Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints

The purpose of dark image enhancement is to restore dark images to visual images under normal lighting conditions. Due to the ill-posedness of the enhancement process, previous enhancement algorithms often have overexposure, underexposure, noise increases and artifacts when dealing with complex and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Photonics Ročník 11; číslo 2; s. 190
Hlavní autoři: Guan, Lei, Dong, Jiawei, Li, Qianxi, Huang, Jijiang, Chen, Weining, Wang, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.02.2024
Témata:
ISSN:2304-6732, 2304-6732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The purpose of dark image enhancement is to restore dark images to visual images under normal lighting conditions. Due to the ill-posedness of the enhancement process, previous enhancement algorithms often have overexposure, underexposure, noise increases and artifacts when dealing with complex and changeable images, and the robustness is poor. This article proposes a new enhancement approach consisting in constructing a dim light enhancement network with more robustness and rich detail features through the collaborative constraint of multiple self-coding priors (CCMP). Specifically, our model consists of two prior modules and an enhancement module. The former learns the feature distribution of the dark light image under normal exposure as an a priori term of the enhancement process through multiple specific autoencoders, implicitly measures the enhancement quality and drives the network to approach the truth value. The latter fits the curve mapping of the enhancement process as a fidelity term to restore global illumination and local details. Through experiments, we concluded that the new method proposed in this article can achieve more excellent quantitative and qualitative results, improve detail contrast, reduce artifacts and noise, and is suitable for dark light enhancement in multiple scenes.
AbstractList The purpose of dark image enhancement is to restore dark images to visual images under normal lighting conditions. Due to the ill-posedness of the enhancement process, previous enhancement algorithms often have overexposure, underexposure, noise increases and artifacts when dealing with complex and changeable images, and the robustness is poor. This article proposes a new enhancement approach consisting in constructing a dim light enhancement network with more robustness and rich detail features through the collaborative constraint of multiple self-coding priors (CCMP). Specifically, our model consists of two prior modules and an enhancement module. The former learns the feature distribution of the dark light image under normal exposure as an a priori term of the enhancement process through multiple specific autoencoders, implicitly measures the enhancement quality and drives the network to approach the truth value. The latter fits the curve mapping of the enhancement process as a fidelity term to restore global illumination and local details. Through experiments, we concluded that the new method proposed in this article can achieve more excellent quantitative and qualitative results, improve detail contrast, reduce artifacts and noise, and is suitable for dark light enhancement in multiple scenes.
Audience Academic
Author Guan, Lei
Dong, Jiawei
Huang, Jijiang
Chen, Weining
Li, Qianxi
Wang, Hao
Author_xml – sequence: 1
  givenname: Lei
  surname: Guan
  fullname: Guan, Lei
– sequence: 2
  givenname: Jiawei
  surname: Dong
  fullname: Dong, Jiawei
– sequence: 3
  givenname: Qianxi
  surname: Li
  fullname: Li, Qianxi
– sequence: 4
  givenname: Jijiang
  surname: Huang
  fullname: Huang, Jijiang
– sequence: 5
  givenname: Weining
  surname: Chen
  fullname: Chen, Weining
– sequence: 6
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
BookMark eNplkV9vVCEQxYmpibX2A_hG4vOtDHD_Pda16ibb1MT2mQB3uMt6F1Zgm_jtS11jmggPDJMzPw45b8lZiAEJeQ_sSoiRfTxsY4nB2wzAOIORvSLnXDDZdL3gZy_qN-Qy5x2rawQxtPKc2M86_aQbP28LXe_1jM1N2OpgcY-h0Fss2zjRTzrjRGOgt8el-MOC9AcuriptnHyY6ffkY6KruCzaxKSLf8R6C7kk7UPJ78hrp5eMl3_PC_Lw5eZ-9a3Z3H1dr643jRW9KE1XvevO8cEy08reSAeym1oOwI3psWdtJ8BwdCNW_1rbFowBcAY0SNcKcUHWJ-4U9U4dkt_r9FtF7dWfRkyz0ql4u6BqK1uPDjoDTrJhHJB39RmODIzjE6usDyfWIcVfR8xF7eIxhWpf8VEAa8XQP6uuTqpZV6gPLtYv27on3HtbQ3K-9q_7QQKTTHZ1AE4DNsWcE7p_NoGp5yzVf1mKJwkLlHA
Cites_doi 10.1145/2808492.2808511
10.1080/01621459.2020.1847120
10.1109/TIP.2019.2910412
10.1007/s10489-021-02627-5
10.1080/10618562.2020.1789116
10.1109/CVPR52688.2022.01426
10.1109/83.557356
10.1109/TMM.2020.3037526
10.1007/s00170-021-06592-8
10.1109/FG.2018.00118
10.3390/app13063861
10.1109/CVPR52688.2022.00581
10.1007/s11263-023-01852-4
10.1609/aaai.v37i1.25130
10.1093/mnras/stac2272
10.1109/SITIS.2013.19
10.5201/ipol.2014.107
10.1145/3343031.3350983
10.1007/s10489-022-04013-1
10.1109/CVPR52688.2022.01553
10.1016/j.jvcir.2022.103712
10.1109/TCSVT.2021.3049940
10.1109/CVPR46437.2021.01042
10.1145/3394171.3413757
10.4310/CMS.2019.v17.n5.a11
10.1109/VCIP.2017.8305143
10.1016/j.rse.2020.111716
10.1109/TCSVT.2017.2728822
10.1007/s10489-020-02119-y
10.1109/TIP.2021.3050850
10.1186/s40537-019-0212-5
10.1364/JOSA.61.000001
10.1109/83.597272
10.1109/JSTARS.2021.3076198
10.1073/pnas.2109420119
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L7M
LK8
L~C
L~D
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/photonics11020190
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
proquest PBSC-Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Corrosion Abstracts
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2304-6732
ExternalDocumentID oai_doaj_org_article_5f14a9f16b1f40898e2612b2e01bf2d0
A784104046
10_3390_photonics11020190
GeographicLocations United States
New Jersey
GeographicLocations_xml – name: New Jersey
– name: United States
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABHFT
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
GX1
HCIFZ
IAO
ITC
KQ8
KZ1
LK8
LMP
M7P
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
GS5
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c373t-6020a6f28c0b547b4f146d52112bb7e705631b2ef9e009aac51bb11fb1a14f533
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172736100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2304-6732
IngestDate Mon Nov 10 04:30:45 EST 2025
Sun Jul 13 05:23:35 EDT 2025
Sat Nov 29 10:29:32 EST 2025
Sat Nov 29 07:15:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-6020a6f28c0b547b4f146d52112bb7e705631b2ef9e009aac51bb11fb1a14f533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2931053870?pq-origsite=%requestingapplication%
PQID 2931053870
PQPubID 2032352
ParticipantIDs doaj_primary_oai_doaj_org_article_5f14a9f16b1f40898e2612b2e01bf2d0
proquest_journals_2931053870
gale_infotracacademiconefile_A784104046
crossref_primary_10_3390_photonics11020190
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Photonics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_36) 2021; 14
Wang (ref_14) 2018; 28
Hai (ref_18) 2023; 90
Yang (ref_22) 2021; 30
Wu (ref_7) 2022; 52
E (ref_35) 2019; 17
ref_13
ref_11
Li (ref_19) 2021; 31
ref_33
Ren (ref_25) 2019; 28
ref_32
ref_31
Zheng (ref_2) 2021; 113
Land (ref_8) 1971; 61
Jobson (ref_10) 1997; 6
ref_17
Rotskoff (ref_37) 2022; 119
ref_16
Jobson (ref_9) 1997; 6
Sreenu (ref_3) 2019; 6
Yuan (ref_4) 2020; 241
Chen (ref_30) 2023; 132
ref_24
ref_23
ref_21
ref_20
ref_1
Karamanis (ref_38) 2022; 516
ref_29
ref_28
ref_27
ref_26
Nemeth (ref_39) 2021; 116
Prat (ref_34) 2020; 34
Tan (ref_6) 2023; 53
Petro (ref_12) 2014; 4
Lu (ref_15) 2021; 23
Feng (ref_5) 2021; 51
References_xml – ident: ref_13
  doi: 10.1145/2808492.2808511
– volume: 116
  start-page: 433
  year: 2021
  ident: ref_39
  article-title: Stochastic Gradient Markov Chain Monte Carlo
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1847120
– volume: 28
  start-page: 4364
  year: 2019
  ident: ref_25
  article-title: Low-Light Image Enhancement via a Deep Hybrid Network
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2910412
– volume: 52
  start-page: 3559
  year: 2022
  ident: ref_7
  article-title: N2PN: Non-Reference Two-Pathway Network for Low-Light Image Enhancement
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02627-5
– volume: 34
  start-page: 397
  year: 2020
  ident: ref_34
  article-title: A Priori Sub-Grid Modelling Using Artificial Neural Networks
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618562.2020.1789116
– ident: ref_32
  doi: 10.1109/CVPR52688.2022.01426
– volume: 6
  start-page: 451
  year: 1997
  ident: ref_9
  article-title: Properties and Performance of a Center/Surround Retinex
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.557356
– volume: 23
  start-page: 4093
  year: 2021
  ident: ref_15
  article-title: TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3037526
– volume: 113
  start-page: 35
  year: 2021
  ident: ref_2
  article-title: Recent Advances in Surface Defect Inspection of Industrial Products Using Deep Learning Techniques
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-06592-8
– ident: ref_23
– ident: ref_17
  doi: 10.1109/FG.2018.00118
– ident: ref_1
  doi: 10.3390/app13063861
– ident: ref_21
  doi: 10.1109/CVPR52688.2022.00581
– volume: 132
  start-page: 208
  year: 2023
  ident: ref_30
  article-title: Context Autoencoder for Self-Supervised Representation Learning
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-023-01852-4
– ident: ref_31
  doi: 10.1609/aaai.v37i1.25130
– volume: 516
  start-page: 1644
  year: 2022
  ident: ref_38
  article-title: Accelerating Astronomical and Cosmological Inference with Preconditioned Monte Carlo
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stac2272
– ident: ref_11
  doi: 10.1109/SITIS.2013.19
– volume: 4
  start-page: 71
  year: 2014
  ident: ref_12
  article-title: Multiscale Retinex
  publication-title: Image Process. Line
  doi: 10.5201/ipol.2014.107
– ident: ref_28
  doi: 10.1145/3343031.3350983
– volume: 53
  start-page: 11019
  year: 2023
  ident: ref_6
  article-title: Low-Light Image Enhancement with Geometrical Sparse Representation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04013-1
– ident: ref_29
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref_33
– ident: ref_27
– volume: 90
  start-page: 103712
  year: 2023
  ident: ref_18
  article-title: R2RNet: Low-Light Image Enhancement via Real-Low to Real-Normal Network
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2022.103712
– volume: 31
  start-page: 4227
  year: 2021
  ident: ref_19
  article-title: Low-Light Image Enhancement via Progressive-Recursive Network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3049940
– ident: ref_24
  doi: 10.1109/CVPR46437.2021.01042
– ident: ref_26
  doi: 10.1145/3394171.3413757
– volume: 17
  start-page: 1407
  year: 2019
  ident: ref_35
  article-title: A Priori Estimates of the Population Risk for Two-Layer Neural Networks
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2019.v17.n5.a11
– ident: ref_16
  doi: 10.1109/VCIP.2017.8305143
– volume: 241
  start-page: 111716
  year: 2020
  ident: ref_4
  article-title: Deep Learning in Environmental Remote Sensing: Achievements and Challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– volume: 28
  start-page: 2190
  year: 2018
  ident: ref_14
  article-title: Single Image Dehazing Based on the Physical Model and MSRCR Algorithm
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2728822
– volume: 51
  start-page: 5111
  year: 2021
  ident: ref_5
  article-title: Low-Light Image Enhancement Based on Multi-Illumination Estimation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02119-y
– volume: 30
  start-page: 2072
  year: 2021
  ident: ref_22
  article-title: Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3050850
– volume: 6
  start-page: 48
  year: 2019
  ident: ref_3
  article-title: Intelligent Video Surveillance: A Review through Deep Learning Techniques for Crowd Analysis
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0212-5
– volume: 61
  start-page: 1
  year: 1971
  ident: ref_8
  article-title: Lightness and Retinex Theory
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.61.000001
– volume: 6
  start-page: 965
  year: 1997
  ident: ref_10
  article-title: A Multiscale Retinex for Bridging the Gap between Color Images and the Human Observation of Scenes
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
– ident: ref_20
– volume: 14
  start-page: 4607
  year: 2021
  ident: ref_36
  article-title: A Multi-Kernel Mode Using a Local Binary Pattern and Random Patch Convolution for Hyperspectral Image Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3076198
– volume: 119
  start-page: e2109420119
  year: 2022
  ident: ref_37
  article-title: Adaptive Monte Carlo Augmented with Normalizing Flows
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2109420119
SSID ssj0000913854
Score 2.2455971
Snippet The purpose of dark image enhancement is to restore dark images to visual images under normal lighting conditions. Due to the ill-posedness of the enhancement...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 190
SubjectTerms Algorithms
Collaboration
collaborative constraint
dark light enhancement
Datasets
Deep learning
fidelity term
Illumination
Image enhancement
Image restoration
Light
Methods
Modules
Noise control
Noise reduction
Optimization
Robustness
self-encoding prior
Semantics
Teaching methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-YwFA0iLtz4GBU_R4csBgaEYtKkr6XfpzKCiqCCu5AnitpK2_H3e29aH4OIG7cli_Tc5N5z2-QcQn6zoGHpplnCHSsSmXqblFnpElFa7irrjJMumk0UZ2fl9XV1_s7qC8-EDfLAA3B7WeBSV4HnhgfJyqr0KHplUs-4CamL3TorqnfNVMzBFRdlJoffmAL6-r3Hm6ZHsdkO6l2KF6j_K0RRr_-zrBxLzdEKWRo5It0f5rZK5nz9gyyPfJGOu7FbI_ZAt3f0BNtrevwAiSE5rG8wivjFj55Gb2g6hTLlaFPT0_HoIL3w9wFG2gbLFj1vb5uWzt6Ww5On6OIZvSP6bp1cHR1ezv4mo2lCYkUh-iSHt9N5SEvLTCYLIwG_3EGRBtBM4QsgPIIDfKHygJLWNuPGcB4M11wGIH8bZL5uar9JKEut9CZjtpC55CY3zOoKDQCND0IwPyG7Lwiqx0EbQ0FPgXCrD3BPyBQxfh2IstbxAQRbjcFWXwV7Qv5ghBRuPoDB6vEOAcwXZazUPv5FhbQk8wnZfgmiGndlp4DaAJ0UkKK2vmM2P8liChRnOMO9Teb79p_fIQv2qb_t2l9xQT4D_fXleg
  priority: 102
  providerName: Directory of Open Access Journals
Title Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints
URI https://www.proquest.com/docview/2931053870
https://doaj.org/article/5f14a9f16b1f40898e2612b2e01bf2d0
Volume 11
WOSCitedRecordID wos001172736100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: P5Z
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFlpdYWlY-ICEhWbUT53WqumUrKrGriIdUuFh-thWQLEnokd_OTNbbqkJw4eJDbEUjz9Pj8XyEvORBg-gmGROOF0wm3rIyKx1LSytcZZ1x0o1gE8VyWZ6dVXVMuPWxrHJjE0dD7VqLOfIDcEsQCqQgXoerHwxRo_B2NUJo3CXb2KkM5Hx7Nl_W76-zLNj1sszk-jozhfP9weqiHbDpbA9-L8GH1Lcc0ti3_2_WeXQ5Jzv_S-wueRCDTXq0lo6H5I5vHpGdGHjSqNb9Y2Lf6O4rfYfndHr6HSwMmzcXKA6YOqSLEWSazsDfOdo2dBFrEOkH_y3AStui_6N1d9l29PhGrq48RTjQEYRi6J-QTyfzj8dvWURfYDYt0oHlsD06D0lpuclkYWQAo-rA24vEmMIXEDmlwiQ-VB62WWubCWOECEZoIQNEkU_JVtM2_hmhPLHSm4zbQuZSmNxwqytEEjQ-pCn3E_J6wwK1WjfZUHA4QX6pP_g1ITNk0vVC7I89fmi7cxXVTWVArK6CyI0IkpdV6bFVGlDLhQmJg5-8QhYr1GLYBqvjYwSgF_thqSO8jgX7JvMJ2d-wWEX17tUNf5__e3qP3E8gClqXee-TraH76V-Qe_ZquOy7aZTW6ZgImGLZaY3jrzmMdfYF5uvTRf35N7eA-vw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRJsaHmpA6V4AUJCimo7zmuBqj7VUWdGI1GksjLxi1ZAMiShiJ_qN3JvHq0Qgl0XbBMrcuLjc26u7XsIecl8DtAVUcAtSwIpnAnSKLVBmBpuM2O1lbY1m0jm8_TsLFuskKvhLAxuqxw4sSVqWxrMkW-DLEEoEAK8dpbfAnSNwtXVwUKjg8WJ-_kDftnqt5MDGN9XQhwdnu4fB72rQGDCJGyCGAKkPPYiNUxHMtHSA1lYUDEutE5cAhFByLVwPnMQf-S5ibjWnHvNcy59hAlQoPxVCWBnI7K6mMwWH66zOlhlM41kt3wahhnbXp6XDRa5rUFnBR7c_k0AW5-Av6lBK3FHa__bx1kn9_tgmu526H9AVlzxkKz1gTXtaat-RMxBXn2mU8xD0MlXYNDgsDhHuGNqlM5aE226B3puaVnQWb_Hkr5zXzy0NCXqO11UF2VF92_mzaWjaHfammw09WPy_lZe9QkZFWXhNghlwkinI2YSGUuuY81MnqFTonY-DJkbkzfDkKtlV0REwc8X4kP9gY8x2UNQXDfE-t_thbL6pHo6URF0Ns88jzX3kqVZ6rAUHPSWce2FhYe8RkgpZCn4DCbvD1tAf7Hel9rF5WbgbxmPyeYAKdXTV61u8PT037dfkLvHp7Opmk7mJ8_IPQERX7elfZOMmuq7e07umMvmoq62-plCycfbxt8vtNNQ5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLUJcKE91oYAPICSkaP3K64BQt7srVm1XKx5SbyF-0QpIliQU8df4dczk0QohuPXANbEix_7mm_HYno-Qp8znAF0RBtyyOFDCmSAJExvIxHCbGqutsq3YRLxaJScn6XqL_BzuwuCxyoETW6K2pcEc-QTcEoQCEuA18f2xiPVs8WrzNUAFKdxpHeQ0Oogcuh_fYflWv1zOYK6fCbGYvzt4HfQKA4GRsWyCCIKlPPIiMUyHKtbKA3FY8GhcaB27GKIDybVwPnUQi-S5CbnWnHvNc658iMlQoP_tWMKiZ0S2p_PV-s1Fhgcrbiah6rZSpUzZZHNaNljwtgafK_AS92_OsNUM-JtnaN3dYud_Hqhb5GYfZNP9zipuky1X3CE7fcBNezqr7xIzy6tP9AjzE3T5BZg1mBenaAaYMqXHrbg2nYKft7Qs6HF_9pK-dZ89tDQl-n26rs7Kih5c2tO5oyiD2opvNPU98v5KfvU-GRVl4XYJZcIop0NmYhUpriPNTJ6igqJ2XkrmxuTFMP3ZpisuksGiDLGS_YGVMZkiQC4aYl3w9kFZfcx6mslC6Gyeeh5p7hVL0sRhiTjoLePaCwsfeY7wypC9YBhM3l_CgP5iHbBsH7ehgddVNCZ7A7yyntbq7BJbD_79-gm5DqDLjparw4fkhoBAsDvpvkdGTfXNPSLXzHlzVlePe6Oh5MNVw-8XWQlZgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dark+Light+Image-Enhancement+Method+Based+on+Multiple+Self-Encoding+Prior+Collaborative+Constraints&rft.jtitle=Photonics&rft.au=Guan%2C+Lei&rft.au=Dong%2C+Jiawei&rft.au=Li%2C+Qianxi&rft.au=Huang%2C+Jijiang&rft.date=2024-02-01&rft.issn=2304-6732&rft.eissn=2304-6732&rft.volume=11&rft.issue=2&rft.spage=190&rft_id=info:doi/10.3390%2Fphotonics11020190&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_photonics11020190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon