On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function H4(a,b;c,d;z1,z2) Ratios

The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalizati...

Full description

Saved in:
Bibliographic Details
Published in:Axioms Vol. 12; no. 3; p. 299
Main Authors: Antonova, Tamara, Dmytryshyn, Roman, Lutsiv, Ilona-Anna, Sharyn, Serhii
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2023
Subjects:
ISSN:2075-1680, 2075-1680
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H,H⊂C2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated.
AbstractList The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H,H⊂C2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated.
The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H, H⊂ C 2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated.
Author Lutsiv, Ilona-Anna
Antonova, Tamara
Dmytryshyn, Roman
Sharyn, Serhii
Author_xml – sequence: 1
  givenname: Tamara
  orcidid: 0000-0002-0358-4641
  surname: Antonova
  fullname: Antonova, Tamara
– sequence: 2
  givenname: Roman
  orcidid: 0000-0003-2845-0137
  surname: Dmytryshyn
  fullname: Dmytryshyn, Roman
– sequence: 3
  givenname: Ilona-Anna
  orcidid: 0000-0002-4100-2972
  surname: Lutsiv
  fullname: Lutsiv, Ilona-Anna
– sequence: 4
  givenname: Serhii
  orcidid: 0000-0003-2547-1442
  surname: Sharyn
  fullname: Sharyn, Serhii
BookMark eNp1UV1rVDEQDVLBWvvqc8AXhd2aSXJvbuiTLl23UCj48Rzmzs2tWXaTNbkLbZ_8G_49f4mpK6KCw8AcJuecGTJP2VFM0TP2HMSZUla8xtuQtgWkUEJa-4gdS2GaObSdOPoDP2GnpaxFDQuqA3XMNteRf0hbz99mjPTZD3yR4hTivqJlRppCivzidoexVFT4mDJfpRy_f_1W-Opu5_ONr_IpB-LLfTzwV_olzvpzmg3n9zC7l6_4e6wP5Rl7POKm-NNf9YR9Wl58XKzmV9fvLhdvruakjJrmTd_DIGu2NJp2AKE9adTKmxZbOTY0GEIjh6GnFkCQBvQAo9QCDZBV6oRdHnyHhGu3y2GL-c4lDO5nI-Ubh3kKtPGukwKlJYWIoybqO2lReNuMQkFXl6heLw5eu5y-7H2Z3Drtc6zrO2ksNAa0kZV1dmBRTqVkP_6eCsI9HMj9faAq0P8IKEwPnxSnjGHzP9kPM5OX-Q
CitedBy_id crossref_primary_10_3390_math11214487
crossref_primary_10_3390_axioms12080738
crossref_primary_10_1007_s11253_024_02338_3
crossref_primary_10_3842_umzh_v77i9_9105
crossref_primary_10_3390_sym17091442
crossref_primary_10_3390_sym16020220
crossref_primary_10_30970_ms_63_2_136_145
Cites_doi 10.15330/cmp.11.1.33-41
10.1007/BF02433970
10.1007/BF01455825
10.1023/A:1011977720316
10.15330/cmp.13.3.642-650
10.30970/ms.54.1.3-14
10.3390/axioms10040310
10.3390/math9020148
10.23939/mmc2022.03.767
10.1007/BF02433965
10.15330/cmp.13.3.608-618
10.1007/BF01571633
10.1007/s10958-022-06062-w
10.15330/cmp.11.1.54-58
10.1080/10652469.2021.1878356
10.1016/0377-0427(85)90019-6
10.1007/BF01472246
10.30970/ms.52.2.115-123
10.2991/978-94-91216-37-4_1
10.1007/s10958-020-04729-w
10.15330/cmp.10.1.58-64
10.1016/0771-050X(80)90005-4
10.15330/cmp.13.3.619-630
10.1007/s11253-020-01841-7
10.1007/BF01098839
10.1016/j.ejc.2020.103235
10.1016/0771-050X(78)90002-5
10.15421/242203
10.15330/cmp.6.1.11-25
10.1093/imanum/8.2.209
10.1016/0168-9274(83)90006-5
10.1007/BFb0072451
10.15330/cmp.12.2.353-359
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/axioms12030299
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_820a29c3aaaf4ccb829a0e95f0318d21
10_3390_axioms12030299
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c373t-5bb1d21d26cf76d104ec4a43e76a62f5cd7ca72ddbc6110c41ae11f240a71c933
IEDL.DBID M7S
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1680
IngestDate Tue Oct 14 19:07:42 EDT 2025
Fri Jul 25 12:03:24 EDT 2025
Sat Nov 29 07:09:56 EST 2025
Tue Nov 18 22:13:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-5bb1d21d26cf76d104ec4a43e76a62f5cd7ca72ddbc6110c41ae11f240a71c933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2547-1442
0000-0002-4100-2972
0000-0002-0358-4641
0000-0003-2845-0137
OpenAccessLink https://www.proquest.com/docview/2791571472?pq-origsite=%requestingapplication%
PQID 2791571472
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_820a29c3aaaf4ccb829a0e95f0318d21
proquest_journals_2791571472
crossref_primary_10_3390_axioms12030299
crossref_citationtrail_10_3390_axioms12030299
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cuyt (ref_33) 1988; 8
Bilanyk (ref_40) 2019; 11
ref_12
ref_10
Bodnar (ref_15) 1993; 64
Siemaszko (ref_39) 1980; 6
Antonova (ref_49) 2020; 54
Manzii (ref_20) 2000; 31
Horn (ref_23) 1931; 105
Dmytryshyn (ref_30) 2022; 30
Komatsu (ref_3) 2021; 13
Horn (ref_25) 1937; 113
Horn (ref_24) 1935; 111
Bodnar (ref_46) 2020; 12
Cuyt (ref_5) 1985; 12–13
Hoyenko (ref_11) 2007; 4
Bodnar (ref_37) 2022; 74
ref_29
ref_28
ref_27
ref_26
Bodnar (ref_45) 2021; 13
Cuyt (ref_6) 1988; 4
Manzii (ref_16) 1998; 90
Bodnar (ref_38) 2022; 265
Dmytryshyn (ref_47) 2019; 11
Petreolle (ref_7) 2021; 92
Murphy (ref_34) 1978; 4
ref_32
Antonova (ref_21) 2021; 13
ref_31
Hoyenko (ref_14) 2014; 6
Komatsu (ref_4) 2020; 84
Bodnar (ref_36) 2020; 246
Antonova (ref_48) 2020; 72
Bodnar (ref_17) 1998; 90
Brychkov (ref_50) 2021; 32
Antonova (ref_22) 2023; 6
Hoyenko (ref_13) 1997; 48
Bilanyk (ref_35) 2019; 52
Hladun (ref_18) 2022; 9
Bodnar (ref_19) 2001; 107
ref_44
ref_43
ref_41
ref_1
ref_2
ref_9
ref_8
Bodnar (ref_42) 2018; 9
References_xml – ident: ref_32
– ident: ref_26
– volume: 11
  start-page: 33
  year: 2019
  ident: ref_40
  article-title: Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.11.1.33-41
– volume: 90
  start-page: 2376
  year: 1998
  ident: ref_16
  article-title: On the approximation of an Appell hypergeometric function by a branched continued fraction
  publication-title: J. Math. Sci.
  doi: 10.1007/BF02433970
– ident: ref_1
– volume: 105
  start-page: 381
  year: 1931
  ident: ref_23
  article-title: Hypergeometrische Funktionen zweier Veränderlichen
  publication-title: Math. Ann.
  doi: 10.1007/BF01455825
– volume: 107
  start-page: 3550
  year: 2001
  ident: ref_19
  article-title: Expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction and its limit behavior
  publication-title: J. Math. Sci.
  doi: 10.1023/A:1011977720316
– volume: 13
  start-page: 642
  year: 2021
  ident: ref_21
  article-title: On convergence of branched continued fraction expansions of Horn’s hypergeometric function H3 ratios
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.13.3.642-650
– volume: 54
  start-page: 3
  year: 2020
  ident: ref_49
  article-title: Truncation error bounds for branched continued fraction whose partial denominators are equal to unity
  publication-title: Mat. Stud.
  doi: 10.30970/ms.54.1.3-14
– ident: ref_8
– ident: ref_29
  doi: 10.3390/axioms10040310
– ident: ref_10
  doi: 10.3390/math9020148
– ident: ref_31
– volume: 9
  start-page: 767
  year: 2022
  ident: ref_18
  article-title: On convergence of function F4(1, 2; 2, 2; z1, z2) expansion into a branched continued fraction
  publication-title: Math. Model. Comput.
  doi: 10.23939/mmc2022.03.767
– ident: ref_27
– volume: 90
  start-page: 2352
  year: 1998
  ident: ref_17
  article-title: Multidimensional C-fractions
  publication-title: J. Math. Sci.
  doi: 10.1007/BF02433965
– volume: 31
  start-page: 344
  year: 2000
  ident: ref_20
  article-title: Investigation of expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction
  publication-title: Approx. Theor. Its Appl. Pr. Inst. Math. NAS Ukr.
– volume: 13
  start-page: 608
  year: 2021
  ident: ref_3
  article-title: Asymmetric circular graph with Hosoya index and negative continued fractions
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.13.3.608-618
– volume: 113
  start-page: 242
  year: 1937
  ident: ref_25
  article-title: Hypergeometrische Funktionen zweier Veränderlichen
  publication-title: Math. Ann.
  doi: 10.1007/BF01571633
– volume: 84
  start-page: 399
  year: 2020
  ident: ref_4
  article-title: Branched continued fractions associated with Hosoya index of the tree graph
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 265
  start-page: 423
  year: 2022
  ident: ref_38
  article-title: Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-022-06062-w
– volume: 11
  start-page: 54
  year: 2019
  ident: ref_47
  article-title: On some of convergence domains of multidimensional S-fractions with independent variables
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.11.1.54-58
– volume: 32
  start-page: 969
  year: 2021
  ident: ref_50
  article-title: On some formulas for the Horn functions H4(a, b; c, c′; w, z) and H7(c) (a; c, c′; w, z)
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2021.1878356
– volume: 12–13
  start-page: 221
  year: 1985
  ident: ref_5
  article-title: A review of multivariate Padé approximation theory
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(85)90019-6
– volume: 111
  start-page: 638
  year: 1935
  ident: ref_24
  article-title: Hypergeometrische Funktionen zweier Veränderlichen
  publication-title: Math. Ann.
  doi: 10.1007/BF01472246
– volume: 52
  start-page: 115
  year: 2019
  ident: ref_35
  article-title: A truncation error bound for some branched continued fractions of the special form
  publication-title: Mat. Stud.
  doi: 10.30970/ms.52.2.115-123
– ident: ref_28
– volume: 74
  start-page: 1155
  year: 2022
  ident: ref_37
  article-title: Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions
  publication-title: Ukr. Mat. Zhurn.
– ident: ref_41
  doi: 10.2991/978-94-91216-37-4_1
– volume: 4
  start-page: 42
  year: 2007
  ident: ref_11
  article-title: Correspondence principle and convergence of sequences of analytic functions of several variables
  publication-title: Mat. Visn. Nauk. Tov. Im. Shevchenka.
– volume: 246
  start-page: 188
  year: 2020
  ident: ref_36
  article-title: On the convergence of branched continued fractions of a special form in angular domains
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-020-04729-w
– volume: 9
  start-page: 58
  year: 2018
  ident: ref_42
  article-title: On the convergence of multidimensional S-fractions with independent variables
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.10.1.58-64
– volume: 48
  start-page: 17
  year: 1997
  ident: ref_13
  article-title: Expansion of Appel F1 and Lauricella FD(N) hypergeometric functions into branched continued fractions
  publication-title: Visnyk Lviv. Univ. Ser. Mech.-Math.
– volume: 6
  start-page: 121
  year: 1980
  ident: ref_39
  article-title: Branched continued fractions for double power series
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(80)90005-4
– volume: 6
  start-page: 22
  year: 2023
  ident: ref_22
  article-title: Branched continued fraction representations of ratios of Horn’s confluent function H6
  publication-title: Constr. Math. Anal.
– ident: ref_44
– volume: 13
  start-page: 619
  year: 2021
  ident: ref_45
  article-title: Parabolic convergence regions of branched continued fractions of the special form
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.13.3.619-630
– volume: 72
  start-page: 1018
  year: 2020
  ident: ref_48
  article-title: Truncation error bounds for branched continued fraction ∑i1=1Nai(1)1+∑i2=1i1ai(2)1+∑i3=1i2ai(3)1+⋯
  publication-title: Ukr. Math. J.
  doi: 10.1007/s11253-020-01841-7
– volume: 64
  start-page: 1155
  year: 1993
  ident: ref_15
  article-title: Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions
  publication-title: J. Math. Sci.
  doi: 10.1007/BF01098839
– volume: 92
  start-page: 103235
  year: 2021
  ident: ref_7
  article-title: Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions
  publication-title: Eur. J. Combin.
  doi: 10.1016/j.ejc.2020.103235
– volume: 4
  start-page: 181
  year: 1978
  ident: ref_34
  article-title: A two-variable generalization of the Stieltjes-type continued fraction
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(78)90002-5
– ident: ref_2
– volume: 30
  start-page: 21
  year: 2022
  ident: ref_30
  article-title: Three- and four-term recurrence relations for Horn’s hypergeometric function H4
  publication-title: Res. Math.
  doi: 10.15421/242203
– ident: ref_12
– volume: 6
  start-page: 11
  year: 2014
  ident: ref_14
  article-title: On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.6.1.11-25
– volume: 8
  start-page: 209
  year: 1988
  ident: ref_33
  article-title: Evaluation of branched continued fractions using block-tridiagonal linear systems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.2.209
– ident: ref_43
– volume: 4
  start-page: 263
  year: 1988
  ident: ref_6
  article-title: A review of branched continued fraction theory for the construction of multivariate rational approximants
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(83)90006-5
– ident: ref_9
  doi: 10.1007/BFb0072451
– volume: 12
  start-page: 353
  year: 2020
  ident: ref_46
  article-title: On the convergence of multidimensional S-fractions with independent variables
  publication-title: Carpathian Math. Publ.
  doi: 10.15330/cmp.12.2.353-359
SSID ssj0000913813
Score 2.2836792
Snippet The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 299
SubjectTerms Analytic functions
branched continued fraction
Computational mathematics
convergence
Domains
holomorphic functions of several complex variables
Horn function
Horns
Hypergeometric functions
Mathematical analysis
numerical approximation
Partial differential equations
Ratios
SummonAdditionalLinks – databaseName: Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EM5IPqBWKDIh0ql0kZgO7GxOBXEai-lFS0St2g8dmAlyKJkQYhT_0b_Xn9Jx07YgirEpbcomijJzLPfjGW_YewDOBk0BJmBDj7LNWLmFIgsKEqffQFOiCo1mzBHR7unp_bbg1ZfcU9YJw_cOW6bGAqkRQUAVY7odqWFnWCLKqLRpyPkcsfYB8VUmoOtICpSnUqjorp-G24n08tWSAK1TEKvf1koifX_Mxcnghkts6U-M-Sfuy96zV6E-g1b_DKXVW3fsouvNf8-vQx8P7bDOA-eR3GpSX1NV6OmO6LAD29pgMc1sJZTQsrH06b-_fNXy8dUcTZngR6Povx8RISW7Mf5FgzdHg793p0Y3slP_DhGq33HTkaHPw7GWd8uIUNl1CwrnBPkEC81VkZ7qrMC5pCrYDRoWRXoDYKR3jvURPqYCwgUCaJ0MAKtUitsoZ7WYZVx5-N53EIbRJlThkMRrYLFICRK63IYsOzefSX2WuKxpcVFSTVFdHf52N0D9nFuf9WpaDxpuR-jMbeK6tfpBmGi7DFRPoeJAdu4j2XZD8m2lMaKwgj6nbX_8Y519ip2nu-2o22whVlzHd6zl3gzm7TNZkLjH7Xl50g
  priority: 102
  providerName: Directory of Open Access Journals
Title On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function H4(a,b;c,d;z1,z2) Ratios
URI https://www.proquest.com/docview/2791571472
https://doaj.org/article/820a29c3aaaf4ccb829a0e95f0318d21
Volume 12
WOSCitedRecordID wos000958504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: K7-
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEA_a-qAP_hdP65EHQYULNclucksfpCd3nEjPo1WoT0syydaDdrfuXqX0Qfwafj0_SSfZvSsi-iIsYdnMwpKZTGZmk9-PkOfGCq-MF8wo71iiAJiVhjMvMXx2qbGcF5FsQs9mw8PDbN4V3JpuW-XKJ0ZH7SoINfJtoTOeap5o8eb0KwusUeHvakehcZ1sBpQEHrfuHaxrLAHzcshli9UoMbvfNueL6qThAk1bRLjXq7UoQvb_4ZHjMjO5878feJfc7gJMuttaxD1yzZf3ya29NTpr84AcfyjpQXXi6SiwanzxjgaMqkV5hneTuj3pQMfn6CdCKa2hGNfSaVWXv378bOgUE9f6yOPrAdufTnBdjPLT5KUZ2B0YuJ0LPrgQr-h-UHrzkHyajD--nbKOdYGB1HLJUmu5E3gpKLRymK55SEwivVZGiSIFp8Fo4ZwFhbEDJNx4VChGBkZzyKR8RDbKqvSPCbUuHOtNlQYQOC4aDaPwGXguQGQ2MT3CVuOfQwdJHpgxjnNMTYK-8t_11SMv1vKnLRjHXyVHQZ1rqQCiHR9U9VHezckcgx8jMpDGmCIBsEORmdc-S4vg6HAIemRrpem8m9lNfqXmJ__ufkpuBmr6dr_aFtlY1mf-GbkB35aLpu6TzdF4Nt_vxxoAtu8160fjDe33MfbP3-3NP18CWMT7Ug
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqggQcym_VLQV8AAHSWq3tJN6oqhCFrlJtuyAoUm_BHjtlpTYpyRbanngNXoKH4kkY52crhODWA1IOUTKREvvzzHhifx8hj7URLtJOMB05y4IIgBmpOXMS02cbasN5VotNqPF4sL8fv50jP7q9MH5ZZecTa0dtC_A18lWhYh4qHijx4vgz86pR_u9qJ6HRwGLkzr7ilK3a2H6N_ftEiOHW3quEtaoCDKSSUxYaw63AI4JMRRanIw4CHUinIh2JLASrQCthrYEIYyMEXDt8YYx8WnGIfQEUXf6VQA6UH1cjxWY1Hc-xOeCy4YaUMl5b1aeT4qjiAoeSqOllL2JfLRHwRwSow9rw5v_WILfIQptA05cN4m-TOZffITd2Z-yz1V1y-Can74sjRze9asgnZ6nn4JrkJ3g2LJudHHTrFP2gLxVWFPN2mhRl_vPb94omODEvDxw-7rUL6BDjfm2fBM9036xD366f8_65eE7feVBX98iHS_ncRTKfF7lbItRYv205jBSAwH5QCPzMxeC4ABGbQPcI6_o7hZZy3St_HKY49fL4SH_HR488ndkfN2Qjf7Xc9PCZWXmS8PpCUR6krc9JMbnTIgaptc4CADMQsV5zcZh5R45N0CMrHbLS1nNV6QWslv99-xG5luzt7qQ72-PRfXJdYPLXrM1bIfPT8sQ9IFfhy3RSlQ_rQULJx8sG4S-omlKp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UrYh98C5drToPigobtjO5zIYiYm2XXWrXxQvUpzhzZlIX2qQmW6198m_4V_w5_hLP5LJFRN_6IOQhJCeQzHznmpnvADxQWthIWeGpyBoviBA97SvuWZ_CZxMqzXlaNZuQk8lgby-eLsGPdi-MW1bZ2sTKUJscXY28L2TMQ8kDKfppsyxiujV8dvTJcx2k3J_Wtp1GDZEd-_ULpW_l0_EWzfVDIYbbb1-MvKbDgIe-9OdeqDU3go4IUxkZSk0sBirwrYxUJNIQjUQlhTEaI_KTGHBl6eXJCyrJMXbFUDL_yxSSB6IDy9Px7vT9osLjGDcH3K-ZIn0_Xu-rk1l-WHJBiiUqstkzT1g1DPjDH1RObnjlfx6eq3C5Ca3Z81oXrsGSza7Dyu6Cl7a8AQevMvYmP7Rs0_UT-WgNc-xcs-yYzoZFvceDbZ-QhXRFxJJRRM9GeZH9_Pa9ZCNK2Yt9S4-7rgZsSBFBJT8KHque3sCe2TjlvVPxhL12cC9vwrtz-dxb0MnyzK4C08ZtaA4jiShoTiSpRGpjtFygiHWguuC1c59gQ8bueoIcJJSUOawkv2OlC48W8kc1DclfJTcdlBZSjj68upAX-0ljjRIK-5SI0VdKpQGiHohYrds4TJ2JpyHowlqLsqSxaWVyBrHb_759Hy4S9pKX48nOHbgkKCqsF-2tQWdeHNu7cAE_z2dlca_RGAYfzhuFvwD8IF0q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Some+Branched+Continued+Fraction+Expansions+for+Horn%E2%80%99s+Hypergeometric+Function+H4%28a%2Cb%3Bc%2Cd%3Bz1%2Cz2%29+Ratios&rft.jtitle=Axioms&rft.au=Antonova%2C+Tamara&rft.au=Dmytryshyn%2C+Roman&rft.au=Ilona-Anna+Lutsiv&rft.au=Serhii+Sharyn&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=12&rft.issue=3&rft.spage=299&rft_id=info:doi/10.3390%2Faxioms12030299&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon