A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem

This paper presents an early attempt to solve one-to-many-to-one dynamic pickup-and-delivery problem (DPDP) by proposing a multi-objective memetic algorithm called LSH-MOMA, which is a synergy of multi-objective evolutionary algorithm and locality-sensitive hashing (LSH) based local search. Three ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 329; S. 73 - 89
Hauptverfasser: Zhu, Zexuan, Xiao, Jun, He, Shan, Ji, Zhen, Sun, Yiwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2016
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an early attempt to solve one-to-many-to-one dynamic pickup-and-delivery problem (DPDP) by proposing a multi-objective memetic algorithm called LSH-MOMA, which is a synergy of multi-objective evolutionary algorithm and locality-sensitive hashing (LSH) based local search. Three objectives namely route length, response time, and workload are optimized simultaneously in an evolutionary framework. In each generation of LSH-MOMA, LSH-based rectification and local search are imposed to repair and improve the individual solutions. LSH-MOMA is evaluated on four benchmark DPDPs and the experimental results show that LSH-MOMA is efficient in obtaining optimal tradeoff solutions of the three objectives.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.09.006