Division-free computation of subresultants using Bezout matrices

We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 86; H. 12; S. 2186 - 2200
1. Verfasser: Kerber, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 01.12.2009
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160802460595