On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function H4(a,b;c,d;z1,z2) Ratios
The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalizati...
Saved in:
| Published in: | Axioms Vol. 12; no. 3; p. 299 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2023
|
| Subjects: | |
| ISSN: | 2075-1680, 2075-1680 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H,H⊂C2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated. |
|---|---|
| AbstractList | The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H,H⊂C2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated. The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function H4 ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain H, H⊂ C 2, and that this function is an analytic continuation of this ratio in the domain H. The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series H4 is considered, and the expression of solutions of some systems of partial differential equations is indicated. |
| Author | Lutsiv, Ilona-Anna Antonova, Tamara Dmytryshyn, Roman Sharyn, Serhii |
| Author_xml | – sequence: 1 givenname: Tamara orcidid: 0000-0002-0358-4641 surname: Antonova fullname: Antonova, Tamara – sequence: 2 givenname: Roman orcidid: 0000-0003-2845-0137 surname: Dmytryshyn fullname: Dmytryshyn, Roman – sequence: 3 givenname: Ilona-Anna orcidid: 0000-0002-4100-2972 surname: Lutsiv fullname: Lutsiv, Ilona-Anna – sequence: 4 givenname: Serhii orcidid: 0000-0003-2547-1442 surname: Sharyn fullname: Sharyn, Serhii |
| BookMark | eNp1UV1rVDEQDVLBWvvqc8AXhd2aSXJvbuiTLl23UCj48Rzmzs2tWXaTNbkLbZ_8G_49f4mpK6KCw8AcJuecGTJP2VFM0TP2HMSZUla8xtuQtgWkUEJa-4gdS2GaObSdOPoDP2GnpaxFDQuqA3XMNteRf0hbz99mjPTZD3yR4hTivqJlRppCivzidoexVFT4mDJfpRy_f_1W-Opu5_ONr_IpB-LLfTzwV_olzvpzmg3n9zC7l6_4e6wP5Rl7POKm-NNf9YR9Wl58XKzmV9fvLhdvruakjJrmTd_DIGu2NJp2AKE9adTKmxZbOTY0GEIjh6GnFkCQBvQAo9QCDZBV6oRdHnyHhGu3y2GL-c4lDO5nI-Ubh3kKtPGukwKlJYWIoybqO2lReNuMQkFXl6heLw5eu5y-7H2Z3Drtc6zrO2ksNAa0kZV1dmBRTqVkP_6eCsI9HMj9faAq0P8IKEwPnxSnjGHzP9kPM5OX-Q |
| CitedBy_id | crossref_primary_10_3390_math11214487 crossref_primary_10_3390_axioms12080738 crossref_primary_10_1007_s11253_024_02338_3 crossref_primary_10_3842_umzh_v77i9_9105 crossref_primary_10_3390_sym17091442 crossref_primary_10_3390_sym16020220 crossref_primary_10_30970_ms_63_2_136_145 |
| Cites_doi | 10.15330/cmp.11.1.33-41 10.1007/BF02433970 10.1007/BF01455825 10.1023/A:1011977720316 10.15330/cmp.13.3.642-650 10.30970/ms.54.1.3-14 10.3390/axioms10040310 10.3390/math9020148 10.23939/mmc2022.03.767 10.1007/BF02433965 10.15330/cmp.13.3.608-618 10.1007/BF01571633 10.1007/s10958-022-06062-w 10.15330/cmp.11.1.54-58 10.1080/10652469.2021.1878356 10.1016/0377-0427(85)90019-6 10.1007/BF01472246 10.30970/ms.52.2.115-123 10.2991/978-94-91216-37-4_1 10.1007/s10958-020-04729-w 10.15330/cmp.10.1.58-64 10.1016/0771-050X(80)90005-4 10.15330/cmp.13.3.619-630 10.1007/s11253-020-01841-7 10.1007/BF01098839 10.1016/j.ejc.2020.103235 10.1016/0771-050X(78)90002-5 10.15421/242203 10.15330/cmp.6.1.11-25 10.1093/imanum/8.2.209 10.1016/0168-9274(83)90006-5 10.1007/BFb0072451 10.15330/cmp.12.2.353-359 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/axioms12030299 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2075-1680 |
| ExternalDocumentID | oai_doaj_org_article_820a29c3aaaf4ccb829a0e95f0318d21 10_3390_axioms12030299 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QF4 QN7 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c373t-5bb1d21d26cf76d104ec4a43e76a62f5cd7ca72ddbc6110c41ae11f240a71c933 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-1680 |
| IngestDate | Tue Oct 14 19:07:42 EDT 2025 Fri Jul 25 12:03:24 EDT 2025 Sat Nov 29 07:09:56 EST 2025 Tue Nov 18 22:13:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-5bb1d21d26cf76d104ec4a43e76a62f5cd7ca72ddbc6110c41ae11f240a71c933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2547-1442 0000-0002-4100-2972 0000-0002-0358-4641 0000-0003-2845-0137 |
| OpenAccessLink | https://www.proquest.com/docview/2791571472?pq-origsite=%requestingapplication% |
| PQID | 2791571472 |
| PQPubID | 2032429 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_820a29c3aaaf4ccb829a0e95f0318d21 proquest_journals_2791571472 crossref_primary_10_3390_axioms12030299 crossref_citationtrail_10_3390_axioms12030299 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Axioms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cuyt (ref_33) 1988; 8 Bilanyk (ref_40) 2019; 11 ref_12 ref_10 Bodnar (ref_15) 1993; 64 Siemaszko (ref_39) 1980; 6 Antonova (ref_49) 2020; 54 Manzii (ref_20) 2000; 31 Horn (ref_23) 1931; 105 Dmytryshyn (ref_30) 2022; 30 Komatsu (ref_3) 2021; 13 Horn (ref_25) 1937; 113 Horn (ref_24) 1935; 111 Bodnar (ref_46) 2020; 12 Cuyt (ref_5) 1985; 12–13 Hoyenko (ref_11) 2007; 4 Bodnar (ref_37) 2022; 74 ref_29 ref_28 ref_27 ref_26 Bodnar (ref_45) 2021; 13 Cuyt (ref_6) 1988; 4 Manzii (ref_16) 1998; 90 Bodnar (ref_38) 2022; 265 Dmytryshyn (ref_47) 2019; 11 Petreolle (ref_7) 2021; 92 Murphy (ref_34) 1978; 4 ref_32 Antonova (ref_21) 2021; 13 ref_31 Hoyenko (ref_14) 2014; 6 Komatsu (ref_4) 2020; 84 Bodnar (ref_36) 2020; 246 Antonova (ref_48) 2020; 72 Bodnar (ref_17) 1998; 90 Brychkov (ref_50) 2021; 32 Antonova (ref_22) 2023; 6 Hoyenko (ref_13) 1997; 48 Bilanyk (ref_35) 2019; 52 Hladun (ref_18) 2022; 9 Bodnar (ref_19) 2001; 107 ref_44 ref_43 ref_41 ref_1 ref_2 ref_9 ref_8 Bodnar (ref_42) 2018; 9 |
| References_xml | – ident: ref_32 – ident: ref_26 – volume: 11 start-page: 33 year: 2019 ident: ref_40 article-title: Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.11.1.33-41 – volume: 90 start-page: 2376 year: 1998 ident: ref_16 article-title: On the approximation of an Appell hypergeometric function by a branched continued fraction publication-title: J. Math. Sci. doi: 10.1007/BF02433970 – ident: ref_1 – volume: 105 start-page: 381 year: 1931 ident: ref_23 article-title: Hypergeometrische Funktionen zweier Veränderlichen publication-title: Math. Ann. doi: 10.1007/BF01455825 – volume: 107 start-page: 3550 year: 2001 ident: ref_19 article-title: Expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction and its limit behavior publication-title: J. Math. Sci. doi: 10.1023/A:1011977720316 – volume: 13 start-page: 642 year: 2021 ident: ref_21 article-title: On convergence of branched continued fraction expansions of Horn’s hypergeometric function H3 ratios publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.13.3.642-650 – volume: 54 start-page: 3 year: 2020 ident: ref_49 article-title: Truncation error bounds for branched continued fraction whose partial denominators are equal to unity publication-title: Mat. Stud. doi: 10.30970/ms.54.1.3-14 – ident: ref_8 – ident: ref_29 doi: 10.3390/axioms10040310 – ident: ref_10 doi: 10.3390/math9020148 – ident: ref_31 – volume: 9 start-page: 767 year: 2022 ident: ref_18 article-title: On convergence of function F4(1, 2; 2, 2; z1, z2) expansion into a branched continued fraction publication-title: Math. Model. Comput. doi: 10.23939/mmc2022.03.767 – ident: ref_27 – volume: 90 start-page: 2352 year: 1998 ident: ref_17 article-title: Multidimensional C-fractions publication-title: J. Math. Sci. doi: 10.1007/BF02433965 – volume: 31 start-page: 344 year: 2000 ident: ref_20 article-title: Investigation of expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction publication-title: Approx. Theor. Its Appl. Pr. Inst. Math. NAS Ukr. – volume: 13 start-page: 608 year: 2021 ident: ref_3 article-title: Asymmetric circular graph with Hosoya index and negative continued fractions publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.13.3.608-618 – volume: 113 start-page: 242 year: 1937 ident: ref_25 article-title: Hypergeometrische Funktionen zweier Veränderlichen publication-title: Math. Ann. doi: 10.1007/BF01571633 – volume: 84 start-page: 399 year: 2020 ident: ref_4 article-title: Branched continued fractions associated with Hosoya index of the tree graph publication-title: MATCH Commun. Math. Comput. Chem. – volume: 265 start-page: 423 year: 2022 ident: ref_38 article-title: Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables publication-title: J. Math. Sci. doi: 10.1007/s10958-022-06062-w – volume: 11 start-page: 54 year: 2019 ident: ref_47 article-title: On some of convergence domains of multidimensional S-fractions with independent variables publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.11.1.54-58 – volume: 32 start-page: 969 year: 2021 ident: ref_50 article-title: On some formulas for the Horn functions H4(a, b; c, c′; w, z) and H7(c) (a; c, c′; w, z) publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2021.1878356 – volume: 12–13 start-page: 221 year: 1985 ident: ref_5 article-title: A review of multivariate Padé approximation theory publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(85)90019-6 – volume: 111 start-page: 638 year: 1935 ident: ref_24 article-title: Hypergeometrische Funktionen zweier Veränderlichen publication-title: Math. Ann. doi: 10.1007/BF01472246 – volume: 52 start-page: 115 year: 2019 ident: ref_35 article-title: A truncation error bound for some branched continued fractions of the special form publication-title: Mat. Stud. doi: 10.30970/ms.52.2.115-123 – ident: ref_28 – volume: 74 start-page: 1155 year: 2022 ident: ref_37 article-title: Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions publication-title: Ukr. Mat. Zhurn. – ident: ref_41 doi: 10.2991/978-94-91216-37-4_1 – volume: 4 start-page: 42 year: 2007 ident: ref_11 article-title: Correspondence principle and convergence of sequences of analytic functions of several variables publication-title: Mat. Visn. Nauk. Tov. Im. Shevchenka. – volume: 246 start-page: 188 year: 2020 ident: ref_36 article-title: On the convergence of branched continued fractions of a special form in angular domains publication-title: J. Math. Sci. doi: 10.1007/s10958-020-04729-w – volume: 9 start-page: 58 year: 2018 ident: ref_42 article-title: On the convergence of multidimensional S-fractions with independent variables publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.10.1.58-64 – volume: 48 start-page: 17 year: 1997 ident: ref_13 article-title: Expansion of Appel F1 and Lauricella FD(N) hypergeometric functions into branched continued fractions publication-title: Visnyk Lviv. Univ. Ser. Mech.-Math. – volume: 6 start-page: 121 year: 1980 ident: ref_39 article-title: Branched continued fractions for double power series publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(80)90005-4 – volume: 6 start-page: 22 year: 2023 ident: ref_22 article-title: Branched continued fraction representations of ratios of Horn’s confluent function H6 publication-title: Constr. Math. Anal. – ident: ref_44 – volume: 13 start-page: 619 year: 2021 ident: ref_45 article-title: Parabolic convergence regions of branched continued fractions of the special form publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.13.3.619-630 – volume: 72 start-page: 1018 year: 2020 ident: ref_48 article-title: Truncation error bounds for branched continued fraction ∑i1=1Nai(1)1+∑i2=1i1ai(2)1+∑i3=1i2ai(3)1+⋯ publication-title: Ukr. Math. J. doi: 10.1007/s11253-020-01841-7 – volume: 64 start-page: 1155 year: 1993 ident: ref_15 article-title: Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions publication-title: J. Math. Sci. doi: 10.1007/BF01098839 – volume: 92 start-page: 103235 year: 2021 ident: ref_7 article-title: Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions publication-title: Eur. J. Combin. doi: 10.1016/j.ejc.2020.103235 – volume: 4 start-page: 181 year: 1978 ident: ref_34 article-title: A two-variable generalization of the Stieltjes-type continued fraction publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(78)90002-5 – ident: ref_2 – volume: 30 start-page: 21 year: 2022 ident: ref_30 article-title: Three- and four-term recurrence relations for Horn’s hypergeometric function H4 publication-title: Res. Math. doi: 10.15421/242203 – ident: ref_12 – volume: 6 start-page: 11 year: 2014 ident: ref_14 article-title: On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.6.1.11-25 – volume: 8 start-page: 209 year: 1988 ident: ref_33 article-title: Evaluation of branched continued fractions using block-tridiagonal linear systems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.2.209 – ident: ref_43 – volume: 4 start-page: 263 year: 1988 ident: ref_6 article-title: A review of branched continued fraction theory for the construction of multivariate rational approximants publication-title: Appl. Numer. Math. doi: 10.1016/0168-9274(83)90006-5 – ident: ref_9 doi: 10.1007/BFb0072451 – volume: 12 start-page: 353 year: 2020 ident: ref_46 article-title: On the convergence of multidimensional S-fractions with independent variables publication-title: Carpathian Math. Publ. doi: 10.15330/cmp.12.2.353-359 |
| SSID | ssj0000913813 |
| Score | 2.2836792 |
| Snippet | The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 299 |
| SubjectTerms | Analytic functions branched continued fraction Computational mathematics convergence Domains holomorphic functions of several complex variables Horn function Horns Hypergeometric functions Mathematical analysis numerical approximation Partial differential equations Ratios |
| SummonAdditionalLinks | – databaseName: Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EM5IPqBWKDIh0ql0kZgO7GxOBXEai-lFS0St2g8dmAlyKJkQYhT_0b_Xn9Jx07YgirEpbcomijJzLPfjGW_YewDOBk0BJmBDj7LNWLmFIgsKEqffQFOiCo1mzBHR7unp_bbg1ZfcU9YJw_cOW6bGAqkRQUAVY7odqWFnWCLKqLRpyPkcsfYB8VUmoOtICpSnUqjorp-G24n08tWSAK1TEKvf1koifX_Mxcnghkts6U-M-Sfuy96zV6E-g1b_DKXVW3fsouvNf8-vQx8P7bDOA-eR3GpSX1NV6OmO6LAD29pgMc1sJZTQsrH06b-_fNXy8dUcTZngR6Povx8RISW7Mf5FgzdHg793p0Y3slP_DhGq33HTkaHPw7GWd8uIUNl1CwrnBPkEC81VkZ7qrMC5pCrYDRoWRXoDYKR3jvURPqYCwgUCaJ0MAKtUitsoZ7WYZVx5-N53EIbRJlThkMRrYLFICRK63IYsOzefSX2WuKxpcVFSTVFdHf52N0D9nFuf9WpaDxpuR-jMbeK6tfpBmGi7DFRPoeJAdu4j2XZD8m2lMaKwgj6nbX_8Y519ip2nu-2o22whVlzHd6zl3gzm7TNZkLjH7Xl50g priority: 102 providerName: Directory of Open Access Journals |
| Title | On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function H4(a,b;c,d;z1,z2) Ratios |
| URI | https://www.proquest.com/docview/2791571472 https://doaj.org/article/820a29c3aaaf4ccb829a0e95f0318d21 |
| Volume | 12 |
| WOSCitedRecordID | wos000958504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: K7- dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M7S dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEA_a-qAP_hdP65EHQYULNclucksfpCd3nEjPo1WoT0syydaDdrfuXqX0Qfwafj0_SSfZvSsi-iIsYdnMwpKZTGZmk9-PkOfGCq-MF8wo71iiAJiVhjMvMXx2qbGcF5FsQs9mw8PDbN4V3JpuW-XKJ0ZH7SoINfJtoTOeap5o8eb0KwusUeHvakehcZ1sBpQEHrfuHaxrLAHzcshli9UoMbvfNueL6qThAk1bRLjXq7UoQvb_4ZHjMjO5878feJfc7gJMuttaxD1yzZf3ya29NTpr84AcfyjpQXXi6SiwanzxjgaMqkV5hneTuj3pQMfn6CdCKa2hGNfSaVWXv378bOgUE9f6yOPrAdufTnBdjPLT5KUZ2B0YuJ0LPrgQr-h-UHrzkHyajD--nbKOdYGB1HLJUmu5E3gpKLRymK55SEwivVZGiSIFp8Fo4ZwFhbEDJNx4VChGBkZzyKR8RDbKqvSPCbUuHOtNlQYQOC4aDaPwGXguQGQ2MT3CVuOfQwdJHpgxjnNMTYK-8t_11SMv1vKnLRjHXyVHQZ1rqQCiHR9U9VHezckcgx8jMpDGmCIBsEORmdc-S4vg6HAIemRrpem8m9lNfqXmJ__ufkpuBmr6dr_aFtlY1mf-GbkB35aLpu6TzdF4Nt_vxxoAtu8160fjDe33MfbP3-3NP18CWMT7Ug |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqggQcym_VLQV8AAHSWq3tJN6oqhCFrlJtuyAoUm_BHjtlpTYpyRbanngNXoKH4kkY52crhODWA1IOUTKREvvzzHhifx8hj7URLtJOMB05y4IIgBmpOXMS02cbasN5VotNqPF4sL8fv50jP7q9MH5ZZecTa0dtC_A18lWhYh4qHijx4vgz86pR_u9qJ6HRwGLkzr7ilK3a2H6N_ftEiOHW3quEtaoCDKSSUxYaw63AI4JMRRanIw4CHUinIh2JLASrQCthrYEIYyMEXDt8YYx8WnGIfQEUXf6VQA6UH1cjxWY1Hc-xOeCy4YaUMl5b1aeT4qjiAoeSqOllL2JfLRHwRwSow9rw5v_WILfIQptA05cN4m-TOZffITd2Z-yz1V1y-Can74sjRze9asgnZ6nn4JrkJ3g2LJudHHTrFP2gLxVWFPN2mhRl_vPb94omODEvDxw-7rUL6BDjfm2fBM9036xD366f8_65eE7feVBX98iHS_ncRTKfF7lbItRYv205jBSAwH5QCPzMxeC4ABGbQPcI6_o7hZZy3St_HKY49fL4SH_HR488ndkfN2Qjf7Xc9PCZWXmS8PpCUR6krc9JMbnTIgaptc4CADMQsV5zcZh5R45N0CMrHbLS1nNV6QWslv99-xG5luzt7qQ72-PRfXJdYPLXrM1bIfPT8sQ9IFfhy3RSlQ_rQULJx8sG4S-omlKp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UrYh98C5drToPigobtjO5zIYiYm2XXWrXxQvUpzhzZlIX2qQmW6198m_4V_w5_hLP5LJFRN_6IOQhJCeQzHznmpnvADxQWthIWeGpyBoviBA97SvuWZ_CZxMqzXlaNZuQk8lgby-eLsGPdi-MW1bZ2sTKUJscXY28L2TMQ8kDKfppsyxiujV8dvTJcx2k3J_Wtp1GDZEd-_ULpW_l0_EWzfVDIYbbb1-MvKbDgIe-9OdeqDU3go4IUxkZSk0sBirwrYxUJNIQjUQlhTEaI_KTGHBl6eXJCyrJMXbFUDL_yxSSB6IDy9Px7vT9osLjGDcH3K-ZIn0_Xu-rk1l-WHJBiiUqstkzT1g1DPjDH1RObnjlfx6eq3C5Ca3Z81oXrsGSza7Dyu6Cl7a8AQevMvYmP7Rs0_UT-WgNc-xcs-yYzoZFvceDbZ-QhXRFxJJRRM9GeZH9_Pa9ZCNK2Yt9S4-7rgZsSBFBJT8KHque3sCe2TjlvVPxhL12cC9vwrtz-dxb0MnyzK4C08ZtaA4jiShoTiSpRGpjtFygiHWguuC1c59gQ8bueoIcJJSUOawkv2OlC48W8kc1DclfJTcdlBZSjj68upAX-0ljjRIK-5SI0VdKpQGiHohYrds4TJ2JpyHowlqLsqSxaWVyBrHb_759Hy4S9pKX48nOHbgkKCqsF-2tQWdeHNu7cAE_z2dlca_RGAYfzhuFvwD8IF0q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Some+Branched+Continued+Fraction+Expansions+for+Horn%E2%80%99s+Hypergeometric+Function+H4%28a%2Cb%3Bc%2Cd%3Bz1%2Cz2%29+Ratios&rft.jtitle=Axioms&rft.au=Antonova%2C+Tamara&rft.au=Dmytryshyn%2C+Roman&rft.au=Ilona-Anna+Lutsiv&rft.au=Serhii+Sharyn&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=12&rft.issue=3&rft.spage=299&rft_id=info:doi/10.3390%2Faxioms12030299&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |