Division-free computation of subresultants using Bezout matrices

We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 86; H. 12; S. 2186 - 2200
1. Verfasser: Kerber, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 01.12.2009
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates.
AbstractList We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates. [PUBLICATION ABSTRACT]
We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates.
Author Kerber, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Kerber
  fullname: Kerber, Michael
  email: mkerber@mpi-inf.mpg.de
  organization: Max-Planck-Institut für Informatik
BookMark eNqFkM1OwzAQhC1UJNrCA3CLuAdsJ7EdiQNQfiUkLnCONo6NXKV2sR2gPD2u2hMVcNrV7nw72pmgkXVWIXRM8CnBAp9hTDEnLLW0ZLiqqz00JpjWOaasGqHxep-vBQdoEsIcYyxqzsbo4tq8m2CczbVXKpNusRwixDTInM7C0HoVhj6CjSEbgrGv2ZX6ckPMFhC9kSocon0NfVBH2zpFL7c3z7P7_PHp7mF2-ZjLghcxZ63GLU-WvOiEElALBWVBKl3SFkDWHUszTTsApVuGa5BSU9GVVNa0ElQUU3Syubv07m1QITZzN3ibLBvOCOUlqVgS8Y1IeheCV7qRZvNN9GD6huBmnVazk1YiyQ9y6c0C_OpPZutmrHZ-AR_O910TYdU7rz1YacIu1cTPmMjzf8nid-NvhviTUg
CitedBy_id crossref_primary_10_1088_1367_2630_ab60f6
crossref_primary_10_1016_j_cagd_2011_01_004
crossref_primary_10_1016_j_jsc_2018_04_017
Cites_doi 10.1016/S0304-3975(02)00639-4
10.1016/0020-0190(84)90018-8
10.1007/b102438
10.1214/aoms/1177731540
10.1016/S0747-7171(08)80013-2
10.1142/9789812791962_0003
10.1006/jsco.1999.0322
10.1006/jsco.2001.0462
10.1007/3-540-33099-2
10.1007/s00200-004-0158-4
10.1080/00207160412331284178
10.1145/321371.321381
10.1016/S0022-4049(98)00081-4
10.1016/S0019-9958(82)90766-5
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2009
Copyright Taylor & Francis Ltd. Dec 2009
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2009
– notice: Copyright Taylor & Francis Ltd. Dec 2009
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160802460595
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1029-0265
EndPage 2200
ExternalDocumentID 2177071881
10_1080_00207160802460595
346227
Genre Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTCW
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ACAGQ
ACGEE
ACTIO
AEUMN
AFFNX
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
AQRUH
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
H~9
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c373t-6bf0b797673d8e8a98ea4315f42baac9d68a9f2daaefb609accf28d42c9258283
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273521800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Aug 13 03:37:33 EDT 2025
Sat Nov 29 02:21:30 EST 2025
Tue Nov 18 21:02:29 EST 2025
Mon May 13 12:10:04 EDT 2019
Mon Oct 20 23:44:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-6bf0b797673d8e8a98ea4315f42baac9d68a9f2daaefb609accf28d42c9258283
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 761274156
PQPubID 52924
PageCount 15
ParticipantIDs crossref_citationtrail_10_1080_00207160802460595
informaworld_taylorfrancis_310_1080_00207160802460595
proquest_journals_761274156
crossref_primary_10_1080_00207160802460595
PublicationCentury 2000
PublicationDate 2009-12-00
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-00
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2009
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Abdeljaoued J. (CIT0001) 2004
CIT0010
CIT0020
CIT0012
CIT0011
Chionh E. (CIT0007) 1999
Brown W. (CIT0006) 1971; 18
Kaltofen E. (CIT0015) 1989
Yap C. (CIT0021) 2000
Collins G. (CIT0009) 1967; 14
Basu S. (CIT0003) 2006
Loos R. (CIT0017) 1982
CIT0014
CIT0002
CIT0013
Rote G. (CIT0018) 2001; 2122
CIT0005
CIT0016
CIT0004
CIT0008
CIT0019
References_xml – volume: 18
  start-page: 504
  year: 1971
  ident: CIT0006
  publication-title: J. Ass. Comput. Mach.
– ident: CIT0020
  doi: 10.1016/S0304-3975(02)00639-4
– ident: CIT0004
  doi: 10.1016/0020-0190(84)90018-8
– ident: CIT0013
  doi: 10.1007/b102438
– ident: CIT0019
  doi: 10.1214/aoms/1177731540
– start-page: 115
  volume-title: Computer Algebra – Symbolic and Algebraic Computation
  year: 1982
  ident: CIT0017
– volume: 2122
  start-page: 119
  volume-title: Lecture notes in Computer Science
  year: 2001
  ident: CIT0018
– ident: CIT0010
  doi: 10.1016/S0747-7171(08)80013-2
– ident: CIT0014
  doi: 10.1142/9789812791962_0003
– ident: CIT0016
  doi: 10.1006/jsco.1999.0322
– ident: CIT0008
  doi: 10.1006/jsco.2001.0462
– volume-title: Algorithms in Real Algebraic Geometry
  year: 2006
  ident: CIT0003
  doi: 10.1007/3-540-33099-2
– ident: CIT0011
  doi: 10.1007/s00200-004-0158-4
– ident: CIT0002
  doi: 10.1080/00207160412331284178
– volume: 14
  start-page: 128
  year: 1967
  ident: CIT0009
  publication-title: J. Ass. Comput. Mach.
  doi: 10.1145/321371.321381
– volume-title: Méthodes matricielles. Introduction à la complexité algébrique
  year: 2004
  ident: CIT0001
– volume-title: Processor-Efficient Parallel Computation of Polynomial Greatest Common Divisor
  year: 1989
  ident: CIT0015
– ident: CIT0012
  doi: 10.1016/S0022-4049(98)00081-4
– ident: CIT0005
  doi: 10.1016/S0019-9958(82)90766-5
– volume-title: Transformations and transitions from the sylvester to the bezout resultant
  year: 1999
  ident: CIT0007
– volume-title: Fundamental Problems of Algorithmic Algebra
  year: 2000
  ident: CIT0021
SSID ssj0008976
Score 1.8341603
Snippet We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2186
SubjectTerms Algorithms
Bezout matrix
F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems-Computations on Polynomials
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms-Algebraic algorithms
Mathematics
Matrix
polynomial gcd
Polynomials
subresultant
Title Division-free computation of subresultants using Bezout matrices
URI https://www.tandfonline.com/doi/abs/10.1080/00207160802460595
https://www.proquest.com/docview/761274156
Volume 86
WOSCitedRecordID wos000273521800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA8yPHhxPnFOJQdPQqBr2ia5-RweZHiYulvJUwZzk7UV8a83SdPhVHbQa_mSluR79nv8ADi1FoQoLSMUmzRBiY45EinhCJtUYKsPjfB93I93ZDCgoxG7D7U5RSirdDG0qQdFeF3thJuLoqmIcx3c1jBmrkvUZfWYazG3Xr0r6Bv2nxZ6mDIPLeeokSNvcpq_7bBklZZmlv7Q0d7w9Nv__OQtsBk8TnhRs8g2WNPTHdBu0BxgEO5dcH49rhvNkZlrDaUn8PcGZwYWlY2di2riQIcL6Krln-Gl_phVJXzxU_51sQce-jfDq1sU8BWQxASXKBMmEsSeEsGKasoZ1dz6E6lJYsG5ZCqzz0ysONdGZBHjUpqYqiSWLHbZNrwPWtPZVB8ASEnCOI2wIloklHNODVM2xlVYcUkw7oCoOd9chuHjDgNjkvcWM0q_nVAHnC2WvNaTN1YRR18vLS_97w5TY5P8JM_L97ID0hVL8IpXdRuGyIO8FzmxjqLzzbLDP-7aBRtxQKaIekegVc4rfQzW5Vs5LuYnnrE_AU_B9E4
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oKOjFXRzHJQdPQqA2bZPcXAfFcfAwLreSZhFBZ2TaEfHXm6Tt4MYc9FpekpLl7e99AHtWglClZYBDE0c40qHAWUwFJibOiOWHJvN13Lcd2u2y-3t-XTnc8iqt0tnQpmwU4Xm1e9zOGV2nxLkSbisZE1cm6sJ6PJ6GGYdM54yvXvtuzIkZ9-Byjhw7-jqq-dsUX-TSl66lP7i0Fz3txf_-9BIsVEonOipvyTJM6f4KLNaADqh636twePpY1ppjM9QaSU_gjw4NDMpH1nzOR08OdzhHLmH-AR3r98GoQM--0b_O1-CmfdY7OccVxAKWhJICJ5kJMmq3iRLFNBOcaWFVithEYSaE5Cqx30yohNAmSwIupDQhU1EoeegCbmQdGv1BX28AYjTiggVEUZ1FTAjBDFfWzFVECUkJaUJQb3Aqq_7jDgbjKT0Ytyn9tkNN2B8PeSmbb0wiDj6fWlp4j4cp4Ul-kqfFW9GEeMIQMmGpVn0j0urJ5ym1uqJTz5LNP866C3PnvatO2rnoXrZgPqyAKoKDLWgUw5Hehln5Wjzmwx1_yz8AuN_4cQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1HT8MwFH5iCXFhI8r0gROSpRAnsX1jlAoEqjgweoscD1SptFWTIsSvx3aSiqUe4Bo9O5H9Zt74AI6sBaFKywCHJo5wpEOBs5gKTEycEasPTeb7uB9vabvNOh1-V9Xm5FVZpYuhTTkowutqJ9xDZeqKONfBbQ1j4rpEXVaPx7Mwb93m2DH1fetpoogZ99hyjhw7-jqp-dsWX8zSl6GlP5S0tzytlX9-8yosVy4nOit5ZA1mdH8dVmo4B1RJ9wacNrtlpzk2I62R9AT-4tDAoHxsg-d83HOowzly5fLP6Fy_D8YFevFj_nW-CQ-ty_uLK1wBLGBJKClwkpkgo_aUKFFMM8GZFtahiE0UZkJIrhL7zIRKCG2yJOBCShMyFYWShy7dRrZgrj_o621AjEZcsIAoqrOICSGY4coGuYooISkhDQjq801lNX3cgWD00pPJkNJvJ9SA48mSYTl6Yxpx8PnS0sL_7zAlOMlP8rR4KxoQT1lCprxqt2aItBL4PKXWU3TOWbLzx10PYfGu2Upvr9s3u7AUVigVwckezBWjsd6HBfladPPRgefxD84c9yM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Division-free+computation+of+subresultants+using+Bezout+matrices&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Kerber%2C+Michael&rft.date=2009-12-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=86&rft.issue=12&rft.spage=2186&rft_id=info:doi/10.1080%2F00207160802460595&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2177071881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon