end-page: 3033
  ident: bb1230
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
– volume: 86
  start-page: 458
  year: 2003
  end-page: 469
  ident: bb0775
  article-title: Comparison of aerial video and Landsat 7 data over ponded sea ice
  publication-title: Remote Sens. Environ.
– volume: 274
  year: 2022
  ident: bb1015
  article-title: Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 15
  year: 1984
  end-page: 29
  ident: bb0025
  article-title: Automatic corn-soybean classification using landsat MSS data. I. Near-harvest crop proportion estimation
  publication-title: Remote Sens. Environ.
– volume: 320
  start-page: 1011
  year: 2008
  ident: bb1180
  article-title: Free access to Landsat imagery
  publication-title: Science (80-.)
– volume: 77
  start-page: 50
  year: 2001
  end-page: 65
  ident: bb0455
  article-title: Caribou habitat mapping and fragmentation analysis using Landsat MSS, TM, and GIS data in the North Columbia Mountains, British Columbia, Canada
  publication-title: Remote Sens. Environ.
– volume: 169
  start-page: 128
  year: 2015
  end-page: 138
  ident: bb0080
  article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems
  publication-title: Remote Sens. Environ.
– volume: 57
  start-page: 295
  year: 1991
  end-page: 303
  ident: bb0135
  article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 12
  start-page: 521
  year: 2018
  end-page: 547
  ident: bb0330
  article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
  publication-title: Cryosphere
– volume: 99
  start-page: 646
  year: 2016
  ident: bb0230
  article-title: A post-Paris look at climate observations
  publication-title: Nat. Geosci.
– volume: 10
  start-page: 175
  year: 1980
  end-page: 184
  ident: bb0105
  article-title: Monitoring land-cover change by principal component analysis of multitemporal landsat data
  publication-title: Remote Sens. Environ.
– volume: 104
  start-page: 133
  year: 2006
  end-page: 146
  ident: bb0145
  article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1735
  year: 2020
  ident: bb0125
  article-title: Assessing the accuracy of multiple classification algorithms for crop classification using Landsat-8 and Sentinel-2 data
  publication-title: Remote Sens.
– volume: 9
  start-page: 1323
  year: 2019
  ident: bb0065
  article-title: Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015)
  publication-title: Sci. Rep.
– year: 1979
  ident: bb0115
  article-title: Research Evaluation Considerations for AgRISTARS
– volume: 81
  start-page: 2742
  year: 2000
  end-page: 2752
  ident: bb0685
  article-title: Fifteen years of revegetation of Mount St. Helens: a landscape-scale analysis
  publication-title: Ecology
– volume: 8
  start-page: 678
  year: 2016
  ident: bb0710
  article-title: Assessing global forest land-use change by object-based image analysis
  publication-title: Remote Sens.
– volume: 204
  start-page: 197
  year: 2018
  end-page: 211
  ident: bb0160
  article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data
  publication-title: Remote Sens. Environ.
– volume: 270
  year: 2022
  ident: bb0050
  article-title: Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery
  publication-title: Remote Sens. Environ.
– volume: 170
  start-page: 121
  year: 2015
  end-page: 132
  ident: bb0490
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
– volume: 238
  year: 2020
  ident: bb0090
  article-title: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 1980
  year: 2015
  end-page: 1992
  ident: bb0310
  article-title: Mapping global cropland and field size
  publication-title: Glob. Chang. Biol.
– year: 2019
  ident: bb0580
  article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, P.R. Shukla [Lead editor]
– volume: 188
  start-page: 9
  year: 2017
  end-page: 25
  ident: bb0325
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
– volume: GE-22
  start-page: 473
  year: 1984
  end-page: 482
  ident: bb0735
  article-title: A summary of the history of the development of automated remote sensing for agricultural applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 253
  year: 2021
  ident: bb0285
  article-title: Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness
  publication-title: Remote Sens. Environ.
– volume: 172
  start-page: 67
  year: 2016
  end-page: 86
  ident: bb1240
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bb0165
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 248
  year: 2020
  ident: bb0790
  article-title: Landsat 9: empowering open science and applications through continuity
  publication-title: Remote Sens. Environ.
– year: 1992
  ident: bb0120
  article-title: The United Nations Convention on Biological Diversity. Reprinted in International Legal Materials 31 (5 June 1992): 818. (Entered into force 29 December 1993)
– volume: 9
  start-page: 1118
  year: 2017
  ident: bb0870
  article-title: Comparison of global land cover datasets for cropland monitoring
  publication-title: Remote Sens.
– volume: 92
  start-page: 447
  year: 2004
  end-page: 464
  ident: bb0005
  article-title: Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 1204
  year: 1999
  end-page: 1211
  ident: bb0825
  article-title: Multiresolution-based image fusion with additive wavelet decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 26
  start-page: 6266
  year: 2020
  end-page: 6275
  ident: bb0910
  article-title: Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore
  publication-title: Glob. Chang. Biol.
– volume: 113
  start-page: 1613
  year: 2009
  end-page: 1627
  ident: bb0520
  article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
  publication-title: Remote Sens. Environ.
– volume: 59
  start-page: 440
  year: 1997
  end-page: 451
  ident: bb0565
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2665
  year: 2020
  ident: bb0045
  article-title: Estimates of conservation tillage practices using landsat archive
  publication-title: Remote Sens.
– volume: 268
  year: 2022
  ident: bb0515
  article-title: Land cover classification in an era of big and open data: optimizing localized implementation and training data selection to improve mapping outcomes
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: bb1190
  article-title: User needs for future Landsat missions
  publication-title: Remote Sens. Environ.
– volume: 73
  start-page: 389
  year: 2006
  end-page: 404
  ident: bb0110
  article-title: Using remote sensing for agricultural statistics
  publication-title: Int. Stat. Rev.
– volume: 29
  start-page: 763
  year: 2014
  end-page: 771
  ident: bb0720
  article-title: How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion
  publication-title: Landsc. Ecol.
– volume: 2
  year: 2007
  ident: bb0355
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environ. Res. Lett.
– volume: 12
  start-page: 2477
  year: 1991
  end-page: 2484
  ident: bb0950
  article-title: Wheat yield estimation at the farm level using tm landsat and agrometeorological data
  publication-title: Int. J. Remote Sens.
– volume: 7
  year: 2021
  ident: bb1260
  article-title: Rapid expansion of human impact on natural land in South America since 1985
  publication-title: Sci. Adv.
– volume: 17
  year: 2022
  ident: bb0465
  article-title: Global land use extent and dispersion within natural land cover using Landsat data
  publication-title: Environ. Res. Lett.
– volume: 44
  start-page: 2207
  year: 2006
  end-page: 2218
  ident: bb0320
  article-title: On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 216
  start-page: 697
  year: 2018
  end-page: 714
  ident: bb0795
  article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots
  publication-title: Remote Sens. Environ.
– volume: 43
  start-page: 98
  year: 1997
  end-page: 102
  ident: bb0595
  article-title: Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM
  publication-title: J. Glaciol.
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0785
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 76
  start-page: 1201
  year: 2010
  end-page: 1205
  ident: bb0605
  article-title: The 2009 cropland data layer
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 33
  start-page: 45
  year: 2013
  end-page: 59
  ident: bb0815
  article-title: Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats
  publication-title: Ecol. Indic.
– start-page: 650
  year: 2001
  end-page: 662
  ident: bb1115
  article-title: Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 569
  start-page: 630
  year: 2019
  ident: bb1150
  article-title: Satellite time series can guide forest restoration
  publication-title: Nature
– volume: 513
  start-page: 30
  year: 2014
  end-page: 31
  ident: bb1195
  article-title: Satellites: Make Earth observations open access
  publication-title: Nature
– volume: 215
  start-page: 284
  year: 2018
  end-page: 299
  ident: bb0155
  article-title: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data
  publication-title: Remote Sens. Environ.
– volume: 75
  start-page: 230
  year: 2001
  end-page: 244
  ident: bb1030
  article-title: Classification and change detection using Landsat TM data
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 1035
  year: 2016
  end-page: 1054
  ident: bb0500
  article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring
  publication-title: Int. J. Digit. Earth
– volume: 193
  start-page: 193
  year: 2017
  end-page: 203
  ident: bb0055
  article-title: Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 140
  year: 2019
  end-page: 169
  ident: bb0205
  article-title: Automated global delineation of human settlements from 40 years of Landsat satellite data archives
  publication-title: Big Earth Data
– volume: 5
  start-page: 484
  year: 2013
  end-page: 493
  ident: bb0670
  article-title: Challenges and opportunities in mapping land use intensity globally
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 287
  start-page: 1770
  year: 2000
  end-page: 1774
  ident: bb0960
  article-title: Global Biodiversity Scenarios for the Year 2100
  publication-title: Science (80-.)
– volume: 121
  start-page: 404
  year: 2012
  end-page: 414
  ident: bb0370
  article-title: Remote estimation of crop gross primary production with Landsat data
  publication-title: Remote Sens. Environ.
– year: 2022
  ident: bb0335
  article-title: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1. [WWW Document]
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: bb1290
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1363
  year: 2018
  ident: bb0260
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens.
– volume: 228
  start-page: 164
  year: 2019
  end-page: 182
  ident: bb1300
  article-title: Understanding an urbanizing planet: Strategic directions for remote sensing
  publication-title: Remote Sens. Environ.
– volume: 161
  start-page: 27
  year: 2015
  end-page: 42
  ident: bb0075
  article-title: MODIS–Landsat fusion for large area 30 m burned area mapping
  publication-title: Remote Sens. Environ.
– volume: 158
  start-page: 220
  year: 2015
  end-page: 234
  ident: bb0495
  article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites
  publication-title: Remote Sens. Environ.
– volume: 1–12
  year: 2021
  ident: bb1080
  article-title: Regional matters: On the usefulness of regional land-cover datasets in times of global change
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 113
  start-page: 1133
  year: 2009
  end-page: 1147
  ident: bb1225
  article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
– volume: 63
  start-page: 258
  year: 1998
  end-page: 264
  ident: bb0705
  article-title: Measurements of Glacier variation in the Tibetan plateau using Landsat data
  publication-title: Remote Sens. Environ.
– start-page: 32
  year: 1981
  end-page: 40
  ident: bb0060
  article-title: Landsat observations of Mount St. Helens
  publication-title: Electro-Optical Instrumentation for Resources Evaluation
– volume: 171
  start-page: 337
  year: 2015
  end-page: 351
  ident: bb1235
  article-title: Development of a global ~90m water body map using multi-temporal Landsat images
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 271
  year: 2016
  end-page: 283
  ident: bb1210
  article-title: The global Landsat archive: Status, consolidation, and direction
  publication-title: Remote Sens. Environ.
– volume: 238
  year: 2020
  ident: bb0085
  article-title: Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach
  publication-title: Remote Sens. Environ.
– reference: .
– volume: 13
  start-page: 227
  year: 2021
  ident: bb0275
  article-title: Consequences of the 2019 greenland ice sheet melt episode on Albedo
  publication-title: Remote Sens.
– volume: 101
  start-page: 115
  year: 2006
  end-page: 126
  ident: bb0475
  article-title: Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 11244
  year: 2014
  end-page: 11266
  ident: bb0190
  article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive
  publication-title: Remote Sens.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0400
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 140
  start-page: 433
  year: 2014
  end-page: 449
  ident: bb0925
  article-title: Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 3153
  year: 2006
  end-page: 3181
  ident: bb0840
  article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
– volume: 185
  start-page: 46
  year: 2015
  end-page: 56
  ident: bb1110
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 195
  start-page: 13
  year: 2017
  end-page: 29
  ident: bb0660
  article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 201
  year: 1980
  end-page: 213
  ident: bb0890
  article-title: Field size, length, and width distributions based on LACIE ground truth data
  publication-title: Remote Sens. Environ.
– year: 1979
  ident: bb1160
  article-title: Monitoring Forest Canopy Alteration Around the World with Digital Analysis of Landsat Data
– volume: 243
  year: 2020
  ident: bb0885
  article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series
  publication-title: Remote Sens. Environ.
– volume: 199
  start-page: 25
  year: 2017
  end-page: 38
  ident: bb0945
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bb0070
  article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program
  publication-title: Geocarto Int.
– volume: GE-25
  start-page: 93
  year: 1987
  end-page: 103
  ident: bb0440
  article-title: Signature-extendable technology: global space-based crop recognition
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 99
  start-page: 22413
  year: 1994
  ident: bb1040
  article-title: Feasibility of sea ice typing with synthetic aperture radar (SAR): merging of Landsat thematic mapper and ERS 1 SAR satellite imagery
  publication-title: J. Geophys. Res.
– volume: 275
  year: 2022
  ident: bb1000
  article-title: Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model
  publication-title: Remote Sens. Environ.
– year: 1976
  ident: bb0630
  article-title: The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT
  publication-title: LARS Symposia, Paper 159
– volume: 186
  start-page: 217
  year: 2016
  end-page: 233
  ident: bb1265
  article-title: Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change
  publication-title: Remote Sens. Environ.
– start-page: 26
  year: 2021
  ident: bb0770
  article-title: Landsat 9: ready for launch
  publication-title: Earth Observing Systems XXVI
– volume: 92
  start-page: 475
  year: 2004
  end-page: 482
  ident: bb0590
  article-title: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 893
  year: 2009
  end-page: 903
  ident: bb0130
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 10232
  year: 2014
  end-page: 10251
  ident: bb0035
  article-title: The spectral response of the Landsat-8 operational land imager
  publication-title: Remote Sens.
– volume: 26
  start-page: 2956
  year: 2020
  end-page: 2969
  ident: bb0095
  article-title: Satellite-based estimates reveal widespread forest degradation in the Amazon
  publication-title: Glob. Chang. Biol.
– volume: 87
  start-page: 1
  year: 2021
  end-page: 7
  ident: bb0420
  article-title: Semi-centennial of Landsat observations & pending Landsat 9 launch
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 247
  year: 2020
  ident: bb1130
  article-title: Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS)
  publication-title: Remote Sens. Environ.
– volume: 746
  year: 2020
  ident: bb0555
  article-title: Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 9350
  year: 2017
  end-page: 9360
  ident: bb0220
  article-title: Annual irrigation dynamics in the U.S. northern high plains derived from Landsat satellite data
  publication-title: Geophys. Res. Lett.
– volume: 254
  start-page: 314
  year: 1991
  ident: bb0570
  article-title: The Landsat case
  publication-title: Science (80-.)
– volume: 36
  start-page: 1228
  year: 1998
  end-page: 1249
  ident: bb0620
  article-title: The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 194
  start-page: 303
  year: 2017
  end-page: 321
  ident: bb1145
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
– start-page: 9044
  year: 2019
  end-page: 9047
  ident: bb0800
  article-title: First results from laser-based spectral characterization of Landsat 9 operational land imager-2
  publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 16
  start-page: 349
  year: 2022
  end-page: 378
  ident: bb0655
  article-title: Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
  publication-title: Cryosph.
– volume: 9
  year: 2014
  ident: bb0315
  article-title: Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra
  publication-title: Environ. Res. Lett.
– volume: 44
  start-page: 67
  year: 2018
  end-page: 87
  ident: bb0505
  article-title: Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year Landsat time series
  publication-title: Can. J. Remote. Sens.
– volume: 25
  start-page: 1565
  year: 2004
  end-page: 1596
  ident: bb0200
  article-title: Digital change detection methods in ecosystem monitoring: a review
  publication-title: Int. J. Remote Sens.
– volume: 144
  start-page: 214
  year: 2014
  end-page: 225
  ident: bb0255
  article-title: Predicting species diversity in agricultural environments using Landsat TM imagery
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 177
  year: 2012
  end-page: 183
  ident: bb1270
  article-title: Remote sensing of crop residue cover using multi-temporal Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 152
  year: 2014
  end-page: 171
  ident: bb1285
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 12558
  year: 2016
  ident: bb1105
  article-title: Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation
  publication-title: Nat. Commun.
– volume: 122
  start-page: 50
  year: 2012
  end-page: 65
  ident: bb0010
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
– volume: 360
  start-page: 242
  year: 2016
  end-page: 252
  ident: bb0170
  article-title: Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manag.
– volume: 32
  start-page: 468
  year: 2009
  end-page: 480
  ident: bb1045
  article-title: Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico
  publication-title: Ecography (Cop.).
– volume: 9
  year: 2015
  ident: bb0295
  article-title: Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS
  publication-title: J. Appl. Remote. Sens.
– volume: 130
  start-page: 370
  year: 2017
  end-page: 384
  ident: bb1275
  article-title: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 1
  start-page: 4
  year: 2015
  end-page: 18
  ident: bb0470
  article-title: Will remote sensing shape the next generation of species distribution models? Remote Sens
  publication-title: Ecol. Conserv.
– volume: 1
  start-page: 100
  year: 2017
  end-page: 117
  ident: bb0375
  article-title: Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD)
  publication-title: Big Earth Data
– volume: 6
  year: 2015
  ident: bb0225
  article-title: Open data and Earth observations: the case of opening up access to and use of Earth observation data through the global Earth observation system of systems
  publication-title: J. Intellect. Prop. Inf. Technol. Electron. Commer. Law
– volume: 11
  start-page: 1
  year: 2019
  end-page: 25
  ident: bb1055
  article-title: Bundle adjustment using space-based triangulation method for improving the Landsat global ground reference
  publication-title: Remote Sens.
– volume: 1
  start-page: 111
  year: 2010
  end-page: 117
  ident: bb0920
  article-title: Accessing free Landsat data via the Internet: Africa’s challenge
  publication-title: Remote Sens. Lett.
– volume: 9
  start-page: 189
  year: 1980
  end-page: 196
  ident: bb0390
  article-title: Utilizing LANDSAT imagery to monitor land-use change: a case study in ohio
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 797
  year: 2018
  end-page: 808
  ident: bb0855
  article-title: Variation in rising limb of colorado river snowmelt runoff hydrograph controlled by dust radiative forcing in snow
  publication-title: Geophys. Res. Lett.
– volume: 13
  year: 2018
  ident: bb1095
  article-title: Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia
  publication-title: Environ. Res. Lett.
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: bb0460
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science (80-.)
– volume: 114
  start-page: 2897
  year: 2010
  end-page: 2910
  ident: bb0635
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 126
  year: 2016
  end-page: 140
  ident: bb0995
  article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 185
  start-page: 258
  year: 2015
  end-page: 270
  ident: bb1120
  article-title: Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 31361
  year: 2001
  end-page: 31385
  ident: bb0180
  article-title: Studies of Antarctic sea ice concentrations from satellite data and their applications
  publication-title: J. Geophys. Res. Ocean.
– volume: 11
  start-page: 521
  year: 2019
  ident: bb0525
  article-title: The detection and characterization of Arctic Sea ice leads with satellite imagers
  publication-title: Remote Sens.
– volume: 114
  start-page: 183
  year: 2010
  end-page: 198
  ident: bb0560
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
– start-page: 383
  year: 1995
  end-page: 396
  ident: bb1075
  article-title: Monitoring the evolution of desertification processes from 1973 to 1987 in Damagaram (Niger) with Landsat multispectral scanner and thematic mapper
  publication-title: Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources
– volume: 15
  start-page: 19
  year: 2005
  end-page: 26
  ident: bb0215
  article-title: Increasing isolation of protected areas in tropical forests over the past twenty years
  publication-title: Ecol. Appl.
– volume: 18
  start-page: 306
  year: 2003
  end-page: 314
  ident: bb1085
  article-title: Remote sensing for biodiversity science and conservation
  publication-title: Trends Ecol. Evol.
– volume: 21
  start-page: 284
  year: 1995
  end-page: 290
  ident: bb1170
  article-title: Coastal-change and glaciological maps of Antarctica
  publication-title: Ann. Glaciol.
– start-page: 27
  year: 2018
  end-page: 90
  ident: bb0765
  article-title: Landsat program
  publication-title: Comprehensive Remote Sensing
– volume: 204
  start-page: 717
  year: 2018
  end-page: 728
  ident: bb0480
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
– reference: GCOS, 2016. The Global Observing System for Climate: Implementation Needs. World Meteorological Organisation. Geneva. GCOS-200. 341p.
– volume: 6
  start-page: 59
  year: 1985
  end-page: 73
  ident: bb0980
  article-title: Monitoring Africa’s lake chad basin with LANDSAT and NOAA satellite data
  publication-title: Int. J. Remote Sens.
– volume: 176
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0615
  article-title: The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 548
  year: 2004
  end-page: 559
  ident: bb0235
  article-title: Crop condition and yield simulations using Landsat and MODIS
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2501
  year: 2021
  ident: bb1175
  article-title: Global land use changes are four times greater than previously estimated
  publication-title: Nat. Commun.
– volume: 224
  start-page: 382
  year: 2019
  end-page: 385
  ident: bb1295
  article-title: Benefits of the free and open Landsat data policy
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 16
  year: 2016
  end-page: 36
  ident: bb0530
  article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 656
  year: 2016
  end-page: 665
  ident: bb0880
  article-title: How do we want Satellite Remote Sensing to support biodiversity conservation globally?
  publication-title: Methods Ecol. Evol.
– volume: 65
  start-page: 595
  year: 1975
  end-page: 596
  ident: bb1135
  article-title: Land use in Northeast China, 1973: a view from Landsat-1
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 57
  start-page: 78
  year: 1993
  ident: bb0535
  article-title: Use of remote sensing methods in modelling sage grouse winter habitat
  publication-title: J. Wildl. Manag.
– volume: 8
  start-page: 151
  year: 2016
  ident: bb0550
  article-title: Mapping urban land use by using landsat images and open social data
  publication-title: Remote Sens.
– volume: 3
  start-page: 185
  year: 2008
  end-page: 198
  ident: bb0175
  article-title: Using semantics to clarify the conceptual confusion between land cover and land use : the example of forest
  publication-title: J. Land Use Sci.
– year: 1990
  ident: bb0750
  article-title: Viewing the Earth: The Social Construction of the Landsat Satellite System
– year: 2013
  ident: bb0820
  article-title: Landsat and beyond: Sustaining and enhancing the Nation’s Land Imaging Program, Landsat and Beyond: Sustaining and Enhancing the Nation’s Land Imaging Program
– volume: 122
  start-page: 30
  year: 2012
  end-page: 40
  ident: bb0760
  article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review
  publication-title: Remote Sens. Environ.
– volume: 246
  year: 2020
  ident: bb0040
  article-title: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook
  publication-title: Remote Sens. Environ.
– volume: 83
  start-page: 287
  year: 2002
  end-page: 302
  ident: bb0305
  article-title: Global land cover mapping from MODIS: algorithms and early results
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 81
  year: 2005
  end-page: 101
  ident: bb0690
  article-title: The impact of Landsat satellite monitoring on conservation biology
  publication-title: Environ. Monit. Assess.
– volume: 271
  year: 2022
  ident: bb1155
  article-title: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery
  publication-title: Remote Sens. Environ.
– year: 2014
  ident: bb0150
  article-title: Global land cover mapping at 30m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2
  start-page: 710
  year: 1989
  end-page: 720
  ident: bb0405
  article-title: Satellite bioclimatology
  publication-title: J. Clim.
– volume: 166
  start-page: 271
  year: 2015
  end-page: 285
  ident: bb0650
  article-title: Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA
  publication-title: Remote Sens. Environ.
– volume: 143–144
  start-page: 37
  year: 2016
  end-page: 46
  ident: bb0860
  article-title: Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years
  publication-title: J. Atmos. Solar-Terrestrial Phys.
– volume: 130
  start-page: 481
  year: 2006
  end-page: 494
  ident: bb0265
  article-title: Rapid deforestation and fragmentation of Chilean Temperate Forests
  publication-title: Biol. Conserv.
– volume: 258
  year: 2021
  ident: bb0850
  article-title: ACIX-Aqua: a global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 201
  year: 1987
  end-page: 213
  ident: bb0430
  article-title: An assessment of landsat MSS and TM data for urban and near-urban land-cover digital classification
  publication-title: Remote Sens. Environ.
– volume: 78
  start-page: 13
  year: 2001
  end-page: 26
  ident: bb0020
  article-title: Landsat 7’s long-term acquisition plan — an innovative approach to building a global imagery archive
  publication-title: Remote Sens. Environ.
– volume: 544
  start-page: 349
  year: 2017
  end-page: 352
  ident: bb0665
  article-title: Widespread movement of meltwater onto and across Antarctic ice shelves
  publication-title: Nature
– volume: 81
  start-page: 345
  year: 2015
  end-page: 354
  ident: bb0545
  article-title: Completion of the 2011 national land cover database for the conterminous United States – representing a decade of land cover change information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 59
  start-page: 104
  year: 2017
  end-page: 117
  ident: bb1125
  article-title: Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 902
  year: 2017
  ident: bb0700
  article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
– volume: 170
  start-page: 62
  year: 2015
  end-page: 76
  ident: bb1205
  article-title: Virtual constellations for global terrestrial monitoring
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0415
  article-title: Landsat’s Enduring Legacy: Pioneering Global Land Observations from Space
– volume: 42
  start-page: 177
  year: 1992
  end-page: 186
  ident: bb0970
  article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data
  publication-title: Remote Sens. Environ.
– volume: 72
  start-page: 628
  year: 1991
  end-page: 640
  ident: bb0445
  article-title: Large-scale patterns of forest succession as determined by remote sensing
  publication-title: Ecol.
– volume: 216
  start-page: 472
  year: 2018
  end-page: 481
  ident: bb0680
  article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 2607
  year: 2013
  end-page: 2654
  ident: bb0380
  article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
– volume: 122
  start-page: 2
  year: 2012
  end-page: 10
  ident: bb1200
  article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
– volume: 52
  year: 2018
  ident: bb0955
  article-title: Landsat archive holdings for Finland: opportunities for forest monitoring
  publication-title: Silva Fenn.
– volume: 265
  year: 2021
  ident: bb1250
  article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging
  publication-title: Remote Sens. Environ.
– volume: 260
  start-page: 1905
  year: 1993
  end-page: 1910
  ident: bb1020
  article-title: Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988
  publication-title: Science (80-.)
– volume: 28
  start-page: 233
  year: 2001
  end-page: 240
  ident: bb0210
  article-title: The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended
  publication-title: Adv. Sp. Res.
– volume: 12
  start-page: 339
  year: 2014
  end-page: 346
  ident: bb0645
  article-title: Bringing an ecological view of change to landsat-based remote sensing
  publication-title: Front. Ecol. Environ.
– volume: 164
  start-page: 262
  year: 1969
  end-page: 270
  ident: bb0830
  article-title: The strategy of ecosystem development
  publication-title: Science (80-.)
– volume: 122
  start-page: 117
  year: 2012
  end-page: 133
  ident: bb0640
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 11127
  year: 2014
  end-page: 11152
  ident: bb1050
  article-title: Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance
  publication-title: Remote Sens.
– volume: 252
  year: 2021
  ident: bb1245
  article-title: Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration
  publication-title: Remote Sens. Environ.
– volume: 720
  year: 2020
  ident: bb1060
  article-title: Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: a spatially explicit carbon bookkeeping model
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 154
  year: 2011
  end-page: 159
  ident: bb0365
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Glob. Ecol. Biogeogr.
– volume: 474
  year: 2020
  ident: bb0195
  article-title: Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery
  publication-title: For. Ecol. Manag.
– volume: 9
  start-page: 584
  year: 2017
  ident: bb0340
  article-title: Copernicus Sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
– volume: 4
  year: 2021
  ident: bb0905
  article-title: Can Landsat 7 preserve its science capability with a drifting orbit?
  publication-title: Sci. Remote Sens.
– volume: 253
  year: 2021
  ident: bb0895
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: bb0835
  article-title: Cities in the World : A New Perspective on Urbanisation
– volume: 12
  start-page: 224
  year: 2020
  ident: bb0350
  article-title: Towards an operational, split window-derived surface temperature product for the thermal infrared sensors onboard Landsat 8 and 9
  publication-title: Remote Sens.
– volume: 292
  start-page: 98
  year: 2001
  end-page: 101
  ident: bb0715
  article-title: Ecological degradation in protected areas: the case of Wolong nature reserve for giant pandas
  publication-title: Science.
– volume: 14
  start-page: 2418
  year: 2022
  ident: bb0425
  article-title: Initial cross-calibration of Landsat 8 and Landsat 9 using the simultaneous underfly event
  publication-title: Remote Sens.
– volume: 46
  start-page: 1
  year: 2021
  end-page: 33
  ident: bb0270
  article-title: Land use and ecological change: A 12,000-year history
  publication-title: Annu. Rev. Environ. Resour.
– volume: 190
  start-page: 383
  year: 2017
  end-page: 395
  ident: bb1035
  article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
  publication-title: Remote Sens. Environ.
– volume: 42
  start-page: 7966
  year: 2015
  end-page: 7976
  ident: bb0575
  article-title: The ASTER Global Emissivity Dataset (ASTER GED): mapping Earth’s emissivity at 100 meter spatial scale
  publication-title: Geophys. Res. Lett.
– volume: 208
  start-page: 670
  year: 1980
  end-page: 679
  ident: bb0740
  article-title: Global Crop Forecasting
  publication-title: Science (80-.)
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: bb1220
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 176
  start-page: 255
  year: 2016
  end-page: 271
  ident: bb0940
  article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 135
  year: 2019
  ident: bb0185
  article-title: Northern hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations
  publication-title: Geosciences
– volume: 195
  start-page: 118
  year: 2017
  end-page: 129
  ident: bb0975
  article-title: Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: bb1280
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 261
  year: 2001
  end-page: 269
  ident: bb0675
  article-title: The causes of land-use and land-cover change: moving beyond the myths
  publication-title: Glob. Environ. Chang.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0245
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 115
  year: 1996
  end-page: 130
  ident: bb0915
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper
  publication-title: Water Resour. Res.
– year: 2020
  ident: bb1100
  article-title: Report of the Inter-Agency and Expert Group on SDG Indicators
– volume: 20
  start-page: 4175
  year: 1981
  ident: bb0395
  article-title: Clear water radiances for atmospheric correction of coastal zone color scanner imagery
  publication-title: Appl. Opt.
– volume: 238
  year: 2020
  ident: bb1185
  article-title: Transitioning from change detection to monitoring with remote sensing: a paradigm shift
  publication-title: Remote Sens. Environ.
– volume: 56
  start-page: 5717
  year: 2018
  end-page: 5735
  ident: bb0755
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 182
  start-page: 173
  year: 2015
  end-page: 176
  ident: bb1090
  article-title: Free and open-access satellite data are key to biodiversity conservation
  publication-title: Biol. Conserv.
– volume: 113
  start-page: 893
  year: 2009
  ident: 10.1016/j.rse.2022.113195_bb0130
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.007
– volume: 114
  start-page: 2897
  year: 2010
  ident: 10.1016/j.rse.2022.113195_bb0635
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 1
  start-page: 100
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0375
  article-title: Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD)
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2017.1398903
– volume: 13
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb1095
  article-title: Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aacd1c
– volume: 7
  start-page: 656
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0880
  article-title: How do we want Satellite Remote Sensing to support biodiversity conservation globally?
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12545
– volume: 9
  start-page: 189
  year: 1980
  ident: 10.1016/j.rse.2022.113195_bb0390
  article-title: Utilizing LANDSAT imagery to monitor land-use change: a case study in ohio
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90028-0
– volume: 1–12
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb1080
  article-title: Regional matters: On the usefulness of regional land-cover datasets in times of global change
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 55
  start-page: 205
  year: 1996
  ident: 10.1016/j.rse.2022.113195_bb0290
  article-title: Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(95)00196-4
– volume: 18
  start-page: 306
  year: 2003
  ident: 10.1016/j.rse.2022.113195_bb1085
  article-title: Remote sensing for biodiversity science and conservation
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(03)00070-3
– volume: 43
  start-page: 98
  year: 1997
  ident: 10.1016/j.rse.2022.113195_bb0595
  article-title: Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000002859
– volume: 122
  start-page: 66
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0450
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.024
– volume: 59
  start-page: 440
  year: 1997
  ident: 10.1016/j.rse.2022.113195_bb0565
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 195
  start-page: 13
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0660
  article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.047
– volume: 185
  start-page: 84
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0280
  article-title: Rapid large-area mapping of ice flow using Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.023
– volume: 34
  start-page: 2607
  year: 2013
  ident: 10.1016/j.rse.2022.113195_bb0380
  article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748992
– volume: 37
  start-page: 1204
  year: 1999
  ident: 10.1016/j.rse.2022.113195_bb0825
  article-title: Multiresolution-based image fusion with additive wavelet decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763274
– volume: 10
  start-page: 1363
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0260
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens.
  doi: 10.3390/rs10091363
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb1280
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.028
– volume: 44
  start-page: 2207
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0320
  article-title: On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– year: 1979
  ident: 10.1016/j.rse.2022.113195_bb0115
– volume: 164
  start-page: 262
  year: 1969
  ident: 10.1016/j.rse.2022.113195_bb0830
  article-title: The strategy of ecosystem development
  publication-title: Science (80-.)
  doi: 10.1126/science.164.3877.262
– volume: 8
  start-page: 151
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0550
  article-title: Mapping urban land use by using landsat images and open social data
  publication-title: Remote Sens.
  doi: 10.3390/rs8020151
– volume: 13
  start-page: 227
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0275
  article-title: Consequences of the 2019 greenland ice sheet melt episode on Albedo
  publication-title: Remote Sens.
  doi: 10.3390/rs13020227
– volume: 237–238
  start-page: 311
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0725
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.02.026
– volume: 265
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb1250
  article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112640
– volume: 45
  start-page: 797
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0855
  article-title: Variation in rising limb of colorado river snowmelt runoff hydrograph controlled by dust radiative forcing in snow
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075826
– volume: 59
  start-page: 104
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb1125
  article-title: Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 97
  year: 1987
  ident: 10.1016/j.rse.2022.113195_bb0240
  article-title: Snow mapping and classification from Landsat thematic mapper data
  publication-title: Ann. Glaciol.
  doi: 10.3189/S026030550000046X
– volume: 246
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0040
  article-title: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111872
– volume: 72
  start-page: 628
  year: 1991
  ident: 10.1016/j.rse.2022.113195_bb0445
  article-title: Large-scale patterns of forest succession as determined by remote sensing
  publication-title: Ecol.
  doi: 10.2307/2937203
– volume: 113
  start-page: 1133
  year: 2009
  ident: 10.1016/j.rse.2022.113195_bb1225
  article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.004
– volume: 32
  start-page: 115
  year: 1996
  ident: 10.1016/j.rse.2022.113195_bb0915
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02718
– volume: 87
  start-page: 1
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0420
  article-title: Semi-centennial of Landsat observations & pending Landsat 9 launch
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.87.8.533
– volume: 3
  start-page: 185
  year: 2008
  ident: 10.1016/j.rse.2022.113195_bb0175
  article-title: Using semantics to clarify the conceptual confusion between land cover and land use : the example of forest
  publication-title: J. Land Use Sci.
  doi: 10.1080/17474230802434187
– volume: 42
  start-page: 177
  year: 1992
  ident: 10.1016/j.rse.2022.113195_bb0970
  article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90101-O
– volume: 12
  start-page: 1735
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0125
  article-title: Assessing the accuracy of multiple classification algorithms for crop classification using Landsat-8 and Sentinel-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs12111735
– volume: 44
  start-page: 9350
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0220
  article-title: Annual irrigation dynamics in the U.S. northern high plains derived from Landsat satellite data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074071
– volume: GE-22
  start-page: 473
  year: 1984
  ident: 10.1016/j.rse.2022.113195_bb0735
  article-title: A summary of the history of the development of automated remote sensing for agricultural applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1984.6499157
– volume: 46
  start-page: 1
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0270
  article-title: Land use and ecological change: A 12,000-year history
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-012220-010822
– volume: 544
  start-page: 349
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0665
  article-title: Widespread movement of meltwater onto and across Antarctic ice shelves
  publication-title: Nature
  doi: 10.1038/nature22049
– volume: 123
  start-page: 3
  year: 1993
  ident: 10.1016/j.rse.2022.113195_bb0985
  article-title: Gap analysis: a geographic approach to protection of biological diversity
  publication-title: Wildl. Monogr.
– volume: 185
  start-page: 57
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0935
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.024
– volume: 26
  start-page: 2956
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0095
  article-title: Satellite-based estimates reveal widespread forest degradation in the Amazon
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15029
– start-page: 26
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0770
  article-title: Landsat 9: ready for launch
– volume: 195
  start-page: 118
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0975
  article-title: Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.012
– volume: 224
  start-page: 382
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1295
  article-title: Benefits of the free and open Landsat data policy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.016
– volume: 57
  start-page: 295
  year: 1991
  ident: 10.1016/j.rse.2022.113195_bb0135
  article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 12
  start-page: 2501
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb1175
  article-title: Global land use changes are four times greater than previously estimated
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22702-2
– volume: 121
  start-page: 404
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0370
  article-title: Remote estimation of crop gross primary production with Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.017
– volume: 117
  start-page: 177
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb1270
  article-title: Remote sensing of crop residue cover using multi-temporal Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.016
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1220
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 32
  start-page: 468
  year: 2009
  ident: 10.1016/j.rse.2022.113195_bb1045
  article-title: Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico
  publication-title: Ecography (Cop.).
  doi: 10.1111/j.1600-0587.2008.05512.x
– volume: 7
  start-page: 12558
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb1105
  article-title: Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12558
– volume: 569
  start-page: 630
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1150
  article-title: Satellite time series can guide forest restoration
  publication-title: Nature
  doi: 10.1038/d41586-019-01665-x
– volume: 186
  start-page: 217
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb1265
  article-title: Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.022
– volume: 106
  start-page: 81
  year: 2005
  ident: 10.1016/j.rse.2022.113195_bb0690
  article-title: The impact of Landsat satellite monitoring on conservation biology
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-005-0763-0
– start-page: 32
  year: 1981
  ident: 10.1016/j.rse.2022.113195_bb0060
  article-title: Landsat observations of Mount St. Helens
– volume: 143–144
  start-page: 37
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0860
  article-title: Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years
  publication-title: J. Atmos. Solar-Terrestrial Phys.
  doi: 10.1016/j.jastp.2016.03.007
– year: 1979
  ident: 10.1016/j.rse.2022.113195_bb1160
– volume: 12
  start-page: 2665
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0045
  article-title: Estimates of conservation tillage practices using landsat archive
  publication-title: Remote Sens.
  doi: 10.3390/rs12162665
– volume: 6
  start-page: 11127
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb1050
  article-title: Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance
  publication-title: Remote Sens.
  doi: 10.3390/rs61111127
– volume: 57
  start-page: 78
  year: 1993
  ident: 10.1016/j.rse.2022.113195_bb0535
  article-title: Use of remote sensing methods in modelling sage grouse winter habitat
  publication-title: J. Wildl. Manag.
  doi: 10.2307/3809003
– volume: 14
  start-page: 15
  year: 1984
  ident: 10.1016/j.rse.2022.113195_bb0025
  article-title: Automatic corn-soybean classification using landsat MSS data. I. Near-harvest crop proportion estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90004-X
– ident: 10.1016/j.rse.2022.113195_bb0745
– volume: 216
  start-page: 697
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0795
  article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.024
– volume: 10
  start-page: 201
  year: 1980
  ident: 10.1016/j.rse.2022.113195_bb0890
  article-title: Field size, length, and width distributions based on LACIE ground truth data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90024-3
– volume: 13
  start-page: 2537
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0990
  article-title: Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations
  publication-title: Cryosphere
  doi: 10.5194/tc-13-2537-2019
– volume: 12
  start-page: 2477
  year: 1991
  ident: 10.1016/j.rse.2022.113195_bb0950
  article-title: Wheat yield estimation at the farm level using tm landsat and agrometeorological data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169108955281
– volume: 9
  start-page: 135
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0185
  article-title: Northern hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations
  publication-title: Geosciences
  doi: 10.3390/geosciences9030135
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0165
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 9
  start-page: 902
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0700
  article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs9090902
– year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0150
  article-title: Global land cover mapping at 30m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: GE-25
  start-page: 93
  year: 1987
  ident: 10.1016/j.rse.2022.113195_bb0440
  article-title: Signature-extendable technology: global space-based crop recognition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1987.289785
– volume: 254
  start-page: 314
  year: 1991
  ident: 10.1016/j.rse.2022.113195_bb0570
  article-title: The Landsat case
  publication-title: Science (80-.)
  doi: 10.1126/science.254.5029.314
– volume: 117
  start-page: 126
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0995
  article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.001
– volume: 17
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0465
  article-title: Global land use extent and dispersion within natural land cover using Landsat data
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac46ec
– volume: 12
  start-page: 1634
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0435
  article-title: Monitoring water-related ecosystems with Earth observation data in support of sustainable development goal (SDG) 6 reporting
  publication-title: Remote Sens.
  doi: 10.3390/rs12101634
– volume: 169
  start-page: 128
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0080
  article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.006
– volume: 12
  start-page: 134
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0810
  article-title: Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: towards continental generation of lake volumes
  publication-title: Remote Sens.
  doi: 10.3390/rs12010134
– year: 2013
  ident: 10.1016/j.rse.2022.113195_bb0820
– volume: 92
  start-page: 548
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb0235
  article-title: Crop condition and yield simulations using Landsat and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.05.017
– volume: 260
  start-page: 1905
  year: 1993
  ident: 10.1016/j.rse.2022.113195_bb1020
  article-title: Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988
  publication-title: Science (80-.)
  doi: 10.1126/science.260.5116.1905
– volume: 271
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb1155
  article-title: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112904
– volume: 81
  start-page: 2742
  year: 2000
  ident: 10.1016/j.rse.2022.113195_bb0685
  article-title: Fifteen years of revegetation of Mount St. Helens: a landscape-scale analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[2742:FYOROM]2.0.CO;2
– volume: 170
  start-page: 62
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1205
  article-title: Virtual constellations for global terrestrial monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.001
– volume: 144
  start-page: 214
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0255
  article-title: Predicting species diversity in agricultural environments using Landsat TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.001
– volume: 2
  start-page: 710
  year: 1989
  ident: 10.1016/j.rse.2022.113195_bb0405
  article-title: Satellite bioclimatology
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1989)002<0710:SB>2.0.CO;2
– year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0875
– volume: 20
  start-page: 154
  year: 2011
  ident: 10.1016/j.rse.2022.113195_bb0365
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00584.x
– volume: 144
  start-page: 152
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb1285
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.011
– volume: 26
  start-page: 6266
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0910
  article-title: Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15295
– volume: 4
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0905
  article-title: Can Landsat 7 preserve its science capability with a drifting orbit?
  publication-title: Sci. Remote Sens.
– volume: 122
  start-page: 117
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0640
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.024
– volume: 13
  start-page: 1319
  year: 1992
  ident: 10.1016/j.rse.2022.113195_bb1070
  article-title: Land cover
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904193
– volume: 36
  start-page: 1228
  year: 1998
  ident: 10.1016/j.rse.2022.113195_bb0620
  article-title: The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.701075
– volume: 166
  start-page: 271
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0650
  article-title: Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.005
– volume: 243
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0885
  article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111792
– volume: 107
  start-page: 16732
  year: 2010
  ident: 10.1016/j.rse.2022.113195_bb0360
  article-title: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0910275107
– volume: 21
  start-page: 965
  year: 1995
  ident: 10.1016/j.rse.2022.113195_bb0015
  article-title: Mapping micro-urban heat islands using Landsat TM and a GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(95)00033-5
– volume: 274
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb1015
  article-title: Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112990
– volume: 12
  start-page: 2211
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0610
  article-title: Greenland Ice Mapping Project: Ice flow velocity variation at sub-monthly to decadal timescales
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2211-2018
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1055
  article-title: Bundle adjustment using space-based triangulation method for improving the Landsat global ground reference
  publication-title: Remote Sens.
  doi: 10.3390/rs11141640
– ident: 10.1016/j.rse.2022.113195_bb0585
– volume: 746
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0555
  article-title: Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141035
– volume: 258
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0850
  article-title: ACIX-Aqua: a global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112366
– volume: 185
  start-page: 16
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0530
  article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.052
– volume: 275
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb1000
  article-title: Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113011
– volume: 222
  start-page: 65
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0510
  article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.027
– volume: 216
  start-page: 472
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0680
  article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.026
– volume: 73
  start-page: 389
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0110
  article-title: Using remote sensing for agricultural statistics
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2005.tb00155.x
– volume: 247
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb1130
  article-title: Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111892
– volume: 204
  start-page: 717
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0480
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.029
– volume: 9
  start-page: 1323
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0065
  article-title: Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37265-4
– volume: 262
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0140
  article-title: Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112517
– volume: 246
  start-page: 1
  year: 1989
  ident: 10.1016/j.rse.2022.113195_bb0780
  article-title: Landsat: Cliff-hanging, again
  publication-title: Science (80-.)
  doi: 10.1126/science.246.4928.321.b
– volume: 238
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb1185
  article-title: Transitioning from change detection to monitoring with remote sensing: a paradigm shift
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111558
– volume: 8
  start-page: 678
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0710
  article-title: Assessing global forest land-use change by object-based image analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs8080678
– volume: 130
  start-page: 481
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0265
  article-title: Rapid deforestation and fragmentation of Chilean Temperate Forests
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2006.01.017
– volume: 140
  start-page: 433
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0925
  article-title: Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.012
– volume: 52
  start-page: 891
  year: 2002
  ident: 10.1016/j.rse.2022.113195_bb0965
  article-title: The human footprint and the last of the wild
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
– volume: 20
  start-page: 6631
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0695
  article-title: Global revisit interval analysis of Landsat-8 -9 and Sentinel-2A -2B data for terrestrial monitoring
  publication-title: Sensors
  doi: 10.3390/s20226631
– volume: 360
  start-page: 242
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0170
  article-title: Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.10.042
– volume: 3
  start-page: 68
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0785
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 6
  start-page: 59
  year: 1985
  ident: 10.1016/j.rse.2022.113195_bb0980
  article-title: Monitoring Africa’s lake chad basin with LANDSAT and NOAA satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168508948424
– volume: 63
  start-page: 887
  year: 1997
  ident: 10.1016/j.rse.2022.113195_bb0410
  article-title: Landsat and earth systems science: development of terrestrial monitoring
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 199
  start-page: 25
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0945
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.019
– volume: 113
  start-page: 1613
  year: 2009
  ident: 10.1016/j.rse.2022.113195_bb0520
  article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.007
– volume: 122
  start-page: 30
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0760
  article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.026
– volume: 161
  start-page: 27
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0075
  article-title: MODIS–Landsat fusion for large area 30 m burned area mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.022
– volume: 292
  start-page: 98
  issue: 5514
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0715
  article-title: Ecological degradation in protected areas: the case of Wolong nature reserve for giant pandas
  publication-title: Science.
  doi: 10.1126/science.1058104
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1290
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 10
  start-page: 175
  year: 1980
  ident: 10.1016/j.rse.2022.113195_bb0105
  article-title: Monitoring land-cover change by principal component analysis of multitemporal landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90021-8
– year: 1990
  ident: 10.1016/j.rse.2022.113195_bb0750
– volume: 185
  start-page: 46
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1110
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 31
  start-page: 235
  year: 2007
  ident: 10.1016/j.rse.2022.113195_bb0250
  article-title: Development of a large area biodiversity monitoring system driven by remote sensing
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133307079054
– volume: 86
  start-page: 458
  year: 2003
  ident: 10.1016/j.rse.2022.113195_bb0775
  article-title: Comparison of aerial video and Landsat 7 data over ponded sea ice
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00124-X
– volume: 99
  start-page: 22413
  year: 1994
  ident: 10.1016/j.rse.2022.113195_bb1040
  article-title: Feasibility of sea ice typing with synthetic aperture radar (SAR): merging of Landsat thematic mapper and ERS 1 SAR satellite imagery
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC01398
– volume: 101
  start-page: 115
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0475
  article-title: Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.12.006
– volume: 12
  start-page: 339
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0645
  article-title: Bringing an ecological view of change to landsat-based remote sensing
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/130066
– volume: 3
  start-page: 19
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0900
  article-title: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century
  publication-title: Nat. Food
  doi: 10.1038/s43016-021-00429-z
– volume: 5
  start-page: 484
  year: 2013
  ident: 10.1016/j.rse.2022.113195_bb0670
  article-title: Challenges and opportunities in mapping land use intensity globally
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2013.06.002
– volume: 268
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0515
  article-title: Land cover classification in an era of big and open data: optimizing localized implementation and training data selection to improve mapping outcomes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112780
– volume: 540
  start-page: 418
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0865
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 287
  start-page: 1770
  year: 2000
  ident: 10.1016/j.rse.2022.113195_bb0960
  article-title: Global Biodiversity Scenarios for the Year 2100
  publication-title: Science (80-.)
  doi: 10.1126/science.287.5459.1770
– volume: 29
  start-page: 763
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0720
  article-title: How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-014-0034-y
– year: 2020
  ident: 10.1016/j.rse.2022.113195_bb1100
– volume: 185
  start-page: 271
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb1210
  article-title: The global Landsat archive: Status, consolidation, and direction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.032
– volume: 12
  start-page: 224
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0350
  article-title: Towards an operational, split window-derived surface temperature product for the thermal infrared sensors onboard Landsat 8 and 9
  publication-title: Remote Sens.
  doi: 10.3390/rs12020224
– volume: 92
  start-page: 475
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb0590
  article-title: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.10.021
– year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0415
– volume: 23
  start-page: 1985
  year: 2002
  ident: 10.1016/j.rse.2022.113195_bb1005
  article-title: Monitoring land-use change in the Pearl River Delta using Landsat TM
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110075532
– volume: 1
  start-page: 4
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0470
  article-title: Will remote sensing shape the next generation of species distribution models? Remote Sens
  publication-title: Ecol. Conserv.
– volume: 76
  start-page: 1201
  year: 2010
  ident: 10.1016/j.rse.2022.113195_bb0605
  article-title: The 2009 cropland data layer
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 78
  start-page: 13
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0020
  article-title: Landsat 7’s long-term acquisition plan — an innovative approach to building a global imagery archive
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00263-2
– volume: 11
  start-page: 261
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0675
  article-title: The causes of land-use and land-cover change: moving beyond the myths
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/S0959-3780(01)00007-3
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0600
  article-title: Using the Landsat archive to map crop cover history across the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111286
– volume: 172
  start-page: 67
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb1240
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.034
– volume: 204
  start-page: 197
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0160
  article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.030
– volume: 7
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb1260
  article-title: Rapid expansion of human impact on natural land in South America since 1985
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg1620
– volume: 106
  start-page: 31361
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0180
  article-title: Studies of Antarctic sea ice concentrations from satellite data and their applications
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2001JC000823
– volume: 21
  start-page: 284
  year: 1995
  ident: 10.1016/j.rse.2022.113195_bb1170
  article-title: Coastal-change and glaciological maps of Antarctica
  publication-title: Ann. Glaciol.
  doi: 10.3189/S0260305500015950
– volume: 20
  start-page: 4175
  year: 1981
  ident: 10.1016/j.rse.2022.113195_bb0395
  article-title: Clear water radiances for atmospheric correction of coastal zone color scanner imagery
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.004175
– volume: 9
  start-page: 1118
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0870
  article-title: Comparison of global land cover datasets for cropland monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs9111118
– year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0335
– volume: 89
  start-page: 467
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb1140
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.005
– volume: 42
  start-page: 7966
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0575
  article-title: The ASTER Global Emissivity Dataset (ASTER GED): mapping Earth’s emissivity at 100 meter spatial scale
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL065564
– volume: 513
  start-page: 30
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb1195
  article-title: Satellites: Make Earth observations open access
  publication-title: Nature
  doi: 10.1038/513030a
– volume: 176
  start-page: 255
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0940
  article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.023
– volume: 65
  start-page: 595
  year: 1975
  ident: 10.1016/j.rse.2022.113195_bb1135
  article-title: Land use in Northeast China, 1973: a view from Landsat-1
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.1975.tb01067.x
– volume: 15
  start-page: 49
  year: 1994
  ident: 10.1016/j.rse.2022.113195_bb1065
  article-title: Landsat-5 thematic mapper models of soybean and corn crop characteristics
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954050
– volume: GE-23
  start-page: 625
  year: 1985
  ident: 10.1016/j.rse.2022.113195_bb0300
  article-title: The relative importance of aerosol scattering and absorption in remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1985.289380
– volume: 12
  start-page: 2840
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0485
  article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth engine reduces landsat forest height signal saturation
  publication-title: Remote Sens.
  doi: 10.3390/rs12172840
– volume: 114
  start-page: 183
  year: 2010
  ident: 10.1016/j.rse.2022.113195_bb0560
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.017
– volume: 6
  start-page: 11244
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0190
  article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive
  publication-title: Remote Sens.
  doi: 10.3390/rs61111244
– volume: 28
  start-page: 233
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0210
  article-title: The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended
  publication-title: Adv. Sp. Res.
  doi: 10.1016/S0273-1177(01)00349-0
– volume: 122
  start-page: 2
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb1200
  article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.010
– volume: 342
  start-page: 850
  year: 2013
  ident: 10.1016/j.rse.2022.113195_bb0460
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science (80-.)
  doi: 10.1126/science.1244693
– volume: 1–24
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0805
  article-title: OpenET: filling a critical data gap in water management for the Western United States
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 18
  start-page: 2082
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0100
  article-title: Recent surface water extent of Lake Chad from multispectral sensors and GRACE
  publication-title: Sensors
  doi: 10.3390/s18072082
– volume: 2
  year: 2007
  ident: 10.1016/j.rse.2022.113195_bb0355
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/2/4/045023
– volume: 1
  start-page: 111
  year: 2010
  ident: 10.1016/j.rse.2022.113195_bb0920
  article-title: Accessing free Landsat data via the Internet: Africa’s challenge
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431160903486693
– volume: 27
  start-page: 3153
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0840
  article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500309934
– volume: 16
  start-page: 349
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0655
  article-title: Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
  publication-title: Cryosph.
  doi: 10.5194/tc-16-349-2022
– volume: 209
  start-page: 227
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0730
  article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.055
– ident: 10.1016/j.rse.2022.113195_bb0345
– start-page: 383
  year: 1995
  ident: 10.1016/j.rse.2022.113195_bb1075
  article-title: Monitoring the evolution of desertification processes from 1973 to 1987 in Damagaram (Niger) with Landsat multispectral scanner and thematic mapper
– volume: 194
  start-page: 303
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb1145
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.035
– volume: 188
  start-page: 9
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0325
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.004
– volume: 74
  start-page: 201
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0030
  article-title: Half-century perspectives on North American spring snowline and snow cover associations with the Pacific-North American teleconnection pattern
  publication-title: Clim. Res.
  doi: 10.3354/cr01499
– volume: 21
  start-page: 1980
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0310
  article-title: Mapping global cropland and field size
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12838
– volume: 52
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0955
  article-title: Landsat archive holdings for Finland: opportunities for forest monitoring
  publication-title: Silva Fenn.
  doi: 10.14214/sf.9986
– volume: 228
  start-page: 164
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1300
  article-title: Understanding an urbanizing planet: Strategic directions for remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.020
– volume: 33
  start-page: 45
  year: 2013
  ident: 10.1016/j.rse.2022.113195_bb0815
  article-title: Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.09.014
– volume: 238
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0085
  article-title: Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111356
– volume: 170
  start-page: 121
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0490
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
– volume: 21
  start-page: 201
  year: 1987
  ident: 10.1016/j.rse.2022.113195_bb0430
  article-title: An assessment of landsat MSS and TM data for urban and near-urban land-cover digital classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90053-8
– volume: 270
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0050
  article-title: Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112862
– volume: 252
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb1245
  article-title: Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112181
– volume: 39
  start-page: 4254
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb1215
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1452075
– volume: 83
  start-page: 287
  year: 2002
  ident: 10.1016/j.rse.2022.113195_bb0305
  article-title: Global land cover mapping from MODIS: algorithms and early results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00078-0
– year: 1976
  ident: 10.1016/j.rse.2022.113195_bb0630
  article-title: The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT
– volume: 22
  start-page: 184
  year: 2011
  ident: 10.1016/j.rse.2022.113195_bb1025
  article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.1084
– start-page: 27
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0765
  article-title: Landsat program
– ident: 10.1016/j.rse.2022.113195_bb0835
– volume: 99
  start-page: 646
  issue: 9
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0230
  article-title: A post-Paris look at climate observations
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2785
– volume: 70
  start-page: 829
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb0540
  article-title: Development of a 2001 national land-cover database for the United States
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.70.7.829
– volume: 133
  start-page: 38
  year: 2013
  ident: 10.1016/j.rse.2022.113195_bb1010
  article-title: Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.021
– volume: 6
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0225
  article-title: Open data and Earth observations: the case of opening up access to and use of Earth observation data through the global Earth observation system of systems
  publication-title: J. Intellect. Prop. Inf. Technol. Electron. Commer. Law
– volume: 27
  start-page: 3025
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb1230
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– start-page: 650
  issue: June
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb1115
  article-title: Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 130
  start-page: 370
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb1275
  article-title: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.013
– volume: 44
  start-page: 67
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0505
  article-title: Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year Landsat time series
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2018.1437719
– volume: 92
  start-page: 447
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb0005
  article-title: Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.019
– volume: 231
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb1190
  article-title: User needs for future Landsat missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111214
– volume: 81
  start-page: 345
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0545
  article-title: Completion of the 2011 national land cover database for the conterminous United States – representing a decade of land cover change information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 106
  start-page: 375
  year: 2007
  ident: 10.1016/j.rse.2022.113195_bb1255
  article-title: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.003
– volume: 9
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0315
  article-title: Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/2/025004
– volume: 171
  start-page: 337
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1235
  article-title: Development of a global ~90m water body map using multi-temporal Landsat images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.014
– volume: 185
  start-page: 258
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1120
  article-title: Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.060
– volume: 83
  start-page: 3
  year: 2002
  ident: 10.1016/j.rse.2022.113195_bb0625
  article-title: An overview of MODIS Land data processing and product status
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00084-6
– volume: 474
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0195
  article-title: Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2020.118370
– volume: 9
  start-page: 584
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0340
  article-title: Copernicus Sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
  doi: 10.3390/rs9060584
– volume: 182
  start-page: 173
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb1090
  article-title: Free and open-access satellite data are key to biodiversity conservation
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2014.11.048
– volume: 26
  start-page: 341
  year: 2011
  ident: 10.1016/j.rse.2022.113195_bb0070
  article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2011.562309
– volume: 15
  start-page: 19
  year: 2005
  ident: 10.1016/j.rse.2022.113195_bb0215
  article-title: Increasing isolation of protected areas in tropical forests over the past twenty years
  publication-title: Ecol. Appl.
  doi: 10.1890/03-5258
– volume: 215
  start-page: 284
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0155
  article-title: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.021
– volume: 158
  start-page: 220
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0495
  article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.005
– volume: 248
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0790
  article-title: Landsat 9: empowering open science and applications through continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111968
– volume: 720
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb1060
  article-title: Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: a spatially explicit carbon bookkeeping model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137409
– volume: 238
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0090
  article-title: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.011
– volume: 320
  start-page: 1011
  year: 2008
  ident: 10.1016/j.rse.2022.113195_bb1180
  article-title: Free access to Landsat imagery
  publication-title: Science (80-.)
  doi: 10.1126/science.320.5879.1011a
– volume: 12
  start-page: 521
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0330
  article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
  publication-title: Cryosphere
  doi: 10.5194/tc-12-521-2018
– volume: 104
  start-page: 133
  year: 2006
  ident: 10.1016/j.rse.2022.113195_bb0145
  article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.11.016
– start-page: 9044
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0800
  article-title: First results from laser-based spectral characterization of Landsat 9 operational land imager-2
– volume: 3
  start-page: 321
  year: 1982
  ident: 10.1016/j.rse.2022.113195_bb1165
  article-title: Landsat images and mosaics of antarctica for mapping and glaciological studies
  publication-title: Ann. Glaciol.
  doi: 10.3189/S0260305500003001
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0400
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0930
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– volume: 9
  start-page: 1035
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0500
  article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1187673
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0245
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 56
  start-page: 5717
  year: 2018
  ident: 10.1016/j.rse.2022.113195_bb0755
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2824828
– volume: 6
  start-page: 10232
  year: 2014
  ident: 10.1016/j.rse.2022.113195_bb0035
  article-title: The spectral response of the Landsat-8 operational land imager
  publication-title: Remote Sens.
  doi: 10.3390/rs61010232
– volume: 208
  start-page: 670
  year: 1980
  ident: 10.1016/j.rse.2022.113195_bb0740
  article-title: Global Crop Forecasting
  publication-title: Science (80-.)
  doi: 10.1126/science.208.4445.670
– volume: 14
  start-page: 2418
  year: 2022
  ident: 10.1016/j.rse.2022.113195_bb0425
  article-title: Initial cross-calibration of Landsat 8 and Landsat 9 using the simultaneous underfly event
  publication-title: Remote Sens.
  doi: 10.3390/rs14102418
– volume: 236
  year: 2020
  ident: 10.1016/j.rse.2022.113195_bb0385
  article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111510
– ident: 10.1016/j.rse.2022.113195_bb0120
– volume: 25
  start-page: 1565
  year: 2004
  ident: 10.1016/j.rse.2022.113195_bb0200
  article-title: Digital change detection methods in ecosystem monitoring: a review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000101675
– volume: 253
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0895
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112165
– volume: 9
  year: 2015
  ident: 10.1016/j.rse.2022.113195_bb0295
  article-title: Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.9.096070
– volume: 190
  start-page: 383
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb1035
  article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.008
– volume: 193
  start-page: 193
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0055
  article-title: Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.001
– volume: 253
  year: 2021
  ident: 10.1016/j.rse.2022.113195_bb0285
  article-title: Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112175
– volume: 11
  start-page: 521
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0525
  article-title: The detection and characterization of Arctic Sea ice leads with satellite imagers
  publication-title: Remote Sens.
  doi: 10.3390/rs11050521
– volume: 77
  start-page: 50
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb0455
  article-title: Caribou habitat mapping and fragmentation analysis using Landsat MSS, TM, and GIS data in the North Columbia Mountains, British Columbia, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00193-6
– volume: 176
  start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2022.113195_bb0615
  article-title: The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.001
– volume: 122
  start-page: 50
  year: 2012
  ident: 10.1016/j.rse.2022.113195_bb0010
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.025
– volume: 75
  start-page: 230
  year: 2001
  ident: 10.1016/j.rse.2022.113195_bb1030
  article-title: Classification and change detection using Landsat TM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00169-3
– volume: 190
  start-page: 289
  year: 2017
  ident: 10.1016/j.rse.2022.113195_bb0845
  article-title: Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.030
– volume: 63
  start-page: 258
  year: 1998
  ident: 10.1016/j.rse.2022.113195_bb0705
  article-title: Measurements of Glacier variation in the Tibetan plateau using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00140-5
– ident: 10.1016/j.rse.2022.113195_bb0580
– volume: 3
  start-page: 140
  year: 2019
  ident: 10.1016/j.rse.2022.113195_bb0205
  article-title: Automated global delineation of human settlements from 40 years of Landsat satellite data archives
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2019.1625528
SSID ssj0015871
Score 2.7335875
SecondaryResourceType review_article
Snippet Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution...
Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113195
SubjectTerms Climate change
crops
data collection
Earth observation
environment
Human footprint
humans
issues and policy
Land cover
Land use
Landsat
Open data
remote sensing
Satellite
time series analysis
uncertainty
Title Fifty years of Landsat science and impacts
URI https://dx.doi.org/10.1016/j.rse.2022.113195
https://www.proquest.com/docview/2718277094
Volume 280
WOSCitedRecordID wos000860480000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgA8ELgsLE-FKQEA-rghI7np3HCbV8qCqo6lDfLKdxxEaVdHU7rf8956-kmmAaD7xETeqk9f3Ol7PvfD-E3hFKsOJUxuB8FHGmCNjBYwKn1NAbp0wlvLRkE2w85rNZ_t1ztWtLJ8Dqml9d5cv_CjVcA7DN1tl_gLt9KFyAzwA6HAF2ON4K-OFZBY71FrqlXQCgLrVc98P-HRsssFsj9a5jOlGAmeprk8_u8qB3tsC1lnuzKB3EPtu-WwmduDU9myLf7RmbmCKUjSv8-KNZ_FKrblV21FyqkFbp0pR88qJfg4Dpa8hma-0qyWIz-nftKuZJf2k4Ywwd5B-ttVs4OP-w0qZgKca-cfdqCuH48TcxPB2NxHQwm75fXsSGNMwE1z2Dyl20jxnNwajtn3wZzL62YSTKmaNM9H8vhLVtgt-1X_2bY3LtFW39julj9MhPGKITB_QTdEfVPXQw6MCBL72B1j30wJPa_9z20P1PlrV5-xQdWZ2IrE5ETRV5nYi8TkRwGnmdeIZOh4Ppx8-xJ8mI54SRdSxTGIRFygqepZVxPqqC5wUuwQ8sFPSrIjTDknAz9TRzT06yvOASHEUYh6ZW0wHaq5taPUdRTpMsnefKzvk54bJKaCIxT6kkZULyQ5QECYm5ryBviEwWIqQKngsQqjBCFU6oh-iovWXpyqfc1DgLYhdeAM6vE6AwN932NkAkwDaagJesVbPRAoPjhRmD3ry4RZuX6GGn26_Q3nq1Ua_Rvfnl-kyv3njV-g0RQH91
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fifty+years+of+Landsat+science+and+impacts&rft.jtitle=Remote+sensing+of+environment&rft.au=Wulder%2C+Michael+A&rft.au=Roy%2C+David+P&rft.au=Radeloff%2C+Volker+C&rft.au=Loveland%2C+Thomas+R&rft.date=2022-10-01&rft.issn=0034-4257&rft.volume=280+p.113195-&rft_id=info:doi/10.1016%2Fj.rse.2022.113195&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon