Fifty years of Landsat science and impacts
Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 280; s. 113195 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.10.2022
|
| Predmet: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy.
•50 years of Landsat missions and science.•Landsat critical for demonstrating capacity and science role of earth observation.•Science-quality data for understanding the earth system and policy development.•Quantitative documentation of global change during the Anthropocene.•Success due to dedicated calibration, geolocation, and collection reprocessing. |
|---|---|
| AbstractList | Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy.
•50 years of Landsat missions and science.•Landsat critical for demonstrating capacity and science role of earth observation.•Science-quality data for understanding the earth system and policy development.•Quantitative documentation of global change during the Anthropocene.•Success due to dedicated calibration, geolocation, and collection reprocessing. Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution observations. Over this time, Landsat data were crucial for many scientific and technical advances. Prior to the Landsat program, detailed, synoptic depictions of the Earth's surface were rare, and the ability to acquire and work with large datasets was limited. The early years of the Landsat program delivered a series of technological breakthroughs, pioneering new methods, and demonstrating the ability and capacity of digital satellite imagery, creating a template for other global Earth observation missions and programs. Innovations driven by the Landsat program have paved the way for subsequent science, application, and policy support activities. The economic and scientific value of the knowledge gained through the Landsat program has been long recognized, and despite periods of funding uncertainty, has resulted in the program's 50 years of continuity, as well as substantive and ongoing improvements to payload and mission performance. Free and open access to Landsat data, enacted in 2008, was unprecedented for medium spatial resolution Earth observation data and substantially increased usage and led to a proliferation of science and application opportunities. Here, we highlight key developments over the past 50 years of the Landsat program that have influenced and changed our scientific understanding of the Earth system. Major scientific and programmatic impacts have been realized in the areas of agricultural crop mapping and water use, climate change drivers and impacts, ecosystems and land cover monitoring, and mapping the changing human footprint. The introduction of Landsat collection processing, coupled with the free and open data policy, facilitated a transition in Landsat data usage away from single images and towards time series analyses over large areas and has fostered the widespread use of science-grade data. The launch of Landsat-9 on September 27, 2021, and the advanced planning of its successor mission, Landsat-Next, underscore the sustained institutional support for the program. Such support and commitment to continuity is recognition of both the historic impact the program, and the future potential to build upon Landsat's remarkable 50-year legacy. |
| ArticleNumber | 113195 |
| Author | Huntington, Justin L. Loveland, Thomas R. Healey, Sean Belward, Alan S. Zhu, Zhe Woodcock, Curtis E. Pahlevan, Nima Radeloff, Volker C. Scambos, Theodore A. White, Joanne C. Gao, Feng Cook, Bruce D. Gorelick, Noel Lyapustin, Alexei Hansen, Matthew Wulder, Michael A. Anderson, Martha C. Strobl, Peter Pekel, Jean-Francois Johnson, David M. Hostert, Patrick Roy, David P. Masek, Jeffrey G. Crawford, Christopher J. Hermosilla, Txomin Schaaf, Crystal Lymburner, Leo |
| Author_xml | – sequence: 1 givenname: Michael A. surname: Wulder fullname: Wulder, Michael A. email: mike.wulder@nrcan-rncan.gc.ca organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 2 givenname: David P. surname: Roy fullname: Roy, David P. organization: Department of Geography, Environment, & Spatial Sciences, Center for Global Change and Earth Observations, Michigan State University, USA – sequence: 3 givenname: Volker C. surname: Radeloff fullname: Radeloff, Volker C. organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 4 givenname: Thomas R. surname: Loveland fullname: Loveland, Thomas R. organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 5 givenname: Martha C. surname: Anderson fullname: Anderson, Martha C. organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA – sequence: 6 givenname: David M. surname: Johnson fullname: Johnson, David M. organization: National Agricultural Statistics Service, United States Department of Agriculture, 1400 Independence Ave., SW, Washington, D.C. 20250, USA – sequence: 7 givenname: Sean surname: Healey fullname: Healey, Sean organization: US Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA – sequence: 8 givenname: Zhe surname: Zhu fullname: Zhu, Zhe organization: Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, United States – sequence: 9 givenname: Theodore A. surname: Scambos fullname: Scambos, Theodore A. organization: Earth Science Observation Center, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 10 givenname: Nima surname: Pahlevan fullname: Pahlevan, Nima organization: Science Systems and Applications, Inc., 10210 Greenbelt Rd., Lanham, MD 20706, USA – sequence: 11 givenname: Matthew surname: Hansen fullname: Hansen, Matthew organization: Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA – sequence: 12 givenname: Noel surname: Gorelick fullname: Gorelick, Noel organization: Google Switzerland, Brandschenkestrasse 110, Zurich 8002, Switzerland – sequence: 13 givenname: Christopher J. surname: Crawford fullname: Crawford, Christopher J. organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 14 givenname: Jeffrey G. surname: Masek fullname: Masek, Jeffrey G. organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 15 givenname: Txomin surname: Hermosilla fullname: Hermosilla, Txomin organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 16 givenname: Joanne C. surname: White fullname: White, Joanne C. organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 17 givenname: Alan S. surname: Belward fullname: Belward, Alan S. organization: European Commission, Joint Research Centre, 21027 Ispra, Italy – sequence: 18 givenname: Crystal surname: Schaaf fullname: Schaaf, Crystal organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA – sequence: 19 givenname: Curtis E. surname: Woodcock fullname: Woodcock, Curtis E. organization: Department of Earth and Environment, Boston University, MA 02215, USA – sequence: 20 givenname: Justin L. surname: Huntington fullname: Huntington, Justin L. organization: Desert Research Institute, Reno, NV 89512, USA – sequence: 21 givenname: Leo surname: Lymburner fullname: Lymburner, Leo organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia – sequence: 22 givenname: Patrick surname: Hostert fullname: Hostert, Patrick organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 23 givenname: Feng surname: Gao fullname: Gao, Feng organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA – sequence: 24 givenname: Alexei surname: Lyapustin fullname: Lyapustin, Alexei organization: Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD, USA – sequence: 25 givenname: Jean-Francois surname: Pekel fullname: Pekel, Jean-Francois organization: European Commission, Joint Research Centre, 21027 Ispra, Italy – sequence: 26 givenname: Peter surname: Strobl fullname: Strobl, Peter organization: European Commission, Joint Research Centre, 21027 Ispra, Italy – sequence: 27 givenname: Bruce D. surname: Cook fullname: Cook, Bruce D. organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA |
| BookMark | eNp9kMFKAzEQhoNUsK0-gLc9irDrTJJtNniSYlUoeNFzyKazkLLdrUkq9O3dsj156GkY-L-fmW_GJl3fEWP3CAUCLp62RYhUcOC8QBSoyys2xUrpHBTICZsCCJlLXqobNotxC4BlpXDKHle-ScfsSDbErG-yte020aYsOk-do2xYM7_bW5fiLbtubBvp7jzn7Hv1-rV8z9efbx_Ll3XuhBIpt0jO1ajqSmIDAIumrnTNN6CxpuGyRpSSW1FxVFIKrSshdV1ZVYIiAK3EnD2MvfvQ_xwoJrPz0VHb2o76QzRcYcWVAi2HKI5RF_oYAzVmH_zOhqNBMCcvZmsGL-bkxYxeBkb9Y5xPNvm-S8H69iL5PJI0fP_rKZizpY0P5JLZ9P4C_Qd-0Xwa |
| CitedBy_id | crossref_primary_10_3390_rs17010037 crossref_primary_10_1016_j_jag_2024_104218 crossref_primary_10_1080_01431161_2023_2264496 crossref_primary_10_7717_peerj_15478 crossref_primary_10_1016_j_scs_2023_104458 crossref_primary_10_1029_2024GL108326 crossref_primary_10_1016_j_jag_2023_103403 crossref_primary_10_1016_j_pce_2025_103893 crossref_primary_10_1007_s12040_024_02388_y crossref_primary_10_3390_f14081606 crossref_primary_10_3390_rs14235996 crossref_primary_10_1109_JSTARS_2024_3492025 crossref_primary_10_3390_rs17010155 crossref_primary_10_26468_trakyasobed_1479079 crossref_primary_10_1016_j_wds_2025_100225 crossref_primary_10_1109_LGRS_2023_3281646 crossref_primary_10_3390_rs16010068 crossref_primary_10_1016_j_ecoinf_2025_103107 crossref_primary_10_3390_fire8080335 crossref_primary_10_3390_a18080532 crossref_primary_10_3390_rs17111889 crossref_primary_10_1016_j_uclim_2025_102528 crossref_primary_10_1111_faf_12772 crossref_primary_10_3390_rs15030820 crossref_primary_10_1117_1_JRS_18_014531 crossref_primary_10_3390_ijgi13070239 crossref_primary_10_5194_tc_17_3535_2023 crossref_primary_10_3390_atmos15030318 crossref_primary_10_3390_rs17030558 crossref_primary_10_3390_hydrology10020041 crossref_primary_10_1016_j_rse_2023_113980 crossref_primary_10_1016_j_rse_2023_113616 crossref_primary_10_3390_rs15071935 crossref_primary_10_3390_geomatics5030027 crossref_primary_10_1016_j_rse_2024_114207 crossref_primary_10_1007_s40641_024_00194_8 crossref_primary_10_1038_s44264_025_00083_z crossref_primary_10_1080_17538947_2024_2330684 crossref_primary_10_1016_j_isprsjprs_2023_06_002 crossref_primary_10_3390_rs15215203 crossref_primary_10_3390_rs16050768 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_1016_j_isprsjprs_2024_01_008 crossref_primary_10_3389_ffgc_2023_1330489 crossref_primary_10_3390_rs14164001 crossref_primary_10_1016_j_rsase_2024_101385 crossref_primary_10_1080_01431161_2024_2421942 crossref_primary_10_1080_17538947_2025_2510573 crossref_primary_10_1016_j_scitotenv_2023_167212 crossref_primary_10_3390_rs15194659 crossref_primary_10_3390_f16020194 crossref_primary_10_1016_j_rse_2022_113449 crossref_primary_10_1016_j_rse_2023_113529 crossref_primary_10_1016_j_ecolind_2024_112993 crossref_primary_10_1016_j_rse_2023_113887 crossref_primary_10_1016_j_ecoinf_2025_103245 crossref_primary_10_1016_j_isprsjprs_2023_07_015 crossref_primary_10_1017_jog_2023_18 crossref_primary_10_4000_12ddz crossref_primary_10_3390_land13071074 crossref_primary_10_1016_j_compag_2024_109274 crossref_primary_10_1016_j_hydres_2024_09_002 crossref_primary_10_3390_rs15092295 crossref_primary_10_1080_15481603_2023_2243671 crossref_primary_10_34133_remotesensing_0698 crossref_primary_10_3390_f14030483 crossref_primary_10_1016_j_landurbplan_2025_105354 crossref_primary_10_3389_fmars_2023_1127720 crossref_primary_10_1016_j_jnc_2025_126918 crossref_primary_10_1111_mice_13277 crossref_primary_10_1016_j_jag_2023_103533 crossref_primary_10_1016_j_rse_2025_114929 crossref_primary_10_1007_s11356_023_30990_y crossref_primary_10_1016_j_rse_2023_113755 crossref_primary_10_1016_j_rse_2024_114108 crossref_primary_10_1016_j_isprsjprs_2024_02_021 crossref_primary_10_1016_j_jenvman_2024_122919 crossref_primary_10_1016_j_isprsjprs_2025_04_031 crossref_primary_10_5194_essd_17_741_2025 crossref_primary_10_5194_essd_15_2983_2023 crossref_primary_10_3390_rs15030851 crossref_primary_10_3390_geosciences12110412 crossref_primary_10_1016_j_rse_2024_114461 crossref_primary_10_3389_fpls_2023_1129665 crossref_primary_10_3390_rs16071233 crossref_primary_10_3390_w15010020 crossref_primary_10_1038_s41467_023_41620_z crossref_primary_10_1016_j_foreco_2023_121348 crossref_primary_10_1016_j_foreco_2024_121765 crossref_primary_10_1038_s44358_025_00084_3 crossref_primary_10_1117_1_JRS_18_014507 crossref_primary_10_1111_1365_2664_14830 crossref_primary_10_3390_rs14225748 crossref_primary_10_3390_rs15040940 crossref_primary_10_1002_wat2_70025 crossref_primary_10_1016_j_jenvman_2023_117513 crossref_primary_10_3389_fmars_2025_1570277 crossref_primary_10_1016_j_agrformet_2023_109731 crossref_primary_10_1016_j_isprsjprs_2023_10_017 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1016_j_ecss_2025_109275 crossref_primary_10_1080_17538947_2025_2489732 crossref_primary_10_3390_land14040765 crossref_primary_10_3846_jeelm_2023_19469 crossref_primary_10_1080_10106049_2025_2527932 crossref_primary_10_1016_j_rse_2024_114593 crossref_primary_10_3390_rs16132500 crossref_primary_10_3390_rs16244730 crossref_primary_10_3390_s25185746 crossref_primary_10_1016_j_actaastro_2025_05_050 crossref_primary_10_3389_feart_2022_1084540 crossref_primary_10_1080_22797254_2024_2398108 crossref_primary_10_1016_j_envc_2025_101168 crossref_primary_10_1016_j_rse_2024_114354 crossref_primary_10_1016_j_rse_2022_113266 crossref_primary_10_1080_10447318_2024_2357860 crossref_primary_10_1080_22797254_2025_2562069 crossref_primary_10_3390_rs15204980 crossref_primary_10_1177_27539687251357020 crossref_primary_10_1016_j_heliyon_2025_e41845 crossref_primary_10_1016_j_jag_2025_104403 crossref_primary_10_1016_j_rsase_2023_101119 crossref_primary_10_3390_su16051735 crossref_primary_10_1016_j_isprsjprs_2024_12_014 crossref_primary_10_1088_2752_664X_add5fd crossref_primary_10_1016_j_isprsjprs_2023_10_007 crossref_primary_10_5194_bg_21_3617_2024 crossref_primary_10_3390_rs17152551 crossref_primary_10_1155_are_8811014 crossref_primary_10_3390_agronomy14091920 crossref_primary_10_5194_hess_28_2203_2024 crossref_primary_10_1080_07038992_2023_2293058 crossref_primary_10_1080_15481603_2024_2421574 crossref_primary_10_3390_f16050777 crossref_primary_10_1016_j_rse_2022_113276 crossref_primary_10_1016_j_rse_2023_113653 crossref_primary_10_3390_rs16081321 crossref_primary_10_3390_automation4010007 crossref_primary_10_1007_s12145_024_01497_y crossref_primary_10_1016_j_rse_2024_114003 crossref_primary_10_1080_07038992_2023_2196356 crossref_primary_10_1007_s10661_024_13130_y crossref_primary_10_3390_f14071466 crossref_primary_10_1016_j_jhydrol_2024_130749 crossref_primary_10_1016_j_foreco_2024_122358 crossref_primary_10_1016_j_envsoft_2024_106257 crossref_primary_10_1016_j_ejrh_2024_102121 crossref_primary_10_3390_f14051061 crossref_primary_10_1080_22797254_2024_2372855 crossref_primary_10_1016_j_rsase_2024_101335 crossref_primary_10_1038_s41598_025_11488_8 crossref_primary_10_31413_nat_v12i4_18355 crossref_primary_10_1016_j_agwat_2024_109039 crossref_primary_10_1038_s41598_023_32746_7 crossref_primary_10_1371_journal_pone_0289969 crossref_primary_10_3390_rs16193665 crossref_primary_10_1016_j_rsase_2023_101014 crossref_primary_10_3390_su152115444 crossref_primary_10_1016_j_isprsjprs_2025_07_028 crossref_primary_10_1002_ppp_2249 crossref_primary_10_1111_nph_20407 crossref_primary_10_1016_j_isprsjprs_2024_05_016 crossref_primary_10_3390_land12091686 crossref_primary_10_3390_w17030385 crossref_primary_10_1016_j_landusepol_2024_107371 crossref_primary_10_1109_JSTARS_2025_3560071 crossref_primary_10_1061_JUPDDM_UPENG_5460 crossref_primary_10_1007_s10661_024_12476_7 crossref_primary_10_1002_gdj3_269 crossref_primary_10_1109_JSTARS_2023_3267102 crossref_primary_10_3390_fire8080316 crossref_primary_10_3390_rs17152698 crossref_primary_10_3390_atmos15050551 crossref_primary_10_5194_essd_16_5375_2024 crossref_primary_10_1016_j_rse_2022_113375 crossref_primary_10_1016_j_rsase_2025_101623 crossref_primary_10_1080_01431161_2023_2291000 crossref_primary_10_3390_w16213108 crossref_primary_10_5194_essd_16_5449_2024 crossref_primary_10_1038_s41597_025_05715_0 crossref_primary_10_1016_j_ecolind_2024_112134 crossref_primary_10_1016_j_measurement_2023_112961 crossref_primary_10_1080_23311886_2025_2555384 crossref_primary_10_1029_2023JG007678 crossref_primary_10_3390_land13030392 crossref_primary_10_1016_j_isprsjprs_2025_05_022 crossref_primary_10_1111_rec_14338 crossref_primary_10_1016_j_srs_2025_100231 crossref_primary_10_1016_j_ecolind_2023_110911 crossref_primary_10_1016_j_eswa_2025_128740 crossref_primary_10_1016_j_rse_2025_114679 crossref_primary_10_3390_rs15133303 crossref_primary_10_1016_j_infrared_2024_105629 crossref_primary_10_1017_eds_2024_53 crossref_primary_10_1016_j_rse_2025_114797 crossref_primary_10_1016_j_jag_2023_103477 crossref_primary_10_1111_emr_12624 crossref_primary_10_1098_rsos_241248 crossref_primary_10_1108_WJE_09_2022_0395 crossref_primary_10_1007_s12665_025_12179_3 crossref_primary_10_1016_j_scitotenv_2024_177832 crossref_primary_10_1080_17538947_2025_2518571 crossref_primary_10_1080_17538947_2025_2523481 crossref_primary_10_1093_forestry_cpad055 crossref_primary_10_1002_rse2_416 crossref_primary_10_3390_rs16132406 crossref_primary_10_1016_j_rama_2025_06_015 crossref_primary_10_1109_TGRS_2023_3340043 crossref_primary_10_1016_j_isprsjprs_2025_01_028 crossref_primary_10_1016_j_ecoinf_2024_102702 crossref_primary_10_3390_environments10100170 crossref_primary_10_3390_rs15184585 crossref_primary_10_3390_rs14225688 crossref_primary_10_1109_ACCESS_2024_3467273 crossref_primary_10_3389_frsen_2025_1570580 crossref_primary_10_3390_rs15215160 crossref_primary_10_1126_science_adx5773 crossref_primary_10_1186_s13021_022_00214_w crossref_primary_10_1002_nme_70064 crossref_primary_10_3390_rs16224184 crossref_primary_10_14358_PERS_24_00072R3 crossref_primary_10_1016_j_ecoinf_2025_103089 crossref_primary_10_1016_j_foreco_2024_122313 crossref_primary_10_1038_d41586_024_03053_6 crossref_primary_10_3390_drones7110659 crossref_primary_10_3390_s25051622 crossref_primary_10_3390_rs15030559 crossref_primary_10_3390_rs17071174 crossref_primary_10_1016_j_wasec_2023_100161 crossref_primary_10_3390_rs16162968 crossref_primary_10_1016_j_foreco_2025_123175 crossref_primary_10_3390_rs15112862 crossref_primary_10_1002_ece3_10358 crossref_primary_10_26848_rbgf_v18_1_p234_260 crossref_primary_10_1016_j_foreco_2024_122442 crossref_primary_10_1109_JSTARS_2024_3473937 crossref_primary_10_1088_1748_9326_ace2da crossref_primary_10_1093_forestry_cpae003 crossref_primary_10_1088_1748_9326_ad3661 crossref_primary_10_1016_j_cj_2023_11_011 crossref_primary_10_1016_j_rse_2023_113918 crossref_primary_10_1038_s43017_024_00554_w crossref_primary_10_1117_1_JRS_17_044512 crossref_primary_10_1080_22797254_2025_2540109 crossref_primary_10_1007_s11852_024_01030_9 crossref_primary_10_1016_j_landusepol_2025_107749 crossref_primary_10_1007_s12145_025_01892_z crossref_primary_10_1016_j_foreco_2025_122990 crossref_primary_10_1016_j_landurbplan_2024_105220 crossref_primary_10_1080_10095020_2024_2336604 crossref_primary_10_1109_JSTARS_2024_3422795 crossref_primary_10_3389_fevo_2024_1505125 crossref_primary_10_3390_rs17162848 crossref_primary_10_1016_j_isprsjprs_2024_04_021 crossref_primary_10_3390_s25113570 crossref_primary_10_1016_j_rse_2025_114639 crossref_primary_10_3390_rs16173329 crossref_primary_10_1016_j_jag_2025_104815 crossref_primary_10_1038_s41467_024_52241_5 crossref_primary_10_3390_f15101679 crossref_primary_10_3390_rs17091513 crossref_primary_10_1002_rse2_340 crossref_primary_10_1016_j_watres_2025_124208 crossref_primary_10_1029_2023JG007506 crossref_primary_10_3390_rs15112882 crossref_primary_10_1109_ACCESS_2025_3599676 crossref_primary_10_1016_j_rse_2024_114198 crossref_primary_10_1016_j_rse_2024_114194 crossref_primary_10_1111_ecog_07394 crossref_primary_10_1016_j_jeem_2025_103219 crossref_primary_10_1016_j_ecolind_2023_110159 crossref_primary_10_1016_j_rse_2025_114995 crossref_primary_10_1109_TGRS_2024_3430981 crossref_primary_10_1080_10106049_2024_2322064 crossref_primary_10_1016_j_isprsjprs_2024_02_006 crossref_primary_10_5194_tc_17_2891_2023 crossref_primary_10_3390_land14061293 crossref_primary_10_3390_rs16061101 crossref_primary_10_1016_j_rse_2023_113931 crossref_primary_10_1016_j_ecolind_2024_112067 crossref_primary_10_1016_j_jag_2024_103738 crossref_primary_10_1111_nph_19951 crossref_primary_10_1016_j_fecs_2024_100228 crossref_primary_10_1016_j_uclim_2024_102035 crossref_primary_10_1080_17538947_2024_2409351 crossref_primary_10_1109_JSTARS_2023_3332420 crossref_primary_10_1016_j_jag_2024_104142 crossref_primary_10_5897_AJEST2025_3380 crossref_primary_10_1109_JSTARS_2024_3436811 crossref_primary_10_1016_j_jag_2022_103059 crossref_primary_10_1139_er_2024_0085 crossref_primary_10_1007_s10668_025_05990_2 crossref_primary_10_3389_fclim_2023_1250201 crossref_primary_10_1109_LGRS_2025_3533923 crossref_primary_10_34133_remotesensing_0728 crossref_primary_10_1007_s10531_025_03036_7 crossref_primary_10_1109_TGRS_2025_3570685 crossref_primary_10_3390_rs17030401 crossref_primary_10_3390_s24113488 crossref_primary_10_1016_j_rse_2024_114404 crossref_primary_10_3390_w16131762 crossref_primary_10_1109_LGRS_2025_3555017 crossref_primary_10_1007_s10980_025_02203_z crossref_primary_10_1016_j_rse_2025_114740 crossref_primary_10_1029_2022EF003410 crossref_primary_10_1016_j_ecolind_2025_113208 crossref_primary_10_1038_s44304_025_00063_w crossref_primary_10_1016_j_resconrec_2024_107751 crossref_primary_10_3390_su16156301 crossref_primary_10_1109_TGRS_2025_3531890 crossref_primary_10_5194_essd_17_2373_2025 crossref_primary_10_5194_essd_17_2933_2025 crossref_primary_10_1016_j_rse_2025_114736 crossref_primary_10_3390_rs14236026 crossref_primary_10_3389_ffgc_2023_1294552 crossref_primary_10_1029_2024JG008089 crossref_primary_10_1002_wat2_1725 crossref_primary_10_12688_openreseurope_20343_1 crossref_primary_10_3390_rs15245752 crossref_primary_10_1002_ppp3_70085 crossref_primary_10_1002_rra_4413 crossref_primary_10_1016_j_rsase_2025_101450 crossref_primary_10_1109_TIM_2025_3548212 crossref_primary_10_1007_s12665_025_12387_x crossref_primary_10_3390_rs16244797 crossref_primary_10_1007_s10708_024_11214_3 crossref_primary_10_3390_atmos16070880 crossref_primary_10_1016_j_rsase_2025_101699 crossref_primary_10_1515_eng_2022_0583 crossref_primary_10_1109_TGRS_2025_3544837 crossref_primary_10_3390_rs16234517 crossref_primary_10_3390_su15054611 crossref_primary_10_1016_j_csag_2024_100008 crossref_primary_10_1016_j_rse_2024_114307 crossref_primary_10_1080_01431161_2025_2505254 crossref_primary_10_1109_TGRS_2024_3374451 crossref_primary_10_3390_app142412020 crossref_primary_10_1016_j_scitotenv_2024_171193 crossref_primary_10_1016_j_jag_2025_104583 crossref_primary_10_1016_j_scitotenv_2022_160016 crossref_primary_10_3390_land12091721 crossref_primary_10_1007_s10661_025_13649_8 crossref_primary_10_1111_1365_2745_14403 crossref_primary_10_1016_j_scitotenv_2024_178261 crossref_primary_10_1093_database_baaf018 crossref_primary_10_1080_01431161_2024_2326044 crossref_primary_10_3390_rs17132220 crossref_primary_10_1016_j_rse_2025_114723 crossref_primary_10_3390_rs15153847 crossref_primary_10_3375_2162_4399_45_3_9 |
| Cites_doi | 10.1016/j.rse.2009.01.007 10.1016/j.rse.2010.07.008 10.1080/20964471.2017.1398903 10.1088/1748-9326/aacd1c 10.1111/2041-210X.12545 10.1016/0034-4257(80)90028-0 10.1016/S0034-4257(95)00196-4 10.1016/S0169-5347(03)00070-3 10.3189/S0022143000002859 10.1016/j.rse.2011.08.024 10.1016/S0034-4257(96)00112-5 10.1016/j.rse.2017.03.047 10.1016/j.rse.2015.11.023 10.1080/01431161.2012.748992 10.1109/36.763274 10.3390/rs10091363 10.1016/j.rse.2011.10.028 10.1109/TGRS.2006.872081 10.1126/science.164.3877.262 10.3390/rs8020151 10.3390/rs13020227 10.1016/j.agrformet.2017.02.026 10.1016/j.rse.2021.112640 10.1002/2017GL075826 10.3189/S026030550000046X 10.1016/j.rse.2020.111872 10.2307/2937203 10.1016/j.rse.2009.02.004 10.1029/95WR02718 10.14358/PERS.87.8.533 10.1080/17474230802434187 10.1016/0034-4257(92)90101-O 10.3390/rs12111735 10.1002/2017GL074071 10.1109/TGRS.1984.6499157 10.1146/annurev-environ-012220-010822 10.1038/nature22049 10.1016/j.rse.2015.12.024 10.1111/gcb.15029 10.1016/j.rse.2017.04.012 10.1016/j.rse.2019.02.016 10.1038/s41467-021-22702-2 10.1016/j.rse.2012.02.017 10.1016/j.rse.2011.09.016 10.1016/j.rse.2019.02.015 10.1111/j.1600-0587.2008.05512.x 10.1038/ncomms12558 10.1038/d41586-019-01665-x 10.1016/j.rse.2016.08.022 10.1007/s10661-005-0763-0 10.1016/j.jastp.2016.03.007 10.3390/rs12162665 10.3390/rs61111127 10.2307/3809003 10.1016/0034-4257(84)90004-X 10.1016/j.rse.2018.07.024 10.1016/0034-4257(80)90024-3 10.5194/tc-13-2537-2019 10.1080/01431169108955281 10.3390/geosciences9030135 10.1016/j.rse.2018.09.002 10.3390/rs9090902 10.1109/TGRS.1987.289785 10.1126/science.254.5029.314 10.1016/j.isprsjprs.2016.04.001 10.1088/1748-9326/ac46ec 10.3390/rs12101634 10.1016/j.rse.2015.08.006 10.3390/rs12010134 10.1016/j.rse.2004.05.017 10.1126/science.260.5116.1905 10.1016/j.rse.2022.112904 10.1890/0012-9658(2000)081[2742:FYOROM]2.0.CO;2 10.1016/j.rse.2015.09.001 10.1016/j.rse.2014.01.001 10.1175/1520-0442(1989)002<0710:SB>2.0.CO;2 10.1111/j.1466-8238.2010.00584.x 10.1016/j.rse.2014.01.011 10.1111/gcb.15295 10.1016/j.rse.2011.09.024 10.1080/01431169208904193 10.1109/36.701075 10.1016/j.rse.2015.05.005 10.1016/j.rse.2020.111792 10.1073/pnas.0910275107 10.1016/0098-3004(95)00033-5 10.1016/j.rse.2022.112990 10.5194/tc-12-2211-2018 10.3390/rs11141640 10.1016/j.scitotenv.2020.141035 10.1016/j.rse.2021.112366 10.1016/j.rse.2016.02.052 10.1016/j.rse.2022.113011 10.1016/j.rse.2018.12.027 10.1016/j.rse.2018.06.026 10.1111/j.1751-5823.2005.tb00155.x 10.1016/j.rse.2020.111892 10.1016/j.rse.2017.09.029 10.1038/s41598-018-37265-4 10.1016/j.rse.2021.112517 10.1126/science.246.4928.321.b 10.1016/j.rse.2019.111558 10.3390/rs8080678 10.1016/j.biocon.2006.01.017 10.1016/j.rse.2013.09.012 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 10.3390/s20226631 10.1016/j.foreco.2015.10.042 10.1109/LGRS.2005.857030 10.1080/01431168508948424 10.1016/j.rse.2017.06.019 10.1016/j.rse.2009.03.007 10.1016/j.rse.2011.06.026 10.1016/j.rse.2015.01.022 10.1126/science.1058104 10.1016/j.rse.2014.12.014 10.1016/0034-4257(80)90021-8 10.1016/j.rse.2016.04.008 10.1177/0309133307079054 10.1016/S0034-4257(03)00124-X 10.1029/94JC01398 10.1016/j.rse.2005.12.006 10.1890/130066 10.1038/s43016-021-00429-z 10.1016/j.cosust.2013.06.002 10.1016/j.rse.2021.112780 10.1038/nature20584 10.1126/science.287.5459.1770 10.1007/s10980-014-0034-y 10.1016/j.rse.2015.11.032 10.3390/rs12020224 10.1016/j.rse.2003.10.021 10.1080/01431160110075532 10.1016/S0034-4257(01)00263-2 10.1016/S0959-3780(01)00007-3 10.1016/j.rse.2019.111286 10.1016/j.rse.2015.10.034 10.1016/j.rse.2017.10.030 10.1126/sciadv.abg1620 10.1029/2001JC000823 10.3189/S0260305500015950 10.1364/AO.20.004175 10.3390/rs9111118 10.1016/j.rse.2003.11.005 10.1002/2015GL065564 10.1038/513030a 10.1016/j.rse.2016.01.023 10.1111/j.1467-8306.1975.tb01067.x 10.1080/01431169408954050 10.1109/TGRS.1985.289380 10.3390/rs12172840 10.1016/j.rse.2009.08.017 10.3390/rs61111244 10.1016/S0273-1177(01)00349-0 10.1016/j.rse.2012.01.010 10.1126/science.1244693 10.3390/s18072082 10.1088/1748-9326/2/4/045023 10.1080/01431160903486693 10.1080/01431160500309934 10.5194/tc-16-349-2022 10.1016/j.rse.2018.02.055 10.1016/j.rse.2017.03.035 10.1016/j.rse.2016.11.004 10.3354/cr01499 10.1111/gcb.12838 10.14214/sf.9986 10.1016/j.rse.2019.04.020 10.1016/j.ecolind.2012.09.014 10.1016/j.rse.2019.111356 10.1016/j.rse.2015.09.004 10.1016/0034-4257(87)90053-8 10.1016/j.rse.2021.112862 10.1016/j.rse.2020.112181 10.1080/01431161.2018.1452075 10.1016/S0034-4257(02)00078-0 10.1002/ldr.1084 10.1038/ngeo2785 10.14358/PERS.70.7.829 10.1016/j.rse.2013.01.021 10.1080/01431160600589179 10.1016/j.isprsjprs.2017.06.013 10.1080/07038992.2018.1437719 10.1016/j.rse.2004.03.019 10.1016/j.rse.2019.111214 10.1016/j.rse.2006.09.003 10.1088/1748-9326/9/2/025004 10.1016/j.rse.2015.10.014 10.1016/j.rse.2016.02.060 10.1016/S0034-4257(02)00084-6 10.1016/j.foreco.2020.118370 10.3390/rs9060584 10.1016/j.biocon.2014.11.048 10.1080/10106049.2011.562309 10.1890/03-5258 10.1016/j.rse.2018.06.021 10.1016/j.rse.2014.11.005 10.1016/j.rse.2020.111968 10.1016/j.scitotenv.2020.137409 10.1016/j.rse.2018.11.011 10.1126/science.320.5879.1011a 10.5194/tc-12-521-2018 10.1016/j.rse.2005.11.016 10.3189/S0260305500003001 10.1016/j.rse.2017.06.031 10.1016/j.rse.2014.02.001 10.1080/17538947.2016.1187673 10.1016/j.rse.2011.11.026 10.1109/TGRS.2018.2824828 10.3390/rs61010232 10.1126/science.208.4445.670 10.3390/rs14102418 10.1016/j.rse.2019.111510 10.1080/0143116031000101675 10.1016/j.rse.2020.112165 10.1117/1.JRS.9.096070 10.1016/j.rse.2017.01.008 10.1016/j.rse.2017.03.001 10.1016/j.rse.2020.112175 10.3390/rs11050521 10.1016/S0034-4257(01)00193-6 10.1016/j.rse.2016.01.001 10.1016/j.rse.2011.08.025 10.1016/S0034-4257(00)00169-3 10.1016/j.rse.2016.12.030 10.1016/S0034-4257(97)00140-5 10.1080/20964471.2019.1625528 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rse.2022.113195 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2022_113195 S0034425722003054 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-a1eccb17b841f0006fb89b2d091be319f3542a38217443998349b8a7507e00973 |
| ISICitedReferencesCount | 405 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860480000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sun Sep 28 11:16:58 EDT 2025 Tue Nov 18 22:14:05 EST 2025 Sat Nov 29 07:27:54 EST 2025 Fri Feb 23 02:39:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Climate change Human footprint Satellite Earth observation Land cover Land use Open data |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-a1eccb17b841f0006fb89b2d091be319f3542a38217443998349b8a7507e00973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.rse.2022.113195 |
| PQID | 2718277094 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718277094 crossref_primary_10_1016_j_rse_2022_113195 crossref_citationtrail_10_1016_j_rse_2022_113195 elsevier_sciencedirect_doi_10_1016_j_rse_2022_113195 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Turner, Rondinini, Pettorelli, Mora, Leidner, Szantoi, Buchanan, Dech, Dwyer, Herold, Koh, Leimgruber, Taubenboeck, Wegmann, Wikelski, Woodcock (bb1090) 2015; 182 Ellis (bb0270) 2021; 46 Lawrence, Ripple (bb0685) 2000; 81 Pahlevan, Mangin, Balasubramanian, Smith, Alikas, Arai, Barbosa, Bélanger, Binding, Bresciani, Giardino, Gurlin, Fan, Harmel, Hunter, Ishikaza, Kratzer, Lehmann, Ligi, Ma, Martin-Lauzer, Olmanson, Oppelt, Pan, Peters, Reynaud, Sander de Carvalho, Simis, Spyrakos, Steinmetz, Stelzer, Sterckx, Tormos, Tyler, Vanhellemont, Warren (bb0850) 2021; 258 Townshend (bb1070) 1992; 13 Zalles, Hansen, Potapov, Parker, Stehman, Pickens, Parente, Ferreira, Song, Hernandez-Serna, Kommareddy (bb1260) 2021; 7 Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0260) 2018; 10 Beamish, Raynolds, Epstein, Frost, Macander, Bergstedt, Bartsch, Kruse, Miles, Tanis, Heim, Fuchs, Chabrillat, Shevtsova, Verdonen, Wagner (bb0040) 2020; 246 Wu, Snyder, Vadnais, Arora, Babcock, Stensaas, Doucette, Newman (bb1190) 2019; 231 Hakimdavar, Hubbard, Policelli, Pickens, Hansen, Fatoyinbo, Lagomasino, Pahlevan, Unninayar, Kavvada, Carroll, Smith, Hurwitz, Wood, Schollaert Uz (bb0435) 2020; 12 Steffen, Heinrichs (bb1040) 1994; 99 IPCC (bb0585) 2021 National Research Council (bb0820) 2013 Goward, Williams (bb0410) 1997; 63 Skole, Tucker (bb1020) 1993; 260 GCOS, 2016. The Global Observing System for Climate: Implementation Needs. World Meteorological Organisation. Geneva. GCOS-200. 341p. He, Bradley, Cord, Rocchini, Tuanmu, Schmidtlein, Turner, Wegmann, Pettorelli (bb0470) 2015; 1 Gerace, Kleynhans, Eon, Montanaro (bb0350) 2020; 12 Wulder, White, Loveland, Woodcock, Belward, Cohen, Fosnight, Shaw, Masek, Roy (bb1210) 2016; 185 Doldirina (bb0225) 2015; 6 Franz, Bailey, Kuring, Werdell (bb0295) 2015; 9 Rosenthal, Dozier (bb0915) 1996; 32 OECD (bb0835) 2020 Williams, Miller (bb1160) 1979 Homer, Dewitz, Yang, Jin, Danielson, Xian, Coulston, Herold, Wickham, Megown (bb0545) 2015; 81 . Zhang, Roy (bb1265) 2016; 186 Chen, Long, Liang, He, Zeng, Hao, Hong (bb0155) 2018; 215 Yan, Roy (bb1245) 2021; 252 Arvidson, Gasch, Goward (bb0020) 2001; 78 Li, Roy (bb0700) 2017; 9 Holden, Woodcock (bb0530) 2016; 185 Dolman, Belward, Briggs, Dowell, Eggleston, Hill, Richter, Simmons (bb0230) 2016; 99 Healey, Yang, Cohen, Pierce (bb0475) 2006; 101 Gao, Masek, Schwaller, Hall (bb0320) 2006; 44 Byrne, Crapper, Mayo (bb0105) 1980; 10 MacDonald, Hall (bb0740) 1980; 208 Vogelmann, Gallant, Shi, Zhu (bb1120) 2015; 185 Skakun, Wevers, Brockmann, Doxani, Aleksandrov, Batič, Frantz, Gascon, Gómez-Chova, Hagolle, López-Puigdollers, Louis, Lubej, Mateo-García, Osman, Peressutti, Pflug, Puc, Richter, Roger, Scaramuzza, Vermote, Vesel, Zupanc, Žust (bb1015) 2022; 274 Brown, Tollerud, Barber, Zhou, Dwyer, Vogelmann, Loveland, Woodcock, Stehman, Zhu, Pengra, Smith, Horton, Xian, Auch, Sohl, Sayler, Gallant, Zelenak, Reker, Rover (bb0085) 2020; 238 White, Wulder, Hermosilla, Coops, Hobart (bb1145) 2017; 194 Seehaus, Malz, Sommer, Lippl, Cochachin, Braun (bb0990) 2019; 13 Bullock, Woodcock, Olofsson (bb0090) 2020; 238 Sala, Stuart Chapin, Armesto, Berlow, Bloomfield, Dirzo, Huber-Sanwald, Huenneke, Jackson, Kinzig, Leemans, Lodge, Mooney, Oesterheld, Poff, Sykes, Walker, Walker, Wall (bb0960) 2000; 287 Senay, Friedrichs, Morton, Parrish, Schauer, Khand, Kagone, Boiko, Huntington (bb1000) 2022; 275 Zhu (bb1275) 2017; 130 Gibbs, Ruesch, Achard, Clayton, Holmgren, Ramankutty, Foley (bb0360) 2010; 107 Gascon, Bouzinac, Thépaut, Jung, Francesconi, Louis, Lonjou, Lafrance, Massera, Gaudel-Vacaresse, Languille, Alhammoud, Viallefont, Pflug, Bieniarz, Clerc, Pessiot, Trémas, Cadau, De Bonis, Isola, Martimort, Fernandez (bb0340) 2017; 9 Hu, Yang, Li, Gong, He, Weng, Koch, Thenkabail (bb0550) 2016; 8 Saarinen, White, Wulder, Kangas, Tuominen, Kankare, Holopainen, Hyyppä, Vastaranta (bb0955) 2018; 52 Pesaresi, Ehrlich, Ferri, Florczyk, Freire, Halkia, Julea, Kemper, Soille, Syrris (bb0875) 2016 Odum (bb0830) 1969; 164 Echeverria, Coomes, Salas, Rey-Benayas, Lara, Newton (bb0265) 2006; 130 Yan, Roy (bb1240) 2016; 172 Williams, Ferrigno, Kent, Schoonmaker (bb1165) 1982; 3 Wang, Schaaf, Sun, Kim, Erb, Gao, Román, Yang, Petroy, Taylor, Masek, Morisette, Zhang, Papuga (bb1125) 2017; 59 Roy, Wulder, Loveland, Woodcock, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb0930) 2014; 145 Zhu, Wang, Woodcock (bb1290) 2015; 159 Foody, Palubinskas, Lucas, Curran, Honzak (bb0290) 1996; 55 Cracknell (bb0210) 2001; 28 Huete, Liu, Batchily, Van Leeuwen (bb0565) 1997; 59 Sommer, Zucca, Grainger, Cherlet, Zougmore, Sokona, Hill, Della Peruta, Roehrig, Wang (bb1025) 2011; 22 Venter, Sanderson, Magrach, Allan, Beher, Jones, Possingham, Laurance, Wood, Fekete, Levy, Watson (bb1105) 2016; 7 Hansen, Franklin, Woudsma, Peterson (bb0455) 2001; 77 Leimgruber, Christen, Laborderie (bb0690) 2005; 106 Williams, Ferrigno, Swithinbank, Lucchitta, Seekins (bb1170) 1995; 21 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0245) 2012; 120 Gardner, Fahnestock, Scambos (bb0335) 2022 Markham, Helder (bb0760) 2012; 122 Yuan, Bauer (bb1255) 2007; 106 Zhu, Wulder, Roy, Woodcock, Hansen, Radeloff, Healey, Schaaf, Hostert, Strobl, Pekel, Lymburner, Pahlevan, Scambos (bb1295) 2019; 224 Chen, Lu, Luo, Pokhrel, Deb, Huang, Ran (bb0160) 2018; 204 IPCC (bb0580) 2019 Liu, Linderman, Ouyang, An, Yang, Zhang (bb0715) 2001; 292 Jackson, Chen, Cosh, Li, Anderson, Walthall, Doriaswamy, Hunt (bb0590) 2004; 92 Anderson, Allen, Morse, Kustas (bb0010) 2012; 122 Hermosilla, Wulder, White, Coops, Hobart (bb0495) 2015; 158 Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu, Li, Li, Fu, Liu, Xu, Wang, Cheng, Hu, Yao, Zhang, Zhu, Zhao, Zhang, Zheng, Ji, Zhang, Chen, Yan, Guo, Yu, Wang, Liu, Shi, Zhu, Chen, Yang, Tang, Xu, Giri, Clinton, Zhu, Chen, Chen (bb0380) 2013; 34 Wulder, Coops (bb1195) 2014; 513 Kennedy, Yang, Cohen (bb0635) 2010; 114 Vogelmann, Howard, Yang, Larson, Wylie, VanDriel (bb1115) 2001 Giuliani, Chatenoux, De Bono, Rodila, Richard, Allenbach, Dao, Peduzzi (bb0375) 2017; 1 Roy, Li, Zhang, Yan, Huang, Li (bb0945) 2017; 199 Kennedy, Yang, Braaten, Copass, Antonova, Jordan, Nelson (bb0650) 2015; 166 Comber, Wadsworth, Fisher (bb0175) 2008; 3 Caudill, McArdle (bb0115) 1979 Park, Lee, Jung (bb0860) 2016; 143–144 Barsi, Lee, Kvaran, Markham, Pedelty (bb0035) 2014; 6 Hermosilla, Wulder, White, Coops, Pickell, Bolton (bb0510) 2019; 222 Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Woodcock, Gopal, Schneider, Cooper, Baccini, Gao, Schaaf (bb0305) 2002; 83 Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb0935) 2016; 185 Zhu, Woodcock (bb1285) 2014; 144 Hermosilla, Wulder, White, Coops (bb0515) 2022; 268 Selkowitz, Forster (bb0995) 2016; 117 Storey, Rengarajan, Choate (bb1055) 2019; 11 Kuemmerle, Erb, Meyfroidt, Müller, Verburg, Estel, Haberl, Hostert, Jepsen, Kastner, Levers, Lindner, Plutzar, Verkerk, van der Zanden, Reenberg (bb0670) 2013; 5 Lindquist, D’Annunzio (bb0710) 2016; 8 Frost, Epstein, Walker (bb0315) 2014; 9 Hilker, Wulder, Coops, Linke, McDermid, Masek, Gao, White (bb0520) 2009; 113 Johnson (bb0600) 2019; 232 Pérez-Hoyos, Rembold, Kerdiles, Gallego (bb0870) 2017; 9 Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bb0640) 2012; 122 Moussavi, Pope, Halberstadt, Trusel, Cioffi, Abdalati (bb0810) 2020; 12 Markham, Arvidson, Barsi, Choate, Kaita, Levy, Lubke, Masek (bb0765) 2018 Laraby, Schott (bb0680) 2018; 216 MacDonald, Hall, Erb (bb0745) 1975 Coops, Shang, Wulder, White, Hermosilla (bb0195) 2020; 474 Weise, Höfer, Franke, Guelmami, Simonson, Muro, O’Connor, Strauch, Flink, Eberle, Mino, Thulin, Philipson, van Valkengoed, Truckenbrodt, Zander, Sánchez, Schröder, Thonfeld, Fitoka, Scott, Ling, Schwarz, Kunz, Thürmer, Plasmeijer, Hilarides (bb1130) 2020; 247 Elmes, Levy, Erb, Hall, Scambos, DiGirolamo, Schaaf (bb0275) 2021; 13 Gardner, Moholdt, Scambos, Fahnstock, Ligtenberg, Van Den Broeke, Nilsson (bb0330) 2018; 12 Potapov, Turubanova, Hansen, Tyukavina, Zalles, Khan, Song, Pickens, Shen, Cortez (bb0900) 2022; 3 Fritz, See, McCallum, You, Bun, Moltchanova, Duerauer, Albrecht, Schill, Perger, Havlik, Mosnier, Thornton, Wood-Sichra, Herrero, Becker-Reshef, Justice, Hansen, Gong, Abdel Aziz, Cipriani, Cumani, Cecchi, Conchedda, Ferreira, Gomez, Haffani, Kayitakire, Malanding, Mueller, Newby, Nonguierma, Olusegun, Ortner, Rajak, Rocha, Schepaschenko, Schepaschenko, Terekhov, Tiangwa, Vancutsem, Vintrou, Wenbin, Velde, Dunwoody, Kraxner, Obersteiner (bb0310) 2015; 21 Thenkabail, Ward, Lyon (bb1065) 1994; 15 Chen, Zhao, Li, Yin (bb0145) 2006; 104 Comiso, Steffen (bb0180) 2001; 106 MacDonald (bb0735) 1984; GE-22 Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0560) 2010; 114 Malakar, Hulley, Hook, Laraby, Cook, Schott (bb0755) 2018; 56 Ouma, Tateishi (bb0840) 2006; 27 Duro, Coops, Wulder, Han (bb0250) 2007; 31 Goward (bb0405) 1989; 2 Coppin, Jonckheere, Nackaerts, Muys, Lambin (bb0200) 2004; 25 Weng, Lu, Schubring (bb1140) 2004; 89 Badhwar (bb0025) 1984; 14 Nagendra, Lucas, Honrado, Jongman, Tarantino, Adamo, Mairota (bb0815) 2013; 33 Sanderson, Jaiteh, Levy, Redford, Wannebo, Woolmer (bb0965) 2002; 52 Song, Potapov, Krylov, King, Di Bella, Hudson, Khan, Adusei, Stehman, Hansen (bb1035) 2017; 190 Gross, Helder, Begeman, Leigh, Kaewmanee, Shah (bb0425) 2022; 14 Xian, Homer, Fry (bb1225) 2009; 113 White, Hermosilla, Wulder, Coops (bb1155) 2022; 271 Zhu, Woodcock (bb1280) 2012; 118 Deines, Kendall, Hyndman (bb0220) 2017; 44 Song, Woodcock, Seto, Lenney, Macomber (bb1030) 2001; 75 Wulder, Hilker, White, Coops, Masek, Pflugmacher, Crevier (bb1205) 2015; 170 Masek, Wulder, Markham, McCorkel, Crawford, Storey, Jenstrom (bb0790) 2020; 248 Kingslake, Ely, Das, Bell (bb0665) 2017; 544 Schneibel, Stellmes, Röder, Frantz, Kowalski, Haß, Hill (bb0975) 2017; 195 Yang, Anderson, Gao, Wo Schneider (10.1016/j.rse.2022.113195_bb0980) 1985; 6 King (10.1016/j.rse.2022.113195_bb0660) 2017; 195 Seehaus (10.1016/j.rse.2022.113195_bb0990) 2019; 13 Seto (10.1016/j.rse.2022.113195_bb1005) 2002; 23 Hansen (10.1016/j.rse.2022.113195_bb0450) 2012; 122 Chander (10.1016/j.rse.2022.113195_bb0130) 2009; 113 Hall (10.1016/j.rse.2022.113195_bb0440) 1987; GE-25 Markham (10.1016/j.rse.2022.113195_bb0765) 2018 White (10.1016/j.rse.2022.113195_bb1150) 2019; 569 Kennedy (10.1016/j.rse.2022.113195_bb0650) 2015; 166 Woodcock (10.1016/j.rse.2022.113195_bb1180) 2008; 320 Gross (10.1016/j.rse.2022.113195_bb0425) 2022; 14 Anderson (10.1016/j.rse.2022.113195_bb0010) 2012; 122 Coops (10.1016/j.rse.2022.113195_bb0195) 2020; 474 Duro (10.1016/j.rse.2022.113195_bb0255) 2014; 144 Fraser (10.1016/j.rse.2022.113195_bb0300) 1985; GE-23 Dwyer (10.1016/j.rse.2022.113195_bb0260) 2018; 10 Giuliani (10.1016/j.rse.2022.113195_bb0375) 2017; 1 Hu (10.1016/j.rse.2022.113195_bb0555) 2020; 746 OECD (10.1016/j.rse.2022.113195_bb0835) Pahlevan (10.1016/j.rse.2022.113195_bb0850) 2021; 258 Pekel (10.1016/j.rse.2022.113195_bb0865) 2016; 540 Jacobs (10.1016/j.rse.2022.113195_bb0595) 1997; 43 Carfagna (10.1016/j.rse.2022.113195_bb0110) 2006; 73 DeFries (10.1016/j.rse.2022.113195_bb0215) 2005; 15 Ouma (10.1016/j.rse.2022.113195_bb0840) 2006; 27 Friedl (10.1016/j.rse.2022.113195_bb0305) 2002; 83 Welch (10.1016/j.rse.2022.113195_bb1135) 1975; 65 Park (10.1016/j.rse.2022.113195_bb0860) 2016; 143–144 Brown (10.1016/j.rse.2022.113195_bb0085) 2020; 238 Echeverria (10.1016/j.rse.2022.113195_bb0265) 2006; 130 Woodcock (10.1016/j.rse.2022.113195_bb1185) 2020; 238 Jackson (10.1016/j.rse.2022.113195_bb0590) 2004; 92 Liu (10.1016/j.rse.2022.113195_bb0725) 2017; 237–238 Thenkabail (10.1016/j.rse.2022.113195_bb1065) 1994; 15 Zhu (10.1016/j.rse.2022.113195_bb1295) 2019; 224 Scambos (10.1016/j.rse.2022.113195_bb0970) 1992; 42 Yamazaki (10.1016/j.rse.2022.113195_bb1235) 2015; 171 Ju (10.1016/j.rse.2022.113195_bb0615) 2016; 176 Corbane (10.1016/j.rse.2022.113195_bb0205) 2019; 3 10.1016/j.rse.2022.113195_bb0345 Hermosilla (10.1016/j.rse.2022.113195_bb0500) 2016; 9 Hermosilla (10.1016/j.rse.2022.113195_bb0505) 2018; 44 Homer (10.1016/j.rse.2022.113195_bb0545) 2015; 81 Arvidson (10.1016/j.rse.2022.113195_bb0020) 2001; 78 Gardner (10.1016/j.rse.2022.113195_bb0335) 2022 Skole (10.1016/j.rse.2022.113195_bb1020) 1993; 260 Gong (10.1016/j.rse.2022.113195_bb0380) 2013; 34 Giri (10.1016/j.rse.2022.113195_bb0365) 2011; 20 Marshall (10.1016/j.rse.2022.113195_bb0780) 1989; 246 IPCC (10.1016/j.rse.2022.113195_bb0580) Mack (10.1016/j.rse.2022.113195_bb0750) 1990 Healey (10.1016/j.rse.2022.113195_bb0480) 2018; 204 Huete (10.1016/j.rse.2022.113195_bb0565) 1997; 59 Elmes (10.1016/j.rse.2022.113195_bb0275) 2021; 13 Dolman (10.1016/j.rse.2022.113195_bb0230) 2016; 99 Tulbure (10.1016/j.rse.2022.113195_bb1080) 2021; 1–12 Pettorelli (10.1016/j.rse.2022.113195_bb0880) 2016; 7 Doldirina (10.1016/j.rse.2022.113195_bb0225) 2015; 6 Braaten (10.1016/j.rse.2022.113195_bb0080) 2015; 169 Cracknell (10.1016/j.rse.2022.113195_bb0210) 2001; 28 Haack (10.1016/j.rse.2022.113195_bb0430) 1987; 21 McCorkel (10.1016/j.rse.2022.113195_bb0800) 2019 Qiu (10.1016/j.rse.2022.113195_bb0905) 2021; 4 Pesaresi (10.1016/j.rse.2022.113195_bb0875) 2016 MacDonald (10.1016/j.rse.2022.113195_bb0745) Malakar (10.1016/j.rse.2022.113195_bb0755) 2018; 56 Comber (10.1016/j.rse.2022.113195_bb0175) 2008; 3 Vogelmann (10.1016/j.rse.2022.113195_bb1120) 2015; 185 Homer (10.1016/j.rse.2022.113195_bb0540) 2004; 70 Gardner (10.1016/j.rse.2022.113195_bb0330) 2018; 12 Gibbs (10.1016/j.rse.2022.113195_bb0360) 2010; 107 Chakhar (10.1016/j.rse.2022.113195_bb0125) 2020; 12 Buma (10.1016/j.rse.2022.113195_bb0100) 2018; 18 Goward (10.1016/j.rse.2022.113195_bb0420) 2021; 87 Senay (10.1016/j.rse.2022.113195_bb1000) 2022; 275 Song (10.1016/j.rse.2022.113195_bb1035) 2017; 190 St-Louis (10.1016/j.rse.2022.113195_bb1045) 2009; 32 Kern (10.1016/j.rse.2022.113195_bb0655) 2022; 16 Melton (10.1016/j.rse.2022.113195_bb0805) 2021; 1–24 Gibbs (10.1016/j.rse.2022.113195_bb0355) 2007; 2 Lawrence (10.1016/j.rse.2022.113195_bb0685) 2000; 81 Hakimdavar (10.1016/j.rse.2022.113195_bb0435) 2020; 12 Drusch (10.1016/j.rse.2022.113195_bb0245) 2012; 120 Chen (10.1016/j.rse.2022.113195_bb0145) 2006; 104 Roy (10.1016/j.rse.2022.113195_bb0935) 2016; 185 Weng (10.1016/j.rse.2022.113195_bb1140) 2004; 89 Williams (10.1016/j.rse.2022.113195_bb1160) 1979 Joughin (10.1016/j.rse.2022.113195_bb0610) 2018; 12 Coppin (10.1016/j.rse.2022.113195_bb0200) 2004; 25 Pahlevan (10.1016/j.rse.2022.113195_bb0845) 2017; 190 Chen (10.1016/j.rse.2022.113195_bb0155) 2018; 215 Farwell (10.1016/j.rse.2022.113195_bb0285) 2021; 253 Liu (10.1016/j.rse.2022.113195_bb0720) 2014; 29 Chen (10.1016/j.rse.2022.113195_bb0150) 2014 Weise (10.1016/j.rse.2022.113195_bb1130) 2020; 247 Hall (10.1016/j.rse.2022.113195_bb0445) 1991; 72 Barsi (10.1016/j.rse.2022.113195_bb0035) 2014; 6 Frost (10.1016/j.rse.2022.113195_bb0315) 2014; 9 Caudill (10.1016/j.rse.2022.113195_bb0115) 1979 Duro (10.1016/j.rse.2022.113195_bb0250) 2007; 31 Goward (10.1016/j.rse.2022.113195_bb0405) 1989; 2 Kennedy (10.1016/j.rse.2022.113195_bb0645) 2014; 12 Sieber (10.1016/j.rse.2022.113195_bb1010) 2013; 133 Hermosilla (10.1016/j.rse.2022.113195_bb0515) 2022; 268 Zhu (10.1016/j.rse.2022.113195_bb1290) 2015; 159 Fahnestock (10.1016/j.rse.2022.113195_bb0280) 2016; 185 Turner (10.1016/j.rse.2022.113195_bb1090) 2015; 182 Gitelson (10.1016/j.rse.2022.113195_bb0370) 2012; 121 UNESG (10.1016/j.rse.2022.113195_bb1100) 2020 Li (10.1016/j.rse.2022.113195_bb0695) 2020; 20 Scott (10.1016/j.rse.2022.113195_bb0985) 1993; 123 Venter (10.1016/j.rse.2022.113195_bb1105) 2016; 7 Badhwar (10.1016/j.rse.2022.113195_bb0025) 1984; 14 Healey (10.1016/j.rse.2022.113195_bb0475) 2006; 101 Comiso (10.1016/j.rse.2022.113195_bb0180) 2001; 106 Hermosilla (10.1016/j.rse.2022.113195_bb0490) 2015; 170 Zhu (10.1016/j.rse.2022.113195_bb1285) 2014; 144 Gorelick (10.1016/j.rse.2022.113195_bb0400) 2017; 202 Fritz (10.1016/j.rse.2022.113195_bb0310) 2015; 21 Painter (10.1016/j.rse.2022.113195_bb0855) 2018; 45 White (10.1016/j.rse.2022.113195_bb1145) 2017; 194 Townshend (10.1016/j.rse.2022.113195_bb1070) 1992; 13 Potapov (10.1016/j.rse.2022.113195_bb0900) 2022; 3 Wulder (10.1016/j.rse.2022.113195_bb1200) 2012; 122 Sommer (10.1016/j.rse.2022.113195_bb1025) 2011; 22 Goward (10.1016/j.rse.2022.113195_bb0415) 2017 Claverie (10.1016/j.rse.2022.113195_bb0165) 2018; 219 Doraiswamy (10.1016/j.rse.2022.113195_bb0235) 2004; 92 Leimgruber (10.1016/j.rse.2022.113195_bb0690) 2005; 106 Zhu (10.1016/j.rse.2022.113195_bb1275) 2017; 130 Xian (10.1016/j.rse.2022.113195_bb1225) 2009; 113 Masek (10.1016/j.rse.2022.113195_bb0790) 2020; 248 Hermosilla (10.1016/j.rse.2022.113195_bb0510) 2019; 222 Liu (10.1016/j.rse.2022.113195_bb0730) 2018; 209 Turner (10.1016/j.rse.2022.113195_bb1085) 2003; 18 Lambin (10.1016/j.rse.2022.113195_bb0675) 2001; 11 National Research Council (10.1016/j.rse.2022.113195_bb0820) 2013 Pitts (10.1016/j.rse.2022.113195_bb0890) 1980; 10 Kennedy (10.1016/j.rse.2022.113195_bb0635) 2010; 114 Liu (10.1016/j.rse.2022.113195_bb0715) 2001; 292 Winkler (10.1016/j.rse.2022.113195_bb1175) 2021; 12 Saarinen (10.1016/j.rse.2022.113195_bb0955) 2018; 52 Bullock (10.1016/j.rse.2022.113195_bb0095) 2020; 26 IPCC (10.1016/j.rse.2022.113195_bb0585) Matasci (10.1016/j.rse.2022.113195_bb0795) 2018; 216 Kingslake (10.1016/j.rse.2022.113195_bb0665) 2017; 544 Sanderson (10.1016/j.rse.2022.113195_bb0965) 2002; 52 Wulder (10.1016/j.rse.2022.113195_bb1220) 2019; 225 Cohen (10.1016/j.rse.2022.113195_bb0170) 2016; 360 Hoffman (10.1016/j.rse.2022.113195_bb0525) 2019; 11 Yan (10.1016/j.rse.2022.113195_bb1240) 2016; 172 Wulder (10.1016/j.rse.2022.113195_bb1195) 2014; 513 Roy (10.1016/j.rse.2022.113195_bb0920) 2010; 1 Kuemmerle (10.1016/j.rse.2022.113195_bb0670) 2013; 5 He (10.1016/j.rse.2022.113195_bb0470) 2015; 1 Tang (10.1016/j.rse.2022.113195_bb1060) 2020; 720 Pickens (10.1016/j.rse.2022.113195_bb0885) 2020; 243 Trefois (10.1016/j.rse.2022.113195_bb1075) 1995 Deines (10.1016/j.rse.2022.113195_bb0220) 2017; 44 Roy (10.1016/j.rse.2022.113195_bb0940) 2016; 176 Yuan (10.1016/j.rse.2022.113195_bb1255) 2007; 106 Skakun (10.1016/j.rse.2022.113195_bb1015) 2022; 274 Rudorff (10.1016/j.rse.2022.113195_bb0950) 1991; 12 Vermote (10.1016/j.rse.2022.113195_bb1110) 2015; 185 Hansen (10.1016/j.rse.2022.113195_bb0465) 2022; 17 Zhang (10.1016/j.rse.2022.113195_bb1265) 2016; 186 Laraby (10.1016/j.rse.2022.113195_bb0680) 2018; 216 Vogelmann (10.1016/j.rse.2022.113195_bb1115) 2001 Zhu (10.1016/j.rse.2022.113195_bb1280) 2012; 118 Odum (10.1016/j.rse.2022.113195_bb0830) 1969; 164 Bullock (10.1016/j.rse.2022.113195_bb0090) 2020; 238 Bleyhl (10.1016/j.rse.2022.113195_bb0055) 2017; 193 Byrne (10.1016/j.rse.2022.113195_bb0105) 1980; 10 Nagendra (10.1016/j.rse.2022.113195_bb0815) 2013; 33 CBD (10.1016/j.rse.2022.113195_bb0120) Hansen (10.1016/j.rse.2022.113195_bb0455) 2001; 77 Anderson (10.1016/j.rse.2022.113195_bb0005) 2004; 92 Gong (10.1016/j.rse.2022.113195_bb0385) 2020; 236 Song (10.1016/j.rse.2022.113195_bb1030) 2001; 75 Kennedy (10.1016/j.rse.2022.113195_bb0640) 2012; 122 Li (10.1016/j.rse.2022.113195_bb0705) 1998; 63 Ellis (10.1016/j.rse.2022.113195_bb0270) 2021; 46 Gascon (10.1016/j.rse.2022.113195_bb0340) 2017; 9 Williams (10.1016/j.rse.2022.113195_bb1165) 1982; 3 Schneibel (10.1016/j.rse.2022.113195_bb0975) 2017; 195 Yan (10.1016/j.rse.2022.113195_bb1245) 2021; 252 Boryan (10.1016/j.rse.2022.113195_bb0070) 2011; 26 Hulley (10.1016/j.rse.2022.113195_bb0575) 2015; 42 Chen (10.1016/j.rse.2022.113195_bb0160) 2018; 204 Markham (10.1016/j.rse.2022.113195_bb0760) 2012; 122 Nunez (10.1016/j.rse.2022.113195_bb0825) 1999; 37 Li (10.1016/j.rse.2022.113195_bb0700) 2017; 9 Xu (10.1016/j.rse.2022.113195_bb1230) 2006; 27 Roy (10.1016/j.rse.2022.113195_bb0925) 2014; 140 Beamish (10.1016/j.rse.2022.113195_bb0040) 2020; 246 Homer (10.1016/j.rse.2022.113195_bb0535) 1993; 57 Wu (10.1016/j.rse.2022.113195_bb1190) 2019; 231 Rosenthal (10.1016/j.rse.2022.113195_bb0915) 1996; 32 Kauth (10.1016/j.rse.2022.113195_bb0630) 1976 Sala (10.1016/j.rse.2022.1 |
| References_xml | – volume: 21 start-page: 965 year: 1995 end-page: 969 ident: bb0015 article-title: Mapping micro-urban heat islands using Landsat TM and a GIS publication-title: Comput. Geosci. – volume: 31 start-page: 235 year: 2007 end-page: 260 ident: bb0250 article-title: Development of a large area biodiversity monitoring system driven by remote sensing publication-title: Prog. Phys. Geogr. – volume: 22 start-page: 184 year: 2011 end-page: 197 ident: bb1025 article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales publication-title: L. Degrad. Dev. – volume: 63 start-page: 887 year: 1997 end-page: 900 ident: bb0410 article-title: Landsat and earth systems science: development of terrestrial monitoring publication-title: Photogramm. Eng. Remote. Sens. – volume: 74 start-page: 201 year: 2018 end-page: 216 ident: bb0030 article-title: Half-century perspectives on North American spring snowline and snow cover associations with the Pacific-North American teleconnection pattern publication-title: Clim. Res. – volume: 12 start-page: 2840 year: 2020 ident: bb0485 article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth engine reduces landsat forest height signal saturation publication-title: Remote Sens. – volume: 222 start-page: 65 year: 2019 end-page: 77 ident: bb0510 article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada publication-title: Remote Sens. Environ. – volume: 70 start-page: 829 year: 2004 end-page: 840 ident: bb0540 article-title: Development of a 2001 national land-cover database for the United States publication-title: Photogramm. Eng. Remote. Sens. – volume: 237–238 start-page: 311 year: 2017 end-page: 325 ident: bb0725 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. – volume: 133 start-page: 38 year: 2013 end-page: 51 ident: bb1010 article-title: Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia publication-title: Remote Sens. Environ. – volume: 13 start-page: 1319 year: 1992 end-page: 1328 ident: bb1070 article-title: Land cover publication-title: Int. J. Remote Sens. – volume: 15 start-page: 49 year: 1994 end-page: 61 ident: bb1065 article-title: Landsat-5 thematic mapper models of soybean and corn crop characteristics publication-title: Int. J. Remote Sens. – year: 1975 ident: bb0745 article-title: “The Use of LANDSAT Data in a Large Area Crop Inventory Experiment (LACIE)” In LARS Symposia, Paper 46 – volume: 55 start-page: 205 year: 1996 end-page: 216 ident: bb0290 article-title: Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data publication-title: Remote Sens. Environ. – volume: 190 start-page: 289 year: 2017 end-page: 301 ident: bb0845 article-title: Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements publication-title: Remote Sens. Environ. – volume: 232 year: 2019 ident: bb0600 article-title: Using the Landsat archive to map crop cover history across the United States publication-title: Remote Sens. Environ. – volume: 246 start-page: 1 year: 1989 end-page: 4 ident: bb0780 article-title: Landsat: Cliff-hanging, again publication-title: Science (80-.) – volume: 52 start-page: 891 year: 2002 end-page: 904 ident: bb0965 article-title: The human footprint and the last of the wild publication-title: Bioscience – volume: 3 start-page: 19 year: 2022 end-page: 28 ident: bb0900 article-title: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century publication-title: Nat. Food – volume: 12 start-page: 2211 year: 2018 end-page: 2227 ident: bb0610 article-title: Greenland Ice Mapping Project: Ice flow velocity variation at sub-monthly to decadal timescales publication-title: Cryosphere – volume: 39 start-page: 4254 year: 2018 end-page: 4284 ident: bb1215 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. – volume: GE-23 start-page: 625 year: 1985 end-page: 633 ident: bb0300 article-title: The relative importance of aerosol scattering and absorption in remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 123 start-page: 3 year: 1993 end-page: 41 ident: bb0985 article-title: Gap analysis: a geographic approach to protection of biological diversity publication-title: Wildl. Monogr. – volume: 12 start-page: 1634 year: 2020 ident: bb0435 article-title: Monitoring water-related ecosystems with Earth observation data in support of sustainable development goal (SDG) 6 reporting publication-title: Remote Sens. – volume: 107 start-page: 16732 year: 2010 end-page: 16737 ident: bb0360 article-title: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s publication-title: Proc. Natl. Acad. Sci. – volume: 1–24 year: 2021 ident: bb0805 article-title: OpenET: filling a critical data gap in water management for the Western United States publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 89 start-page: 467 year: 2004 end-page: 483 ident: bb1140 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. – volume: 9 start-page: 97 year: 1987 end-page: 103 ident: bb0240 article-title: Snow mapping and classification from Landsat thematic mapper data publication-title: Ann. Glaciol. – volume: 209 start-page: 227 year: 2018 end-page: 239 ident: bb0730 article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform publication-title: Remote Sens. Environ. – volume: 3 start-page: 321 year: 1982 end-page: 326 ident: bb1165 article-title: Landsat images and mosaics of antarctica for mapping and glaciological studies publication-title: Ann. Glaciol. – volume: 13 start-page: 2537 year: 2019 end-page: 2556 ident: bb0990 article-title: Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations publication-title: Cryosphere – volume: 18 start-page: 2082 year: 2018 ident: bb0100 article-title: Recent surface water extent of Lake Chad from multispectral sensors and GRACE publication-title: Sensors – volume: 236 year: 2020 ident: bb0385 article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 publication-title: Remote Sens. Environ. – volume: 262 year: 2021 ident: bb0140 article-title: Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference publication-title: Remote Sens. Environ. – volume: 540 start-page: 418 year: 2016 end-page: 422 ident: bb0865 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – year: 2021 ident: bb0585 article-title: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte [Lead editor] – volume: 23 start-page: 1985 year: 2002 end-page: 2004 ident: bb1005 article-title: Monitoring land-use change in the Pearl River Delta using Landsat TM publication-title: Int. J. Remote Sens. – volume: 106 start-page: 375 year: 2007 end-page: 386 ident: bb1255 article-title: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery publication-title: Remote Sens. Environ. – volume: 122 start-page: 66 year: 2012 end-page: 74 ident: bb0450 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. – year: 2016 ident: bb0875 article-title: Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. EUR 27741 – volume: 20 start-page: 6631 year: 2020 ident: bb0695 article-title: Global revisit interval analysis of Landsat-8 -9 and Sentinel-2A -2B data for terrestrial monitoring publication-title: Sensors – volume: 185 start-page: 57 year: 2016 end-page: 70 ident: bb0935 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. – volume: 12 start-page: 134 year: 2020 ident: bb0810 article-title: Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: towards continental generation of lake volumes publication-title: Remote Sens. – volume: 185 start-page: 84 year: 2016 end-page: 94 ident: bb0280 article-title: Rapid large-area mapping of ice flow using Landsat 8 publication-title: Remote Sens. Environ. – volume: 145 start-page: 154 year: 2014 end-page: 172 ident: bb0930 article-title: Landsat-8: Science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. – volume: 83 start-page: 3 year: 2002 end-page: 15 ident: bb0625 article-title: An overview of MODIS Land data processing and product status publication-title: Remote Sens. Environ. – volume: 27 start-page: 3025 year: 2006 end-page: 3033 ident: bb1230 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. – volume: 86 start-page: 458 year: 2003 end-page: 469 ident: bb0775 article-title: Comparison of aerial video and Landsat 7 data over ponded sea ice publication-title: Remote Sens. Environ. – volume: 274 year: 2022 ident: bb1015 article-title: Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2 publication-title: Remote Sens. Environ. – volume: 14 start-page: 15 year: 1984 end-page: 29 ident: bb0025 article-title: Automatic corn-soybean classification using landsat MSS data. I. Near-harvest crop proportion estimation publication-title: Remote Sens. Environ. – volume: 320 start-page: 1011 year: 2008 ident: bb1180 article-title: Free access to Landsat imagery publication-title: Science (80-.) – volume: 77 start-page: 50 year: 2001 end-page: 65 ident: bb0455 article-title: Caribou habitat mapping and fragmentation analysis using Landsat MSS, TM, and GIS data in the North Columbia Mountains, British Columbia, Canada publication-title: Remote Sens. Environ. – volume: 169 start-page: 128 year: 2015 end-page: 138 ident: bb0080 article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems publication-title: Remote Sens. Environ. – volume: 57 start-page: 295 year: 1991 end-page: 303 ident: bb0135 article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic publication-title: Photogramm. Eng. Remote. Sens. – volume: 12 start-page: 521 year: 2018 end-page: 547 ident: bb0330 article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years publication-title: Cryosphere – volume: 99 start-page: 646 year: 2016 ident: bb0230 article-title: A post-Paris look at climate observations publication-title: Nat. Geosci. – volume: 10 start-page: 175 year: 1980 end-page: 184 ident: bb0105 article-title: Monitoring land-cover change by principal component analysis of multitemporal landsat data publication-title: Remote Sens. Environ. – volume: 104 start-page: 133 year: 2006 end-page: 146 ident: bb0145 article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes publication-title: Remote Sens. Environ. – volume: 12 start-page: 1735 year: 2020 ident: bb0125 article-title: Assessing the accuracy of multiple classification algorithms for crop classification using Landsat-8 and Sentinel-2 data publication-title: Remote Sens. – volume: 9 start-page: 1323 year: 2019 ident: bb0065 article-title: Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015) publication-title: Sci. Rep. – year: 1979 ident: bb0115 article-title: Research Evaluation Considerations for AgRISTARS – volume: 81 start-page: 2742 year: 2000 end-page: 2752 ident: bb0685 article-title: Fifteen years of revegetation of Mount St. Helens: a landscape-scale analysis publication-title: Ecology – volume: 8 start-page: 678 year: 2016 ident: bb0710 article-title: Assessing global forest land-use change by object-based image analysis publication-title: Remote Sens. – volume: 204 start-page: 197 year: 2018 end-page: 211 ident: bb0160 article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data publication-title: Remote Sens. Environ. – volume: 270 year: 2022 ident: bb0050 article-title: Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery publication-title: Remote Sens. Environ. – volume: 170 start-page: 121 year: 2015 end-page: 132 ident: bb0490 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. – volume: 238 year: 2020 ident: bb0090 article-title: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis publication-title: Remote Sens. Environ. – volume: 21 start-page: 1980 year: 2015 end-page: 1992 ident: bb0310 article-title: Mapping global cropland and field size publication-title: Glob. Chang. Biol. – year: 2019 ident: bb0580 article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, P.R. Shukla [Lead editor] – volume: 188 start-page: 9 year: 2017 end-page: 25 ident: bb0325 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. – volume: GE-22 start-page: 473 year: 1984 end-page: 482 ident: bb0735 article-title: A summary of the history of the development of automated remote sensing for agricultural applications publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 253 year: 2021 ident: bb0285 article-title: Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness publication-title: Remote Sens. Environ. – volume: 172 start-page: 67 year: 2016 end-page: 86 ident: bb1240 article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data publication-title: Remote Sens. Environ. – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0165 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 248 year: 2020 ident: bb0790 article-title: Landsat 9: empowering open science and applications through continuity publication-title: Remote Sens. Environ. – year: 1992 ident: bb0120 article-title: The United Nations Convention on Biological Diversity. Reprinted in International Legal Materials 31 (5 June 1992): 818. (Entered into force 29 December 1993) – volume: 9 start-page: 1118 year: 2017 ident: bb0870 article-title: Comparison of global land cover datasets for cropland monitoring publication-title: Remote Sens. – volume: 92 start-page: 447 year: 2004 end-page: 464 ident: bb0005 article-title: Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery publication-title: Remote Sens. Environ. – volume: 37 start-page: 1204 year: 1999 end-page: 1211 ident: bb0825 article-title: Multiresolution-based image fusion with additive wavelet decomposition publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 6266 year: 2020 end-page: 6275 ident: bb0910 article-title: Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore publication-title: Glob. Chang. Biol. – volume: 113 start-page: 1613 year: 2009 end-page: 1627 ident: bb0520 article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS publication-title: Remote Sens. Environ. – volume: 59 start-page: 440 year: 1997 end-page: 451 ident: bb0565 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. – volume: 12 start-page: 2665 year: 2020 ident: bb0045 article-title: Estimates of conservation tillage practices using landsat archive publication-title: Remote Sens. – volume: 268 year: 2022 ident: bb0515 article-title: Land cover classification in an era of big and open data: optimizing localized implementation and training data selection to improve mapping outcomes publication-title: Remote Sens. Environ. – volume: 231 year: 2019 ident: bb1190 article-title: User needs for future Landsat missions publication-title: Remote Sens. Environ. – volume: 73 start-page: 389 year: 2006 end-page: 404 ident: bb0110 article-title: Using remote sensing for agricultural statistics publication-title: Int. Stat. Rev. – volume: 29 start-page: 763 year: 2014 end-page: 771 ident: bb0720 article-title: How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion publication-title: Landsc. Ecol. – volume: 2 year: 2007 ident: bb0355 article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality publication-title: Environ. Res. Lett. – volume: 12 start-page: 2477 year: 1991 end-page: 2484 ident: bb0950 article-title: Wheat yield estimation at the farm level using tm landsat and agrometeorological data publication-title: Int. J. Remote Sens. – volume: 7 year: 2021 ident: bb1260 article-title: Rapid expansion of human impact on natural land in South America since 1985 publication-title: Sci. Adv. – volume: 17 year: 2022 ident: bb0465 article-title: Global land use extent and dispersion within natural land cover using Landsat data publication-title: Environ. Res. Lett. – volume: 44 start-page: 2207 year: 2006 end-page: 2218 ident: bb0320 article-title: On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 216 start-page: 697 year: 2018 end-page: 714 ident: bb0795 article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots publication-title: Remote Sens. Environ. – volume: 43 start-page: 98 year: 1997 end-page: 102 ident: bb0595 article-title: Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM publication-title: J. Glaciol. – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0785 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 76 start-page: 1201 year: 2010 end-page: 1205 ident: bb0605 article-title: The 2009 cropland data layer publication-title: Photogramm. Eng. Remote. Sens. – volume: 33 start-page: 45 year: 2013 end-page: 59 ident: bb0815 article-title: Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats publication-title: Ecol. Indic. – start-page: 650 year: 2001 end-page: 662 ident: bb1115 article-title: Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources publication-title: Photogramm. Eng. Remote. Sens. – volume: 569 start-page: 630 year: 2019 ident: bb1150 article-title: Satellite time series can guide forest restoration publication-title: Nature – volume: 513 start-page: 30 year: 2014 end-page: 31 ident: bb1195 article-title: Satellites: Make Earth observations open access publication-title: Nature – volume: 215 start-page: 284 year: 2018 end-page: 299 ident: bb0155 article-title: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data publication-title: Remote Sens. Environ. – volume: 75 start-page: 230 year: 2001 end-page: 244 ident: bb1030 article-title: Classification and change detection using Landsat TM data publication-title: Remote Sens. Environ. – volume: 9 start-page: 1035 year: 2016 end-page: 1054 ident: bb0500 article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring publication-title: Int. J. Digit. Earth – volume: 193 start-page: 193 year: 2017 end-page: 203 ident: bb0055 article-title: Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites publication-title: Remote Sens. Environ. – volume: 3 start-page: 140 year: 2019 end-page: 169 ident: bb0205 article-title: Automated global delineation of human settlements from 40 years of Landsat satellite data archives publication-title: Big Earth Data – volume: 5 start-page: 484 year: 2013 end-page: 493 ident: bb0670 article-title: Challenges and opportunities in mapping land use intensity globally publication-title: Curr. Opin. Environ. Sustain. – volume: 287 start-page: 1770 year: 2000 end-page: 1774 ident: bb0960 article-title: Global Biodiversity Scenarios for the Year 2100 publication-title: Science (80-.) – volume: 121 start-page: 404 year: 2012 end-page: 414 ident: bb0370 article-title: Remote estimation of crop gross primary production with Landsat data publication-title: Remote Sens. Environ. – year: 2022 ident: bb0335 article-title: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1. [WWW Document] – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: bb1290 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. – volume: 10 start-page: 1363 year: 2018 ident: bb0260 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens. – volume: 228 start-page: 164 year: 2019 end-page: 182 ident: bb1300 article-title: Understanding an urbanizing planet: Strategic directions for remote sensing publication-title: Remote Sens. Environ. – volume: 161 start-page: 27 year: 2015 end-page: 42 ident: bb0075 article-title: MODIS–Landsat fusion for large area 30 m burned area mapping publication-title: Remote Sens. Environ. – volume: 158 start-page: 220 year: 2015 end-page: 234 ident: bb0495 article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites publication-title: Remote Sens. Environ. – volume: 1–12 year: 2021 ident: bb1080 article-title: Regional matters: On the usefulness of regional land-cover datasets in times of global change publication-title: Remote Sens. Ecol. Conserv. – volume: 113 start-page: 1133 year: 2009 end-page: 1147 ident: bb1225 article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods publication-title: Remote Sens. Environ. – volume: 63 start-page: 258 year: 1998 end-page: 264 ident: bb0705 article-title: Measurements of Glacier variation in the Tibetan plateau using Landsat data publication-title: Remote Sens. Environ. – start-page: 32 year: 1981 end-page: 40 ident: bb0060 article-title: Landsat observations of Mount St. Helens publication-title: Electro-Optical Instrumentation for Resources Evaluation – volume: 171 start-page: 337 year: 2015 end-page: 351 ident: bb1235 article-title: Development of a global ~90m water body map using multi-temporal Landsat images publication-title: Remote Sens. Environ. – volume: 185 start-page: 271 year: 2016 end-page: 283 ident: bb1210 article-title: The global Landsat archive: Status, consolidation, and direction publication-title: Remote Sens. Environ. – volume: 238 year: 2020 ident: bb0085 article-title: Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach publication-title: Remote Sens. Environ. – reference: . – volume: 13 start-page: 227 year: 2021 ident: bb0275 article-title: Consequences of the 2019 greenland ice sheet melt episode on Albedo publication-title: Remote Sens. – volume: 101 start-page: 115 year: 2006 end-page: 126 ident: bb0475 article-title: Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data publication-title: Remote Sens. Environ. – volume: 6 start-page: 11244 year: 2014 end-page: 11266 ident: bb0190 article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive publication-title: Remote Sens. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0400 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 140 start-page: 433 year: 2014 end-page: 449 ident: bb0925 article-title: Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction publication-title: Remote Sens. Environ. – volume: 27 start-page: 3153 year: 2006 end-page: 3181 ident: bb0840 article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. – volume: 185 start-page: 46 year: 2015 end-page: 56 ident: bb1110 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 195 start-page: 13 year: 2017 end-page: 29 ident: bb0660 article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean publication-title: Remote Sens. Environ. – volume: 10 start-page: 201 year: 1980 end-page: 213 ident: bb0890 article-title: Field size, length, and width distributions based on LACIE ground truth data publication-title: Remote Sens. Environ. – year: 1979 ident: bb1160 article-title: Monitoring Forest Canopy Alteration Around the World with Digital Analysis of Landsat Data – volume: 243 year: 2020 ident: bb0885 article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series publication-title: Remote Sens. Environ. – volume: 199 start-page: 25 year: 2017 end-page: 38 ident: bb0945 article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. – volume: 26 start-page: 341 year: 2011 end-page: 358 ident: bb0070 article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program publication-title: Geocarto Int. – volume: GE-25 start-page: 93 year: 1987 end-page: 103 ident: bb0440 article-title: Signature-extendable technology: global space-based crop recognition publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 99 start-page: 22413 year: 1994 ident: bb1040 article-title: Feasibility of sea ice typing with synthetic aperture radar (SAR): merging of Landsat thematic mapper and ERS 1 SAR satellite imagery publication-title: J. Geophys. Res. – volume: 275 year: 2022 ident: bb1000 article-title: Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model publication-title: Remote Sens. Environ. – year: 1976 ident: bb0630 article-title: The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT publication-title: LARS Symposia, Paper 159 – volume: 186 start-page: 217 year: 2016 end-page: 233 ident: bb1265 article-title: Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change publication-title: Remote Sens. Environ. – start-page: 26 year: 2021 ident: bb0770 article-title: Landsat 9: ready for launch publication-title: Earth Observing Systems XXVI – volume: 92 start-page: 475 year: 2004 end-page: 482 ident: bb0590 article-title: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans publication-title: Remote Sens. Environ. – volume: 113 start-page: 893 year: 2009 end-page: 903 ident: bb0130 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ. – volume: 6 start-page: 10232 year: 2014 end-page: 10251 ident: bb0035 article-title: The spectral response of the Landsat-8 operational land imager publication-title: Remote Sens. – volume: 26 start-page: 2956 year: 2020 end-page: 2969 ident: bb0095 article-title: Satellite-based estimates reveal widespread forest degradation in the Amazon publication-title: Glob. Chang. Biol. – volume: 87 start-page: 1 year: 2021 end-page: 7 ident: bb0420 article-title: Semi-centennial of Landsat observations & pending Landsat 9 launch publication-title: Photogramm. Eng. Remote. Sens. – volume: 247 year: 2020 ident: bb1130 article-title: Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS) publication-title: Remote Sens. Environ. – volume: 746 year: 2020 ident: bb0555 article-title: Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30 publication-title: Sci. Total Environ. – volume: 44 start-page: 9350 year: 2017 end-page: 9360 ident: bb0220 article-title: Annual irrigation dynamics in the U.S. northern high plains derived from Landsat satellite data publication-title: Geophys. Res. Lett. – volume: 254 start-page: 314 year: 1991 ident: bb0570 article-title: The Landsat case publication-title: Science (80-.) – volume: 36 start-page: 1228 year: 1998 end-page: 1249 ident: bb0620 article-title: The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 194 start-page: 303 year: 2017 end-page: 321 ident: bb1145 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. – start-page: 9044 year: 2019 end-page: 9047 ident: bb0800 article-title: First results from laser-based spectral characterization of Landsat 9 operational land imager-2 publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium – volume: 16 start-page: 349 year: 2022 end-page: 378 ident: bb0655 article-title: Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data publication-title: Cryosph. – volume: 9 year: 2014 ident: bb0315 article-title: Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra publication-title: Environ. Res. Lett. – volume: 44 start-page: 67 year: 2018 end-page: 87 ident: bb0505 article-title: Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year Landsat time series publication-title: Can. J. Remote. Sens. – volume: 25 start-page: 1565 year: 2004 end-page: 1596 ident: bb0200 article-title: Digital change detection methods in ecosystem monitoring: a review publication-title: Int. J. Remote Sens. – volume: 144 start-page: 214 year: 2014 end-page: 225 ident: bb0255 article-title: Predicting species diversity in agricultural environments using Landsat TM imagery publication-title: Remote Sens. Environ. – volume: 117 start-page: 177 year: 2012 end-page: 183 ident: bb1270 article-title: Remote sensing of crop residue cover using multi-temporal Landsat imagery publication-title: Remote Sens. Environ. – volume: 144 start-page: 152 year: 2014 end-page: 171 ident: bb1285 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. – volume: 7 start-page: 12558 year: 2016 ident: bb1105 article-title: Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation publication-title: Nat. Commun. – volume: 122 start-page: 50 year: 2012 end-page: 65 ident: bb0010 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. – volume: 360 start-page: 242 year: 2016 end-page: 252 ident: bb0170 article-title: Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline publication-title: For. Ecol. Manag. – volume: 32 start-page: 468 year: 2009 end-page: 480 ident: bb1045 article-title: Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico publication-title: Ecography (Cop.). – volume: 9 year: 2015 ident: bb0295 article-title: Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS publication-title: J. Appl. Remote. Sens. – volume: 130 start-page: 370 year: 2017 end-page: 384 ident: bb1275 article-title: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 1 start-page: 4 year: 2015 end-page: 18 ident: bb0470 article-title: Will remote sensing shape the next generation of species distribution models? Remote Sens publication-title: Ecol. Conserv. – volume: 1 start-page: 100 year: 2017 end-page: 117 ident: bb0375 article-title: Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD) publication-title: Big Earth Data – volume: 6 year: 2015 ident: bb0225 article-title: Open data and Earth observations: the case of opening up access to and use of Earth observation data through the global Earth observation system of systems publication-title: J. Intellect. Prop. Inf. Technol. Electron. Commer. Law – volume: 11 start-page: 1 year: 2019 end-page: 25 ident: bb1055 article-title: Bundle adjustment using space-based triangulation method for improving the Landsat global ground reference publication-title: Remote Sens. – volume: 1 start-page: 111 year: 2010 end-page: 117 ident: bb0920 article-title: Accessing free Landsat data via the Internet: Africa’s challenge publication-title: Remote Sens. Lett. – volume: 9 start-page: 189 year: 1980 end-page: 196 ident: bb0390 article-title: Utilizing LANDSAT imagery to monitor land-use change: a case study in ohio publication-title: Remote Sens. Environ. – volume: 45 start-page: 797 year: 2018 end-page: 808 ident: bb0855 article-title: Variation in rising limb of colorado river snowmelt runoff hydrograph controlled by dust radiative forcing in snow publication-title: Geophys. Res. Lett. – volume: 13 year: 2018 ident: bb1095 article-title: Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia publication-title: Environ. Res. Lett. – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: bb0460 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science (80-.) – volume: 114 start-page: 2897 year: 2010 end-page: 2910 ident: bb0635 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms publication-title: Remote Sens. Environ. – volume: 117 start-page: 126 year: 2016 end-page: 140 ident: bb0995 article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 185 start-page: 258 year: 2015 end-page: 270 ident: bb1120 article-title: Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data publication-title: Remote Sens. Environ. – volume: 106 start-page: 31361 year: 2001 end-page: 31385 ident: bb0180 article-title: Studies of Antarctic sea ice concentrations from satellite data and their applications publication-title: J. Geophys. Res. Ocean. – volume: 11 start-page: 521 year: 2019 ident: bb0525 article-title: The detection and characterization of Arctic Sea ice leads with satellite imagers publication-title: Remote Sens. – volume: 114 start-page: 183 year: 2010 end-page: 198 ident: bb0560 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. – start-page: 383 year: 1995 end-page: 396 ident: bb1075 article-title: Monitoring the evolution of desertification processes from 1973 to 1987 in Damagaram (Niger) with Landsat multispectral scanner and thematic mapper publication-title: Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources – volume: 15 start-page: 19 year: 2005 end-page: 26 ident: bb0215 article-title: Increasing isolation of protected areas in tropical forests over the past twenty years publication-title: Ecol. Appl. – volume: 18 start-page: 306 year: 2003 end-page: 314 ident: bb1085 article-title: Remote sensing for biodiversity science and conservation publication-title: Trends Ecol. Evol. – volume: 21 start-page: 284 year: 1995 end-page: 290 ident: bb1170 article-title: Coastal-change and glaciological maps of Antarctica publication-title: Ann. Glaciol. – start-page: 27 year: 2018 end-page: 90 ident: bb0765 article-title: Landsat program publication-title: Comprehensive Remote Sensing – volume: 204 start-page: 717 year: 2018 end-page: 728 ident: bb0480 article-title: Mapping forest change using stacked generalization: an ensemble approach publication-title: Remote Sens. Environ. – reference: GCOS, 2016. The Global Observing System for Climate: Implementation Needs. World Meteorological Organisation. Geneva. GCOS-200. 341p. – volume: 6 start-page: 59 year: 1985 end-page: 73 ident: bb0980 article-title: Monitoring Africa’s lake chad basin with LANDSAT and NOAA satellite data publication-title: Int. J. Remote Sens. – volume: 176 start-page: 1 year: 2016 end-page: 16 ident: bb0615 article-title: The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data publication-title: Remote Sens. Environ. – volume: 92 start-page: 548 year: 2004 end-page: 559 ident: bb0235 article-title: Crop condition and yield simulations using Landsat and MODIS publication-title: Remote Sens. Environ. – volume: 12 start-page: 2501 year: 2021 ident: bb1175 article-title: Global land use changes are four times greater than previously estimated publication-title: Nat. Commun. – volume: 224 start-page: 382 year: 2019 end-page: 385 ident: bb1295 article-title: Benefits of the free and open Landsat data policy publication-title: Remote Sens. Environ. – volume: 185 start-page: 16 year: 2016 end-page: 36 ident: bb0530 article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations publication-title: Remote Sens. Environ. – volume: 7 start-page: 656 year: 2016 end-page: 665 ident: bb0880 article-title: How do we want Satellite Remote Sensing to support biodiversity conservation globally? publication-title: Methods Ecol. Evol. – volume: 65 start-page: 595 year: 1975 end-page: 596 ident: bb1135 article-title: Land use in Northeast China, 1973: a view from Landsat-1 publication-title: Ann. Assoc. Am. Geogr. – volume: 57 start-page: 78 year: 1993 ident: bb0535 article-title: Use of remote sensing methods in modelling sage grouse winter habitat publication-title: J. Wildl. Manag. – volume: 8 start-page: 151 year: 2016 ident: bb0550 article-title: Mapping urban land use by using landsat images and open social data publication-title: Remote Sens. – volume: 3 start-page: 185 year: 2008 end-page: 198 ident: bb0175 article-title: Using semantics to clarify the conceptual confusion between land cover and land use : the example of forest publication-title: J. Land Use Sci. – year: 1990 ident: bb0750 article-title: Viewing the Earth: The Social Construction of the Landsat Satellite System – year: 2013 ident: bb0820 article-title: Landsat and beyond: Sustaining and enhancing the Nation’s Land Imaging Program, Landsat and Beyond: Sustaining and Enhancing the Nation’s Land Imaging Program – volume: 122 start-page: 30 year: 2012 end-page: 40 ident: bb0760 article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review publication-title: Remote Sens. Environ. – volume: 246 year: 2020 ident: bb0040 article-title: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook publication-title: Remote Sens. Environ. – volume: 83 start-page: 287 year: 2002 end-page: 302 ident: bb0305 article-title: Global land cover mapping from MODIS: algorithms and early results publication-title: Remote Sens. Environ. – volume: 106 start-page: 81 year: 2005 end-page: 101 ident: bb0690 article-title: The impact of Landsat satellite monitoring on conservation biology publication-title: Environ. Monit. Assess. – volume: 271 year: 2022 ident: bb1155 article-title: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery publication-title: Remote Sens. Environ. – year: 2014 ident: bb0150 article-title: Global land cover mapping at 30m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 2 start-page: 710 year: 1989 end-page: 720 ident: bb0405 article-title: Satellite bioclimatology publication-title: J. Clim. – volume: 166 start-page: 271 year: 2015 end-page: 285 ident: bb0650 article-title: Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA publication-title: Remote Sens. Environ. – volume: 143–144 start-page: 37 year: 2016 end-page: 46 ident: bb0860 article-title: Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years publication-title: J. Atmos. Solar-Terrestrial Phys. – volume: 130 start-page: 481 year: 2006 end-page: 494 ident: bb0265 article-title: Rapid deforestation and fragmentation of Chilean Temperate Forests publication-title: Biol. Conserv. – volume: 258 year: 2021 ident: bb0850 article-title: ACIX-Aqua: a global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters publication-title: Remote Sens. Environ. – volume: 21 start-page: 201 year: 1987 end-page: 213 ident: bb0430 article-title: An assessment of landsat MSS and TM data for urban and near-urban land-cover digital classification publication-title: Remote Sens. Environ. – volume: 78 start-page: 13 year: 2001 end-page: 26 ident: bb0020 article-title: Landsat 7’s long-term acquisition plan — an innovative approach to building a global imagery archive publication-title: Remote Sens. Environ. – volume: 544 start-page: 349 year: 2017 end-page: 352 ident: bb0665 article-title: Widespread movement of meltwater onto and across Antarctic ice shelves publication-title: Nature – volume: 81 start-page: 345 year: 2015 end-page: 354 ident: bb0545 article-title: Completion of the 2011 national land cover database for the conterminous United States – representing a decade of land cover change information publication-title: Photogramm. Eng. Remote. Sens. – volume: 59 start-page: 104 year: 2017 end-page: 117 ident: bb1125 article-title: Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 902 year: 2017 ident: bb0700 article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. – volume: 170 start-page: 62 year: 2015 end-page: 76 ident: bb1205 article-title: Virtual constellations for global terrestrial monitoring publication-title: Remote Sens. Environ. – year: 2017 ident: bb0415 article-title: Landsat’s Enduring Legacy: Pioneering Global Land Observations from Space – volume: 42 start-page: 177 year: 1992 end-page: 186 ident: bb0970 article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data publication-title: Remote Sens. Environ. – volume: 72 start-page: 628 year: 1991 end-page: 640 ident: bb0445 article-title: Large-scale patterns of forest succession as determined by remote sensing publication-title: Ecol. – volume: 216 start-page: 472 year: 2018 end-page: 481 ident: bb0680 article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product publication-title: Remote Sens. Environ. – volume: 34 start-page: 2607 year: 2013 end-page: 2654 ident: bb0380 article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. – volume: 122 start-page: 2 year: 2012 end-page: 10 ident: bb1200 article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. – volume: 52 year: 2018 ident: bb0955 article-title: Landsat archive holdings for Finland: opportunities for forest monitoring publication-title: Silva Fenn. – volume: 265 year: 2021 ident: bb1250 article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging publication-title: Remote Sens. Environ. – volume: 260 start-page: 1905 year: 1993 end-page: 1910 ident: bb1020 article-title: Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988 publication-title: Science (80-.) – volume: 28 start-page: 233 year: 2001 end-page: 240 ident: bb0210 article-title: The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended publication-title: Adv. Sp. Res. – volume: 12 start-page: 339 year: 2014 end-page: 346 ident: bb0645 article-title: Bringing an ecological view of change to landsat-based remote sensing publication-title: Front. Ecol. Environ. – volume: 164 start-page: 262 year: 1969 end-page: 270 ident: bb0830 article-title: The strategy of ecosystem development publication-title: Science (80-.) – volume: 122 start-page: 117 year: 2012 end-page: 133 ident: bb0640 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. – volume: 6 start-page: 11127 year: 2014 end-page: 11152 ident: bb1050 article-title: Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance publication-title: Remote Sens. – volume: 252 year: 2021 ident: bb1245 article-title: Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration publication-title: Remote Sens. Environ. – volume: 720 year: 2020 ident: bb1060 article-title: Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: a spatially explicit carbon bookkeeping model publication-title: Sci. Total Environ. – volume: 20 start-page: 154 year: 2011 end-page: 159 ident: bb0365 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Glob. Ecol. Biogeogr. – volume: 474 year: 2020 ident: bb0195 article-title: Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery publication-title: For. Ecol. Manag. – volume: 9 start-page: 584 year: 2017 ident: bb0340 article-title: Copernicus Sentinel-2A calibration and products validation status publication-title: Remote Sens. – volume: 4 year: 2021 ident: bb0905 article-title: Can Landsat 7 preserve its science capability with a drifting orbit? publication-title: Sci. Remote Sens. – volume: 253 year: 2021 ident: bb0895 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. – year: 2020 ident: bb0835 article-title: Cities in the World : A New Perspective on Urbanisation – volume: 12 start-page: 224 year: 2020 ident: bb0350 article-title: Towards an operational, split window-derived surface temperature product for the thermal infrared sensors onboard Landsat 8 and 9 publication-title: Remote Sens. – volume: 292 start-page: 98 year: 2001 end-page: 101 ident: bb0715 article-title: Ecological degradation in protected areas: the case of Wolong nature reserve for giant pandas publication-title: Science. – volume: 14 start-page: 2418 year: 2022 ident: bb0425 article-title: Initial cross-calibration of Landsat 8 and Landsat 9 using the simultaneous underfly event publication-title: Remote Sens. – volume: 46 start-page: 1 year: 2021 end-page: 33 ident: bb0270 article-title: Land use and ecological change: A 12,000-year history publication-title: Annu. Rev. Environ. Resour. – volume: 190 start-page: 383 year: 2017 end-page: 395 ident: bb1035 article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey publication-title: Remote Sens. Environ. – volume: 42 start-page: 7966 year: 2015 end-page: 7976 ident: bb0575 article-title: The ASTER Global Emissivity Dataset (ASTER GED): mapping Earth’s emissivity at 100 meter spatial scale publication-title: Geophys. Res. Lett. – volume: 208 start-page: 670 year: 1980 end-page: 679 ident: bb0740 article-title: Global Crop Forecasting publication-title: Science (80-.) – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: bb1220 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – volume: 176 start-page: 255 year: 2016 end-page: 271 ident: bb0940 article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. – volume: 9 start-page: 135 year: 2019 ident: bb0185 article-title: Northern hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations publication-title: Geosciences – volume: 195 start-page: 118 year: 2017 end-page: 129 ident: bb0975 article-title: Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series publication-title: Remote Sens. Environ. – volume: 118 start-page: 83 year: 2012 end-page: 94 ident: bb1280 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. – volume: 11 start-page: 261 year: 2001 end-page: 269 ident: bb0675 article-title: The causes of land-use and land-cover change: moving beyond the myths publication-title: Glob. Environ. Chang. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0245 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. – volume: 32 start-page: 115 year: 1996 end-page: 130 ident: bb0915 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper publication-title: Water Resour. Res. – year: 2020 ident: bb1100 article-title: Report of the Inter-Agency and Expert Group on SDG Indicators – volume: 20 start-page: 4175 year: 1981 ident: bb0395 article-title: Clear water radiances for atmospheric correction of coastal zone color scanner imagery publication-title: Appl. Opt. – volume: 238 year: 2020 ident: bb1185 article-title: Transitioning from change detection to monitoring with remote sensing: a paradigm shift publication-title: Remote Sens. Environ. – volume: 56 start-page: 5717 year: 2018 end-page: 5735 ident: bb0755 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 182 start-page: 173 year: 2015 end-page: 176 ident: bb1090 article-title: Free and open-access satellite data are key to biodiversity conservation publication-title: Biol. Conserv. – volume: 113 start-page: 893 year: 2009 ident: 10.1016/j.rse.2022.113195_bb0130 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.007 – volume: 114 start-page: 2897 year: 2010 ident: 10.1016/j.rse.2022.113195_bb0635 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 1 start-page: 100 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0375 article-title: Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD) publication-title: Big Earth Data doi: 10.1080/20964471.2017.1398903 – volume: 13 year: 2018 ident: 10.1016/j.rse.2022.113195_bb1095 article-title: Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aacd1c – volume: 7 start-page: 656 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0880 article-title: How do we want Satellite Remote Sensing to support biodiversity conservation globally? publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12545 – volume: 9 start-page: 189 year: 1980 ident: 10.1016/j.rse.2022.113195_bb0390 article-title: Utilizing LANDSAT imagery to monitor land-use change: a case study in ohio publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90028-0 – volume: 1–12 year: 2021 ident: 10.1016/j.rse.2022.113195_bb1080 article-title: Regional matters: On the usefulness of regional land-cover datasets in times of global change publication-title: Remote Sens. Ecol. Conserv. – volume: 55 start-page: 205 year: 1996 ident: 10.1016/j.rse.2022.113195_bb0290 article-title: Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(95)00196-4 – volume: 18 start-page: 306 year: 2003 ident: 10.1016/j.rse.2022.113195_bb1085 article-title: Remote sensing for biodiversity science and conservation publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(03)00070-3 – volume: 43 start-page: 98 year: 1997 ident: 10.1016/j.rse.2022.113195_bb0595 article-title: Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM publication-title: J. Glaciol. doi: 10.3189/S0022143000002859 – volume: 122 start-page: 66 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0450 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.024 – volume: 59 start-page: 440 year: 1997 ident: 10.1016/j.rse.2022.113195_bb0565 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00112-5 – volume: 195 start-page: 13 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0660 article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.047 – volume: 185 start-page: 84 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0280 article-title: Rapid large-area mapping of ice flow using Landsat 8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.023 – volume: 34 start-page: 2607 year: 2013 ident: 10.1016/j.rse.2022.113195_bb0380 article-title: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.748992 – volume: 37 start-page: 1204 year: 1999 ident: 10.1016/j.rse.2022.113195_bb0825 article-title: Multiresolution-based image fusion with additive wavelet decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763274 – volume: 10 start-page: 1363 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0260 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens. doi: 10.3390/rs10091363 – volume: 118 start-page: 83 year: 2012 ident: 10.1016/j.rse.2022.113195_bb1280 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.028 – volume: 44 start-page: 2207 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0320 article-title: On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – year: 1979 ident: 10.1016/j.rse.2022.113195_bb0115 – volume: 164 start-page: 262 year: 1969 ident: 10.1016/j.rse.2022.113195_bb0830 article-title: The strategy of ecosystem development publication-title: Science (80-.) doi: 10.1126/science.164.3877.262 – volume: 8 start-page: 151 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0550 article-title: Mapping urban land use by using landsat images and open social data publication-title: Remote Sens. doi: 10.3390/rs8020151 – volume: 13 start-page: 227 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0275 article-title: Consequences of the 2019 greenland ice sheet melt episode on Albedo publication-title: Remote Sens. doi: 10.3390/rs13020227 – volume: 237–238 start-page: 311 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0725 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.02.026 – volume: 265 year: 2021 ident: 10.1016/j.rse.2022.113195_bb1250 article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112640 – volume: 45 start-page: 797 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0855 article-title: Variation in rising limb of colorado river snowmelt runoff hydrograph controlled by dust radiative forcing in snow publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075826 – volume: 59 start-page: 104 year: 2017 ident: 10.1016/j.rse.2022.113195_bb1125 article-title: Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 97 year: 1987 ident: 10.1016/j.rse.2022.113195_bb0240 article-title: Snow mapping and classification from Landsat thematic mapper data publication-title: Ann. Glaciol. doi: 10.3189/S026030550000046X – volume: 246 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0040 article-title: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111872 – volume: 72 start-page: 628 year: 1991 ident: 10.1016/j.rse.2022.113195_bb0445 article-title: Large-scale patterns of forest succession as determined by remote sensing publication-title: Ecol. doi: 10.2307/2937203 – volume: 113 start-page: 1133 year: 2009 ident: 10.1016/j.rse.2022.113195_bb1225 article-title: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.02.004 – volume: 32 start-page: 115 year: 1996 ident: 10.1016/j.rse.2022.113195_bb0915 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper publication-title: Water Resour. Res. doi: 10.1029/95WR02718 – volume: 87 start-page: 1 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0420 article-title: Semi-centennial of Landsat observations & pending Landsat 9 launch publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.87.8.533 – volume: 3 start-page: 185 year: 2008 ident: 10.1016/j.rse.2022.113195_bb0175 article-title: Using semantics to clarify the conceptual confusion between land cover and land use : the example of forest publication-title: J. Land Use Sci. doi: 10.1080/17474230802434187 – volume: 42 start-page: 177 year: 1992 ident: 10.1016/j.rse.2022.113195_bb0970 article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90101-O – volume: 12 start-page: 1735 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0125 article-title: Assessing the accuracy of multiple classification algorithms for crop classification using Landsat-8 and Sentinel-2 data publication-title: Remote Sens. doi: 10.3390/rs12111735 – volume: 44 start-page: 9350 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0220 article-title: Annual irrigation dynamics in the U.S. northern high plains derived from Landsat satellite data publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074071 – volume: GE-22 start-page: 473 year: 1984 ident: 10.1016/j.rse.2022.113195_bb0735 article-title: A summary of the history of the development of automated remote sensing for agricultural applications publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1984.6499157 – volume: 46 start-page: 1 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0270 article-title: Land use and ecological change: A 12,000-year history publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-012220-010822 – volume: 544 start-page: 349 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0665 article-title: Widespread movement of meltwater onto and across Antarctic ice shelves publication-title: Nature doi: 10.1038/nature22049 – volume: 123 start-page: 3 year: 1993 ident: 10.1016/j.rse.2022.113195_bb0985 article-title: Gap analysis: a geographic approach to protection of biological diversity publication-title: Wildl. Monogr. – volume: 185 start-page: 57 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0935 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.024 – volume: 26 start-page: 2956 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0095 article-title: Satellite-based estimates reveal widespread forest degradation in the Amazon publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15029 – start-page: 26 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0770 article-title: Landsat 9: ready for launch – volume: 195 start-page: 118 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0975 article-title: Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.012 – volume: 224 start-page: 382 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1295 article-title: Benefits of the free and open Landsat data policy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.016 – volume: 57 start-page: 295 year: 1991 ident: 10.1016/j.rse.2022.113195_bb0135 article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic publication-title: Photogramm. Eng. Remote. Sens. – volume: 12 start-page: 2501 year: 2021 ident: 10.1016/j.rse.2022.113195_bb1175 article-title: Global land use changes are four times greater than previously estimated publication-title: Nat. Commun. doi: 10.1038/s41467-021-22702-2 – volume: 121 start-page: 404 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0370 article-title: Remote estimation of crop gross primary production with Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.017 – volume: 117 start-page: 177 year: 2012 ident: 10.1016/j.rse.2022.113195_bb1270 article-title: Remote sensing of crop residue cover using multi-temporal Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.016 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1220 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 32 start-page: 468 year: 2009 ident: 10.1016/j.rse.2022.113195_bb1045 article-title: Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico publication-title: Ecography (Cop.). doi: 10.1111/j.1600-0587.2008.05512.x – volume: 7 start-page: 12558 year: 2016 ident: 10.1016/j.rse.2022.113195_bb1105 article-title: Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation publication-title: Nat. Commun. doi: 10.1038/ncomms12558 – volume: 569 start-page: 630 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1150 article-title: Satellite time series can guide forest restoration publication-title: Nature doi: 10.1038/d41586-019-01665-x – volume: 186 start-page: 217 year: 2016 ident: 10.1016/j.rse.2022.113195_bb1265 article-title: Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.022 – volume: 106 start-page: 81 year: 2005 ident: 10.1016/j.rse.2022.113195_bb0690 article-title: The impact of Landsat satellite monitoring on conservation biology publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-005-0763-0 – start-page: 32 year: 1981 ident: 10.1016/j.rse.2022.113195_bb0060 article-title: Landsat observations of Mount St. Helens – volume: 143–144 start-page: 37 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0860 article-title: Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years publication-title: J. Atmos. Solar-Terrestrial Phys. doi: 10.1016/j.jastp.2016.03.007 – year: 1979 ident: 10.1016/j.rse.2022.113195_bb1160 – volume: 12 start-page: 2665 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0045 article-title: Estimates of conservation tillage practices using landsat archive publication-title: Remote Sens. doi: 10.3390/rs12162665 – volume: 6 start-page: 11127 year: 2014 ident: 10.1016/j.rse.2022.113195_bb1050 article-title: Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance publication-title: Remote Sens. doi: 10.3390/rs61111127 – volume: 57 start-page: 78 year: 1993 ident: 10.1016/j.rse.2022.113195_bb0535 article-title: Use of remote sensing methods in modelling sage grouse winter habitat publication-title: J. Wildl. Manag. doi: 10.2307/3809003 – volume: 14 start-page: 15 year: 1984 ident: 10.1016/j.rse.2022.113195_bb0025 article-title: Automatic corn-soybean classification using landsat MSS data. I. Near-harvest crop proportion estimation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90004-X – ident: 10.1016/j.rse.2022.113195_bb0745 – volume: 216 start-page: 697 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0795 article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.024 – volume: 10 start-page: 201 year: 1980 ident: 10.1016/j.rse.2022.113195_bb0890 article-title: Field size, length, and width distributions based on LACIE ground truth data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90024-3 – volume: 13 start-page: 2537 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0990 article-title: Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations publication-title: Cryosphere doi: 10.5194/tc-13-2537-2019 – volume: 12 start-page: 2477 year: 1991 ident: 10.1016/j.rse.2022.113195_bb0950 article-title: Wheat yield estimation at the farm level using tm landsat and agrometeorological data publication-title: Int. J. Remote Sens. doi: 10.1080/01431169108955281 – volume: 9 start-page: 135 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0185 article-title: Northern hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations publication-title: Geosciences doi: 10.3390/geosciences9030135 – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0165 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 9 start-page: 902 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0700 article-title: A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. doi: 10.3390/rs9090902 – year: 2014 ident: 10.1016/j.rse.2022.113195_bb0150 article-title: Global land cover mapping at 30m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. – volume: GE-25 start-page: 93 year: 1987 ident: 10.1016/j.rse.2022.113195_bb0440 article-title: Signature-extendable technology: global space-based crop recognition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1987.289785 – volume: 254 start-page: 314 year: 1991 ident: 10.1016/j.rse.2022.113195_bb0570 article-title: The Landsat case publication-title: Science (80-.) doi: 10.1126/science.254.5029.314 – volume: 117 start-page: 126 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0995 article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.001 – volume: 17 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0465 article-title: Global land use extent and dispersion within natural land cover using Landsat data publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac46ec – volume: 12 start-page: 1634 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0435 article-title: Monitoring water-related ecosystems with Earth observation data in support of sustainable development goal (SDG) 6 reporting publication-title: Remote Sens. doi: 10.3390/rs12101634 – volume: 169 start-page: 128 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0080 article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.006 – volume: 12 start-page: 134 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0810 article-title: Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: towards continental generation of lake volumes publication-title: Remote Sens. doi: 10.3390/rs12010134 – year: 2013 ident: 10.1016/j.rse.2022.113195_bb0820 – volume: 92 start-page: 548 year: 2004 ident: 10.1016/j.rse.2022.113195_bb0235 article-title: Crop condition and yield simulations using Landsat and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.05.017 – volume: 260 start-page: 1905 year: 1993 ident: 10.1016/j.rse.2022.113195_bb1020 article-title: Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988 publication-title: Science (80-.) doi: 10.1126/science.260.5116.1905 – volume: 271 year: 2022 ident: 10.1016/j.rse.2022.113195_bb1155 article-title: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112904 – volume: 81 start-page: 2742 year: 2000 ident: 10.1016/j.rse.2022.113195_bb0685 article-title: Fifteen years of revegetation of Mount St. Helens: a landscape-scale analysis publication-title: Ecology doi: 10.1890/0012-9658(2000)081[2742:FYOROM]2.0.CO;2 – volume: 170 start-page: 62 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1205 article-title: Virtual constellations for global terrestrial monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.001 – volume: 144 start-page: 214 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0255 article-title: Predicting species diversity in agricultural environments using Landsat TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.001 – volume: 2 start-page: 710 year: 1989 ident: 10.1016/j.rse.2022.113195_bb0405 article-title: Satellite bioclimatology publication-title: J. Clim. doi: 10.1175/1520-0442(1989)002<0710:SB>2.0.CO;2 – year: 2016 ident: 10.1016/j.rse.2022.113195_bb0875 – volume: 20 start-page: 154 year: 2011 ident: 10.1016/j.rse.2022.113195_bb0365 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00584.x – volume: 144 start-page: 152 year: 2014 ident: 10.1016/j.rse.2022.113195_bb1285 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.011 – volume: 26 start-page: 6266 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0910 article-title: Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15295 – volume: 4 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0905 article-title: Can Landsat 7 preserve its science capability with a drifting orbit? publication-title: Sci. Remote Sens. – volume: 122 start-page: 117 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0640 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.024 – volume: 13 start-page: 1319 year: 1992 ident: 10.1016/j.rse.2022.113195_bb1070 article-title: Land cover publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904193 – volume: 36 start-page: 1228 year: 1998 ident: 10.1016/j.rse.2022.113195_bb0620 article-title: The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.701075 – volume: 166 start-page: 271 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0650 article-title: Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.05.005 – volume: 243 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0885 article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111792 – volume: 107 start-page: 16732 year: 2010 ident: 10.1016/j.rse.2022.113195_bb0360 article-title: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0910275107 – volume: 21 start-page: 965 year: 1995 ident: 10.1016/j.rse.2022.113195_bb0015 article-title: Mapping micro-urban heat islands using Landsat TM and a GIS publication-title: Comput. Geosci. doi: 10.1016/0098-3004(95)00033-5 – volume: 274 year: 2022 ident: 10.1016/j.rse.2022.113195_bb1015 article-title: Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112990 – volume: 12 start-page: 2211 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0610 article-title: Greenland Ice Mapping Project: Ice flow velocity variation at sub-monthly to decadal timescales publication-title: Cryosphere doi: 10.5194/tc-12-2211-2018 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1055 article-title: Bundle adjustment using space-based triangulation method for improving the Landsat global ground reference publication-title: Remote Sens. doi: 10.3390/rs11141640 – ident: 10.1016/j.rse.2022.113195_bb0585 – volume: 746 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0555 article-title: Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141035 – volume: 258 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0850 article-title: ACIX-Aqua: a global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112366 – volume: 185 start-page: 16 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0530 article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.052 – volume: 275 year: 2022 ident: 10.1016/j.rse.2022.113195_bb1000 article-title: Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113011 – volume: 222 start-page: 65 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0510 article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.027 – volume: 216 start-page: 472 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0680 article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.026 – volume: 73 start-page: 389 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0110 article-title: Using remote sensing for agricultural statistics publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2005.tb00155.x – volume: 247 year: 2020 ident: 10.1016/j.rse.2022.113195_bb1130 article-title: Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111892 – volume: 204 start-page: 717 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0480 article-title: Mapping forest change using stacked generalization: an ensemble approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.029 – volume: 9 start-page: 1323 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0065 article-title: Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015) publication-title: Sci. Rep. doi: 10.1038/s41598-018-37265-4 – volume: 262 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0140 article-title: Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112517 – volume: 246 start-page: 1 year: 1989 ident: 10.1016/j.rse.2022.113195_bb0780 article-title: Landsat: Cliff-hanging, again publication-title: Science (80-.) doi: 10.1126/science.246.4928.321.b – volume: 238 year: 2020 ident: 10.1016/j.rse.2022.113195_bb1185 article-title: Transitioning from change detection to monitoring with remote sensing: a paradigm shift publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111558 – volume: 8 start-page: 678 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0710 article-title: Assessing global forest land-use change by object-based image analysis publication-title: Remote Sens. doi: 10.3390/rs8080678 – volume: 130 start-page: 481 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0265 article-title: Rapid deforestation and fragmentation of Chilean Temperate Forests publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2006.01.017 – volume: 140 start-page: 433 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0925 article-title: Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.012 – volume: 52 start-page: 891 year: 2002 ident: 10.1016/j.rse.2022.113195_bb0965 article-title: The human footprint and the last of the wild publication-title: Bioscience doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 – volume: 20 start-page: 6631 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0695 article-title: Global revisit interval analysis of Landsat-8 -9 and Sentinel-2A -2B data for terrestrial monitoring publication-title: Sensors doi: 10.3390/s20226631 – volume: 360 start-page: 242 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0170 article-title: Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.10.042 – volume: 3 start-page: 68 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0785 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 6 start-page: 59 year: 1985 ident: 10.1016/j.rse.2022.113195_bb0980 article-title: Monitoring Africa’s lake chad basin with LANDSAT and NOAA satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168508948424 – volume: 63 start-page: 887 year: 1997 ident: 10.1016/j.rse.2022.113195_bb0410 article-title: Landsat and earth systems science: development of terrestrial monitoring publication-title: Photogramm. Eng. Remote. Sens. – volume: 199 start-page: 25 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0945 article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.019 – volume: 113 start-page: 1613 year: 2009 ident: 10.1016/j.rse.2022.113195_bb0520 article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.007 – volume: 122 start-page: 30 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0760 article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.026 – volume: 161 start-page: 27 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0075 article-title: MODIS–Landsat fusion for large area 30 m burned area mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.022 – volume: 292 start-page: 98 issue: 5514 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0715 article-title: Ecological degradation in protected areas: the case of Wolong nature reserve for giant pandas publication-title: Science. doi: 10.1126/science.1058104 – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1290 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – volume: 10 start-page: 175 year: 1980 ident: 10.1016/j.rse.2022.113195_bb0105 article-title: Monitoring land-cover change by principal component analysis of multitemporal landsat data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90021-8 – year: 1990 ident: 10.1016/j.rse.2022.113195_bb0750 – volume: 185 start-page: 46 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1110 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – volume: 31 start-page: 235 year: 2007 ident: 10.1016/j.rse.2022.113195_bb0250 article-title: Development of a large area biodiversity monitoring system driven by remote sensing publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133307079054 – volume: 86 start-page: 458 year: 2003 ident: 10.1016/j.rse.2022.113195_bb0775 article-title: Comparison of aerial video and Landsat 7 data over ponded sea ice publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00124-X – volume: 99 start-page: 22413 year: 1994 ident: 10.1016/j.rse.2022.113195_bb1040 article-title: Feasibility of sea ice typing with synthetic aperture radar (SAR): merging of Landsat thematic mapper and ERS 1 SAR satellite imagery publication-title: J. Geophys. Res. doi: 10.1029/94JC01398 – volume: 101 start-page: 115 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0475 article-title: Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.12.006 – volume: 12 start-page: 339 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0645 article-title: Bringing an ecological view of change to landsat-based remote sensing publication-title: Front. Ecol. Environ. doi: 10.1890/130066 – volume: 3 start-page: 19 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0900 article-title: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century publication-title: Nat. Food doi: 10.1038/s43016-021-00429-z – volume: 5 start-page: 484 year: 2013 ident: 10.1016/j.rse.2022.113195_bb0670 article-title: Challenges and opportunities in mapping land use intensity globally publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2013.06.002 – volume: 268 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0515 article-title: Land cover classification in an era of big and open data: optimizing localized implementation and training data selection to improve mapping outcomes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112780 – volume: 540 start-page: 418 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0865 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 287 start-page: 1770 year: 2000 ident: 10.1016/j.rse.2022.113195_bb0960 article-title: Global Biodiversity Scenarios for the Year 2100 publication-title: Science (80-.) doi: 10.1126/science.287.5459.1770 – volume: 29 start-page: 763 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0720 article-title: How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion publication-title: Landsc. Ecol. doi: 10.1007/s10980-014-0034-y – year: 2020 ident: 10.1016/j.rse.2022.113195_bb1100 – volume: 185 start-page: 271 year: 2016 ident: 10.1016/j.rse.2022.113195_bb1210 article-title: The global Landsat archive: Status, consolidation, and direction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.032 – volume: 12 start-page: 224 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0350 article-title: Towards an operational, split window-derived surface temperature product for the thermal infrared sensors onboard Landsat 8 and 9 publication-title: Remote Sens. doi: 10.3390/rs12020224 – volume: 92 start-page: 475 year: 2004 ident: 10.1016/j.rse.2022.113195_bb0590 article-title: Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.10.021 – year: 2017 ident: 10.1016/j.rse.2022.113195_bb0415 – volume: 23 start-page: 1985 year: 2002 ident: 10.1016/j.rse.2022.113195_bb1005 article-title: Monitoring land-use change in the Pearl River Delta using Landsat TM publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110075532 – volume: 1 start-page: 4 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0470 article-title: Will remote sensing shape the next generation of species distribution models? Remote Sens publication-title: Ecol. Conserv. – volume: 76 start-page: 1201 year: 2010 ident: 10.1016/j.rse.2022.113195_bb0605 article-title: The 2009 cropland data layer publication-title: Photogramm. Eng. Remote. Sens. – volume: 78 start-page: 13 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0020 article-title: Landsat 7’s long-term acquisition plan — an innovative approach to building a global imagery archive publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00263-2 – volume: 11 start-page: 261 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0675 article-title: The causes of land-use and land-cover change: moving beyond the myths publication-title: Glob. Environ. Chang. doi: 10.1016/S0959-3780(01)00007-3 – volume: 232 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0600 article-title: Using the Landsat archive to map crop cover history across the United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111286 – volume: 172 start-page: 67 year: 2016 ident: 10.1016/j.rse.2022.113195_bb1240 article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.034 – volume: 204 start-page: 197 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0160 article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.030 – volume: 7 year: 2021 ident: 10.1016/j.rse.2022.113195_bb1260 article-title: Rapid expansion of human impact on natural land in South America since 1985 publication-title: Sci. Adv. doi: 10.1126/sciadv.abg1620 – volume: 106 start-page: 31361 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0180 article-title: Studies of Antarctic sea ice concentrations from satellite data and their applications publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2001JC000823 – volume: 21 start-page: 284 year: 1995 ident: 10.1016/j.rse.2022.113195_bb1170 article-title: Coastal-change and glaciological maps of Antarctica publication-title: Ann. Glaciol. doi: 10.3189/S0260305500015950 – volume: 20 start-page: 4175 year: 1981 ident: 10.1016/j.rse.2022.113195_bb0395 article-title: Clear water radiances for atmospheric correction of coastal zone color scanner imagery publication-title: Appl. Opt. doi: 10.1364/AO.20.004175 – volume: 9 start-page: 1118 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0870 article-title: Comparison of global land cover datasets for cropland monitoring publication-title: Remote Sens. doi: 10.3390/rs9111118 – year: 2022 ident: 10.1016/j.rse.2022.113195_bb0335 – volume: 89 start-page: 467 year: 2004 ident: 10.1016/j.rse.2022.113195_bb1140 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.005 – volume: 42 start-page: 7966 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0575 article-title: The ASTER Global Emissivity Dataset (ASTER GED): mapping Earth’s emissivity at 100 meter spatial scale publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL065564 – volume: 513 start-page: 30 year: 2014 ident: 10.1016/j.rse.2022.113195_bb1195 article-title: Satellites: Make Earth observations open access publication-title: Nature doi: 10.1038/513030a – volume: 176 start-page: 255 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0940 article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.023 – volume: 65 start-page: 595 year: 1975 ident: 10.1016/j.rse.2022.113195_bb1135 article-title: Land use in Northeast China, 1973: a view from Landsat-1 publication-title: Ann. Assoc. Am. Geogr. doi: 10.1111/j.1467-8306.1975.tb01067.x – volume: 15 start-page: 49 year: 1994 ident: 10.1016/j.rse.2022.113195_bb1065 article-title: Landsat-5 thematic mapper models of soybean and corn crop characteristics publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954050 – volume: GE-23 start-page: 625 year: 1985 ident: 10.1016/j.rse.2022.113195_bb0300 article-title: The relative importance of aerosol scattering and absorption in remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1985.289380 – volume: 12 start-page: 2840 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0485 article-title: Highly local model calibration with a new GEDI LiDAR asset on Google Earth engine reduces landsat forest height signal saturation publication-title: Remote Sens. doi: 10.3390/rs12172840 – volume: 114 start-page: 183 year: 2010 ident: 10.1016/j.rse.2022.113195_bb0560 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.017 – volume: 6 start-page: 11244 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0190 article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive publication-title: Remote Sens. doi: 10.3390/rs61111244 – volume: 28 start-page: 233 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0210 article-title: The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended publication-title: Adv. Sp. Res. doi: 10.1016/S0273-1177(01)00349-0 – volume: 122 start-page: 2 year: 2012 ident: 10.1016/j.rse.2022.113195_bb1200 article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.010 – volume: 342 start-page: 850 year: 2013 ident: 10.1016/j.rse.2022.113195_bb0460 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science (80-.) doi: 10.1126/science.1244693 – volume: 1–24 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0805 article-title: OpenET: filling a critical data gap in water management for the Western United States publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 18 start-page: 2082 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0100 article-title: Recent surface water extent of Lake Chad from multispectral sensors and GRACE publication-title: Sensors doi: 10.3390/s18072082 – volume: 2 year: 2007 ident: 10.1016/j.rse.2022.113195_bb0355 article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/2/4/045023 – volume: 1 start-page: 111 year: 2010 ident: 10.1016/j.rse.2022.113195_bb0920 article-title: Accessing free Landsat data via the Internet: Africa’s challenge publication-title: Remote Sens. Lett. doi: 10.1080/01431160903486693 – volume: 27 start-page: 3153 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0840 article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500309934 – volume: 16 start-page: 349 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0655 article-title: Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data publication-title: Cryosph. doi: 10.5194/tc-16-349-2022 – volume: 209 start-page: 227 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0730 article-title: High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.055 – ident: 10.1016/j.rse.2022.113195_bb0345 – start-page: 383 year: 1995 ident: 10.1016/j.rse.2022.113195_bb1075 article-title: Monitoring the evolution of desertification processes from 1973 to 1987 in Damagaram (Niger) with Landsat multispectral scanner and thematic mapper – volume: 194 start-page: 303 year: 2017 ident: 10.1016/j.rse.2022.113195_bb1145 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.035 – volume: 188 start-page: 9 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0325 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.004 – volume: 74 start-page: 201 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0030 article-title: Half-century perspectives on North American spring snowline and snow cover associations with the Pacific-North American teleconnection pattern publication-title: Clim. Res. doi: 10.3354/cr01499 – volume: 21 start-page: 1980 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0310 article-title: Mapping global cropland and field size publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12838 – volume: 52 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0955 article-title: Landsat archive holdings for Finland: opportunities for forest monitoring publication-title: Silva Fenn. doi: 10.14214/sf.9986 – volume: 228 start-page: 164 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1300 article-title: Understanding an urbanizing planet: Strategic directions for remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.020 – volume: 33 start-page: 45 year: 2013 ident: 10.1016/j.rse.2022.113195_bb0815 article-title: Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2012.09.014 – volume: 238 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0085 article-title: Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111356 – volume: 170 start-page: 121 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0490 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.004 – volume: 21 start-page: 201 year: 1987 ident: 10.1016/j.rse.2022.113195_bb0430 article-title: An assessment of landsat MSS and TM data for urban and near-urban land-cover digital classification publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90053-8 – volume: 270 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0050 article-title: Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112862 – volume: 252 year: 2021 ident: 10.1016/j.rse.2022.113195_bb1245 article-title: Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112181 – volume: 39 start-page: 4254 year: 2018 ident: 10.1016/j.rse.2022.113195_bb1215 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1452075 – volume: 83 start-page: 287 year: 2002 ident: 10.1016/j.rse.2022.113195_bb0305 article-title: Global land cover mapping from MODIS: algorithms and early results publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00078-0 – year: 1976 ident: 10.1016/j.rse.2022.113195_bb0630 article-title: The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT – volume: 22 start-page: 184 year: 2011 ident: 10.1016/j.rse.2022.113195_bb1025 article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales publication-title: L. Degrad. Dev. doi: 10.1002/ldr.1084 – start-page: 27 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0765 article-title: Landsat program – ident: 10.1016/j.rse.2022.113195_bb0835 – volume: 99 start-page: 646 issue: 9 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0230 article-title: A post-Paris look at climate observations publication-title: Nat. Geosci. doi: 10.1038/ngeo2785 – volume: 70 start-page: 829 year: 2004 ident: 10.1016/j.rse.2022.113195_bb0540 article-title: Development of a 2001 national land-cover database for the United States publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.70.7.829 – volume: 133 start-page: 38 year: 2013 ident: 10.1016/j.rse.2022.113195_bb1010 article-title: Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.021 – volume: 6 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0225 article-title: Open data and Earth observations: the case of opening up access to and use of Earth observation data through the global Earth observation system of systems publication-title: J. Intellect. Prop. Inf. Technol. Electron. Commer. Law – volume: 27 start-page: 3025 year: 2006 ident: 10.1016/j.rse.2022.113195_bb1230 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – start-page: 650 issue: June year: 2001 ident: 10.1016/j.rse.2022.113195_bb1115 article-title: Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources publication-title: Photogramm. Eng. Remote. Sens. – volume: 130 start-page: 370 year: 2017 ident: 10.1016/j.rse.2022.113195_bb1275 article-title: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.013 – volume: 44 start-page: 67 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0505 article-title: Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year Landsat time series publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2018.1437719 – volume: 92 start-page: 447 year: 2004 ident: 10.1016/j.rse.2022.113195_bb0005 article-title: Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.019 – volume: 231 year: 2019 ident: 10.1016/j.rse.2022.113195_bb1190 article-title: User needs for future Landsat missions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111214 – volume: 81 start-page: 345 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0545 article-title: Completion of the 2011 national land cover database for the conterminous United States – representing a decade of land cover change information publication-title: Photogramm. Eng. Remote. Sens. – volume: 106 start-page: 375 year: 2007 ident: 10.1016/j.rse.2022.113195_bb1255 article-title: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.003 – volume: 9 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0315 article-title: Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/2/025004 – volume: 171 start-page: 337 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1235 article-title: Development of a global ~90m water body map using multi-temporal Landsat images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.014 – volume: 185 start-page: 258 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1120 article-title: Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.060 – volume: 83 start-page: 3 year: 2002 ident: 10.1016/j.rse.2022.113195_bb0625 article-title: An overview of MODIS Land data processing and product status publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00084-6 – volume: 474 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0195 article-title: Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2020.118370 – volume: 9 start-page: 584 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0340 article-title: Copernicus Sentinel-2A calibration and products validation status publication-title: Remote Sens. doi: 10.3390/rs9060584 – volume: 182 start-page: 173 year: 2015 ident: 10.1016/j.rse.2022.113195_bb1090 article-title: Free and open-access satellite data are key to biodiversity conservation publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2014.11.048 – volume: 26 start-page: 341 year: 2011 ident: 10.1016/j.rse.2022.113195_bb0070 article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program publication-title: Geocarto Int. doi: 10.1080/10106049.2011.562309 – volume: 15 start-page: 19 year: 2005 ident: 10.1016/j.rse.2022.113195_bb0215 article-title: Increasing isolation of protected areas in tropical forests over the past twenty years publication-title: Ecol. Appl. doi: 10.1890/03-5258 – volume: 215 start-page: 284 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0155 article-title: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.021 – volume: 158 start-page: 220 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0495 article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.005 – volume: 248 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0790 article-title: Landsat 9: empowering open science and applications through continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111968 – volume: 720 year: 2020 ident: 10.1016/j.rse.2022.113195_bb1060 article-title: Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: a spatially explicit carbon bookkeeping model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137409 – volume: 238 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0090 article-title: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.011 – volume: 320 start-page: 1011 year: 2008 ident: 10.1016/j.rse.2022.113195_bb1180 article-title: Free access to Landsat imagery publication-title: Science (80-.) doi: 10.1126/science.320.5879.1011a – volume: 12 start-page: 521 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0330 article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years publication-title: Cryosphere doi: 10.5194/tc-12-521-2018 – volume: 104 start-page: 133 year: 2006 ident: 10.1016/j.rse.2022.113195_bb0145 article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.11.016 – start-page: 9044 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0800 article-title: First results from laser-based spectral characterization of Landsat 9 operational land imager-2 – volume: 3 start-page: 321 year: 1982 ident: 10.1016/j.rse.2022.113195_bb1165 article-title: Landsat images and mosaics of antarctica for mapping and glaciological studies publication-title: Ann. Glaciol. doi: 10.3189/S0260305500003001 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0400 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 145 start-page: 154 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0930 article-title: Landsat-8: Science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.001 – volume: 9 start-page: 1035 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0500 article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2016.1187673 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0245 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 56 start-page: 5717 year: 2018 ident: 10.1016/j.rse.2022.113195_bb0755 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2824828 – volume: 6 start-page: 10232 year: 2014 ident: 10.1016/j.rse.2022.113195_bb0035 article-title: The spectral response of the Landsat-8 operational land imager publication-title: Remote Sens. doi: 10.3390/rs61010232 – volume: 208 start-page: 670 year: 1980 ident: 10.1016/j.rse.2022.113195_bb0740 article-title: Global Crop Forecasting publication-title: Science (80-.) doi: 10.1126/science.208.4445.670 – volume: 14 start-page: 2418 year: 2022 ident: 10.1016/j.rse.2022.113195_bb0425 article-title: Initial cross-calibration of Landsat 8 and Landsat 9 using the simultaneous underfly event publication-title: Remote Sens. doi: 10.3390/rs14102418 – volume: 236 year: 2020 ident: 10.1016/j.rse.2022.113195_bb0385 article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111510 – ident: 10.1016/j.rse.2022.113195_bb0120 – volume: 25 start-page: 1565 year: 2004 ident: 10.1016/j.rse.2022.113195_bb0200 article-title: Digital change detection methods in ecosystem monitoring: a review publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000101675 – volume: 253 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0895 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112165 – volume: 9 year: 2015 ident: 10.1016/j.rse.2022.113195_bb0295 article-title: Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.9.096070 – volume: 190 start-page: 383 year: 2017 ident: 10.1016/j.rse.2022.113195_bb1035 article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.008 – volume: 193 start-page: 193 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0055 article-title: Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.001 – volume: 253 year: 2021 ident: 10.1016/j.rse.2022.113195_bb0285 article-title: Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112175 – volume: 11 start-page: 521 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0525 article-title: The detection and characterization of Arctic Sea ice leads with satellite imagers publication-title: Remote Sens. doi: 10.3390/rs11050521 – volume: 77 start-page: 50 year: 2001 ident: 10.1016/j.rse.2022.113195_bb0455 article-title: Caribou habitat mapping and fragmentation analysis using Landsat MSS, TM, and GIS data in the North Columbia Mountains, British Columbia, Canada publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00193-6 – volume: 176 start-page: 1 year: 2016 ident: 10.1016/j.rse.2022.113195_bb0615 article-title: The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.001 – volume: 122 start-page: 50 year: 2012 ident: 10.1016/j.rse.2022.113195_bb0010 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.025 – volume: 75 start-page: 230 year: 2001 ident: 10.1016/j.rse.2022.113195_bb1030 article-title: Classification and change detection using Landsat TM data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00169-3 – volume: 190 start-page: 289 year: 2017 ident: 10.1016/j.rse.2022.113195_bb0845 article-title: Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.030 – volume: 63 start-page: 258 year: 1998 ident: 10.1016/j.rse.2022.113195_bb0705 article-title: Measurements of Glacier variation in the Tibetan plateau using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00140-5 – ident: 10.1016/j.rse.2022.113195_bb0580 – volume: 3 start-page: 140 year: 2019 ident: 10.1016/j.rse.2022.113195_bb0205 article-title: Automated global delineation of human settlements from 40 years of Landsat satellite data archives publication-title: Big Earth Data doi: 10.1080/20964471.2019.1625528 |
| SSID | ssj0015871 |
| Score | 2.7335875 |
| SecondaryResourceType | review_article |
| Snippet | Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution... Since 1972, the Landsat program has been continually monitoring the Earth, to now provide 50 years of digital, multispectral, medium spatial resolution... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113195 |
| SubjectTerms | Climate change crops data collection Earth observation environment Human footprint humans issues and policy Land cover Land use Landsat Open data remote sensing Satellite time series analysis uncertainty |
| Title | Fifty years of Landsat science and impacts |
| URI | https://dx.doi.org/10.1016/j.rse.2022.113195 https://www.proquest.com/docview/2718277094 |
| Volume | 280 |
| WOSCitedRecordID | wos000860480000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgA8ELgsLE-FKQEA-rghI7np3HCbV8qCqo6lDfLKdxxEaVdHU7rf8956-kmmAaD7xETeqk9f3Ol7PvfD-E3hFKsOJUxuB8FHGmCNjBYwKn1NAbp0wlvLRkE2w85rNZ_t1ztWtLJ8Dqml9d5cv_CjVcA7DN1tl_gLt9KFyAzwA6HAF2ON4K-OFZBY71FrqlXQCgLrVc98P-HRsssFsj9a5jOlGAmeprk8_u8qB3tsC1lnuzKB3EPtu-WwmduDU9myLf7RmbmCKUjSv8-KNZ_FKrblV21FyqkFbp0pR88qJfg4Dpa8hma-0qyWIz-nftKuZJf2k4Ywwd5B-ttVs4OP-w0qZgKca-cfdqCuH48TcxPB2NxHQwm75fXsSGNMwE1z2Dyl20jxnNwajtn3wZzL62YSTKmaNM9H8vhLVtgt-1X_2bY3LtFW39julj9MhPGKITB_QTdEfVPXQw6MCBL72B1j30wJPa_9z20P1PlrV5-xQdWZ2IrE5ETRV5nYi8TkRwGnmdeIZOh4Ppx8-xJ8mI54SRdSxTGIRFygqepZVxPqqC5wUuwQ8sFPSrIjTDknAz9TRzT06yvOASHEUYh6ZW0wHaq5taPUdRTpMsnefKzvk54bJKaCIxT6kkZULyQ5QECYm5ryBviEwWIqQKngsQqjBCFU6oh-iovWXpyqfc1DgLYhdeAM6vE6AwN932NkAkwDaagJesVbPRAoPjhRmD3ry4RZuX6GGn26_Q3nq1Ua_Rvfnl-kyv3njV-g0RQH91 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fifty+years+of+Landsat+science+and+impacts&rft.jtitle=Remote+sensing+of+environment&rft.au=Wulder%2C+Michael+A&rft.au=Roy%2C+David+P&rft.au=Radeloff%2C+Volker+C&rft.au=Loveland%2C+Thomas+R&rft.date=2022-10-01&rft.issn=0034-4257&rft.volume=280+p.113195-&rft_id=info:doi/10.1016%2Fj.rse.2022.113195&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |