Distributed Hypothesis Testing With Variable-Length Coding
The problem of distributed testing against independence with variable-length coding is considered when the average and not the maximum communication load is constrained as in previous works. The paper characterizes the optimum type-II error exponent of a single-sensor single-decision center system g...
Gespeichert in:
| Veröffentlicht in: | IEEE journal on selected areas in information theory Jg. 1; H. 3; S. 681 - 694 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2641-8770, 2641-8770 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The problem of distributed testing against independence with variable-length coding is considered when the average and not the maximum communication load is constrained as in previous works. The paper characterizes the optimum type-II error exponent of a single-sensor single-decision center system given a maximum type-I error probability when communication is either over a noise-free rate-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> link or over a noisy discrete memoryless channel (DMC) with stop-feedback. Specifically, let <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> denote the maximum allowed type-I error probability. Then the optimum exponent of the system with a rate-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> link under a constraint on the average communication load coincides with the optimum exponent of such a system with a rate <inline-formula> <tex-math notation="LaTeX">R/(1-\epsilon) </tex-math></inline-formula> link under a maximum communication load constraint. A strong converse thus does not hold under an average communication load constraint. A similar observation also holds for testing against independence over DMCs. With variable-length coding and stop-feedback and under an average communication load constraint, the optimum type-II error exponent over a DMC of capacity <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> equals the optimum exponent under fixed-length coding and a maximum communication load constraint when communication is over a DMC of capacity <inline-formula> <tex-math notation="LaTeX">C/(1-\epsilon) </tex-math></inline-formula>. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2641-8770 2641-8770 |
| DOI: | 10.1109/JSAIT.2020.3039839 |