Division-free computation of subresultants using Bezout matrices
We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameteri...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 86; číslo 12; s. 2186 - 2200 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.12.2009
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207160802460595 |