Division-free computation of subresultants using Bezout matrices

We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameteri...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics Vol. 86; no. 12; pp. 2186 - 2200
Main Author: Kerber, Michael
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 01.12.2009
Taylor & Francis Ltd
Subjects:
ISSN:0020-7160, 1029-0265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160802460595