Division-free computation of subresultants using Bezout matrices

We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameteri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 86; číslo 12; s. 2186 - 2200
Hlavní autor: Kerber, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.12.2009
Taylor & Francis Ltd
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an algorithm to compute the subresultant sequence of two polynomials that completely avoids division in the ground domain, generalizing an algorithm given by Abdeljaoued et al. [J. Abdeljaoued, G. Diaz-Toca, and L. Gonzalez-Vega, Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math. 81 (2004), pp. 1223-1238]. We evaluate determinants of slightly manipulated Bezout matrices using the algorithm of Berkowitz. Although the algorithm gives worse complexity bounds than pseudo-division approaches, our experiments show that our approach is superior for input polynomials with moderate degrees if the ground domain contains indeterminates.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160802460595