Powers of Elliptic Scator Numbers

Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Axioms Ročník 10; číslo 4; s. 250
Hlavný autor: Fernandez-Guasti, Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2021
Predmet:
ISSN:2075-1680, 2075-1680
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions.
AbstractList Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions.
Elliptic scator algebra is possible in 1+n dimensions, n∈ N . It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S 1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions.
Author Fernandez-Guasti, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0002-1839-6002
  surname: Fernandez-Guasti
  fullname: Fernandez-Guasti, Manuel
BookMark eNp1UE1LAzEQDVLBWnv1vOK5dbLZfOxRStVCUUE9h2x2IinbTU22qP_erRVRwbnMMPPem8c7JoM2tEjIKYUpYyVcmDcf1okCFJBzOCDDHCSfUKFg8GM-IuOUVtBXSZmibEjO7sMrxpQFl82bxm86b7MHa7oQs9vtuupPJ-TQmSbh-KuPyNPV_HF2M1neXS9ml8uJZZJ1E1bWVIJwAGhKU3Oqam4dZ9ZViKXj1jqJoja0EtwhLZyQIBEt8LqwTCAbkcVetw5mpTfRr01818F4_bkI8Vmb2NtrUAtFyzxH5QppCsOsYhSRW1WZXBYCaK91vtfaxPCyxdTpVdjGtrevc0F7kOJyh5ruUTaGlCK6768U9C5V_TvVnlD8IVjfmc6HtovGN__RPgA-eH0K
CitedBy_id crossref_primary_10_1016_j_cnsns_2023_107364
crossref_primary_10_1371_journal_pone_0312502
Cites_doi 10.3390/sym12091550
10.1007/s00006-020-01055-x
10.32323/ujma.423045
10.1002/mma.4933
10.1007/s00006-016-0658-x
10.1016/j.aml.2008.03.020
10.1007/s00006-015-0539-8
10.3390/sym13081504
10.1007/s00006-016-0664-z
10.1140/epjp/s13360-020-00560-z
10.1007/s00006-012-0364-2
10.1002/mma.5831
10.1142/S0218127414300171
10.1016/S0893-9659(98)00098-6
10.32323/ujma.587816
10.2307/2299031
10.1142/S0218127416300020
10.1119/1.16386
10.3390/sym12111880
ContentType Journal Article
Copyright 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/axioms10040250
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_681922e8f47a4a3c831ee5c8ba274601
10_3390_axioms10040250
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c373t-39d1706f00ea9ad518d5cf53cfbee9f5ccf7e6da1b65fe14f6707eec05d4c36e3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735827700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1680
IngestDate Tue Oct 14 18:51:33 EDT 2025
Fri Jul 25 12:05:01 EDT 2025
Tue Nov 18 20:58:02 EST 2025
Sat Nov 29 07:18:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-39d1706f00ea9ad518d5cf53cfbee9f5ccf7e6da1b65fe14f6707eec05d4c36e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1839-6002
OpenAccessLink https://www.proquest.com/docview/2612748571?pq-origsite=%requestingapplication%
PQID 2612748571
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_681922e8f47a4a3c831ee5c8ba274601
proquest_journals_2612748571
crossref_primary_10_3390_axioms10040250
crossref_citationtrail_10_3390_axioms10040250
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_16) 2014; 24
(ref_4) 2019; 29
(ref_11) 2018; 1
Hestenes (ref_10) 2016; 27
(ref_18) 2018; 41
Brezov (ref_5) 2020; 30
Sobczyk (ref_9) 2012; 22
(ref_13) 2020; 135
ref_14
Kobus (ref_12) 2017; 27
(ref_2) 2009; 22
(ref_15) 2016; 26
(ref_17) 2020; 43
ref_20
Cho (ref_1) 1998; 11
(ref_6) 2017; 315
ref_19
Swift (ref_21) 1922; 29
ref_8
(ref_7) 2015; 25
Gungor (ref_3) 2019; 2
References_xml – volume: 29
  start-page: 1
  year: 2019
  ident: ref_4
  article-title: Finding n-th roots of a 2×2 real matrix using De Moivre’s formula
  publication-title: Adv. Appl. Clifford Alg.
– ident: ref_19
  doi: 10.3390/sym12091550
– volume: 30
  start-page: 29
  year: 2020
  ident: ref_5
  article-title: Factorization and generalized roots of dual complex matrices with Rodrigues’ formula
  publication-title: Adv. Appl. Clifford Alg.
  doi: 10.1007/s00006-020-01055-x
– volume: 1
  start-page: 80
  year: 2018
  ident: ref_11
  article-title: Associativity in scator algebra and the quantum wavefunction collapse
  publication-title: Univ. J. Math. Appl.
  doi: 10.32323/ujma.423045
– volume: 41
  start-page: 4827
  year: 2018
  ident: ref_18
  article-title: Differential quotients in elliptic scator algebra
  publication-title: Math. Meth. App. Sci.
  doi: 10.1002/mma.4933
– volume: 27
  start-page: 1369
  year: 2017
  ident: ref_12
  article-title: On the geometry of the hyperbolic scator space in 1+2 dimensions
  publication-title: Adv. Appl. Clifford Algebr.
  doi: 10.1007/s00006-016-0658-x
– volume: 22
  start-page: 258
  year: 2009
  ident: ref_2
  article-title: The roots of a split quaternion
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.03.020
– volume: 25
  start-page: 829
  year: 2015
  ident: ref_7
  article-title: A non-distributive extension of complex numbers to higher dimensions
  publication-title: Adv. Appl. Clifford Algebr.
  doi: 10.1007/s00006-015-0539-8
– ident: ref_20
  doi: 10.3390/sym13081504
– volume: 27
  start-page: 351
  year: 2016
  ident: ref_10
  article-title: The genesis of geometric algebra: A personal retrospective
  publication-title: Adv. Appl. Clifford Algebr.
  doi: 10.1007/s00006-016-0664-z
– volume: 135
  start-page: 542
  year: 2020
  ident: ref_13
  article-title: Composition of velocities in a scator deformed Lorentz metric
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/s13360-020-00560-z
– volume: 22
  start-page: 827
  year: 2012
  ident: ref_9
  article-title: Unitary geometric algebra
  publication-title: Adv. Appl. Clifford Algebr.
  doi: 10.1007/s00006-012-0364-2
– volume: 43
  start-page: 1017
  year: 2020
  ident: ref_17
  article-title: Components exponential scator holomorphic function
  publication-title: Math. Meth. App. Sci.
  doi: 10.1002/mma.5831
– volume: 24
  start-page: 1430017
  year: 2014
  ident: ref_16
  article-title: An intrinsically three dimensional fractal
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127414300171
– volume: 11
  start-page: 33
  year: 1998
  ident: ref_1
  article-title: De Moivre’s formula for quaternions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(98)00098-6
– volume: 2
  start-page: 126
  year: 2019
  ident: ref_3
  article-title: De-Moivre and Euler formulae for dual-complex numbers
  publication-title: Univ. J. Math. Appl.
  doi: 10.32323/ujma.587816
– volume: 29
  start-page: 404
  year: 1922
  ident: ref_21
  article-title: Discussions: Note on trigonometric functions
  publication-title: Am. Math. Mon.
  doi: 10.2307/2299031
– volume: 26
  start-page: 1630002
  year: 2016
  ident: ref_15
  article-title: Imaginary scators bound set under the iterated quadratic mapping in 1+2 dimensional parameter space
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127416300020
– ident: ref_8
  doi: 10.1119/1.16386
– volume: 315
  start-page: 468
  year: 2017
  ident: ref_6
  article-title: On exponential of split quaternionic matrices
  publication-title: Appl. Math. Comput.
– ident: ref_14
  doi: 10.3390/sym12111880
SSID ssj0000913813
Score 2.2073827
Snippet Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one...
Elliptic scator algebra is possible in 1+n dimensions, n∈ N . It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 250
SubjectTerms Algebra
algebraic geometry
functions of hypercomplex variables
Multiplication
Representations
scator algebra
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NS8NAEIYHKR70IH5itUoEwVNo9iubPapYPGgpqOAtbCazUNBWmir-fLObtFhEvHgNA0lmdnZ2YPZ5Ac6NKkVhLY8RtY4lchVnltd5xVkhjeSJcgGZf6eHw-z52Yy-SX35mbAGD9w4rp96YhenzEltpRWYCUakMCts3U-lzc2tRJtvzVTYgw2rS5FoKI2i7uv79nM8fa08H81X_ZUqFGD9P_biUGAG27DVngyjy-aLdmCNJruweb_EqlZ7cDYKmmbR1EV-1qLOdowe0LfN0TAoe1T78DS4eby-jVuNgxiFFvNYmNIDbFySkDW2VCwrFTol0BVExilEpyktLStS5YhJl-pEE2GiSokiJXEAncl0QocQCYUytSyx0lP1CI1mJRlmneKomBZdiBf_nGMLAPc6FC953Qh4H-WrPurCxdL-rUFf_Gp55V24tPLI6vCgDmTeBjL_K5Bd6C0CkLd5VOUecKZlpjQ7-o93HMMG9zMpYRylB5357J1OYB0_5uNqdhqW0BeeU8mF
  priority: 102
  providerName: Directory of Open Access Journals
Title Powers of Elliptic Scator Numbers
URI https://www.proquest.com/docview/2612748571
https://doaj.org/article/681922e8f47a4a3c831ee5c8ba274601
Volume 10
WOSCitedRecordID wos000735827700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: K7-
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMct1u6wHfixDVEoVZCQdrIWx3acnBBFrUDQKqJDKqfIebGnStB0TUGc-Nvxc92iCm0XLj7EPkTP7z3nOU-fLyGvc1nzSuuEAihFBSSSZjpxcZWwSuQiiaX1yPxPajrN5vO8CBdubWir3OVEn6jrBvCO_ApRV0pkUrE3q1uKqlH4dzVIaByRLpLKnJ93h6Np8Xl_y4LUy4zxLa2Ru_r-Sv9aNN9b5KTh6X9wGnlo_z852R8040f_-4qPycPwiRm93frEE_LALM_I6WTPZ23PyavCi6NFjY2wacOlDYhmgPV3NPUSIe0F-TIeXb97T4NYAgWu-IbyvEYSjo1jo3NdS5bVEqzkYCtjcisBrDJprVmVSmuYsKmKlTEQy1oATw1_SjrLZmmekYhLEKlmsRaI5zOQK1abnGkrE5BM8R6hO6OVEEjiKGjxrXQVBRq5PDRyj1zu16-2DI07Vw5xD_arkH3tHzTrmzKEUpkiwy0xmRVKC80h48wYCVmlnfVdfdkj_d32lCEg2_Lv3jy_f_oFOUmwbcV3rPRJZ7P-YV6SY_i5WbTrQfCvgS_d3fhR0QG2i85w_D1y88WHSfH1D6W43y0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RQEB3qVrA--C2uVo2g-BSa-5Wb-yBitaWl27Bohb7Fm8lcKdRN3axff8rfaCabrBTRtz74mlxCyDmZuTOZnAPw1JlKld7LGNHaWKM0ceZl-15JUWqnZWJCJ5k_sXmeHR-76Rr8HP6F4bHKISZ2gbqqkXvkWyx1ZXVmrHh59jlm1yj-ujpYaCxpcUA_vrUlW_Ni_02L7zMpd3eOXu_FvatAjMqqRaxcxZIxIUnIO18ZkVUGg1EYSiIXDGKwlFZelKkJJHRIbWKJMDGVRpWSaq97Cda10qkZwfr2Tj59u-rqsMpmJtRSHVIpl2z57yf1p4Z12Xi3cS77dSYBf-SALrHtXv_fHskNuNZvoaNXS87fhDWa3YKrhyv92eY2PJl25m9RHSIeSmnDIkbvkPsLUd5ZoDR34P2F3ONdGM3qGd2DSBnUqReJ1yw_SOisqMgJH4xEI6waQzyAVGCvlM6GHadFWzExqMV5UMfwfLX-bKkR8teV24z5ahVre3cH6vnHog8VRcoadZKyoK3XXmGmBJHBrPQt2m39PIbNgQ5FH3Ca4jcX7v_79GO4snd0OCkm-_nBA9iQPKLTTedswmgx_0IP4TJ-XZw080c9tyP4cNHc-QV1FDpM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-CzqQoEggThFG3_F8QEhoKyoWlYrFaTegjMZo0p0UzbL11_j15HxJosqBLceuCZWFGWeZ-zJ83sAj52pVeW9TBGtTTVKkxZedvNKiko7LTMTomT-gZ1Oi6MjN9uAn8NZGKZVDjkxJuq6Qe6Rj1nqyurCWDEOPS1itjt5fvo5ZQcp_tM62GmsILJPP75127f22d5uF-snUk5ev3v1Ju0dBlJUVi1T5WqWjwlZRt752oiiNhiMwlARuWAQg6W89qLKTSChQ24zS4SZqTWqnFT33Atw0eo805E2eLju77DeZiHUSidSKZeN_ffj5qRlhTZed5ypg9Eu4I9qEEvc5Pr__HFuwLV-YZ28WM2Em7BB81tw9e1alba9DY9m0RIuaULCVJUuWWJyiNx1SKbRGKXdgvfn8o53YHPezGkbEmVQ515kXrMoIaGzoiYnfDASjbBqBOkQsBJ7_XS28fhUdvsoDnB5NsAjeLoef7pSDvnryJcc__UoVvyOF5rFx7JPIGXOynWSiqCt115hoQSRwaLykuEnRrAzQKPs01Bb_sbF3X_ffgiXO8CUB3vT_XtwRTJvJ1J2dmBzufhC9-ESfl0et4sHEeQJfDhv4PwCdV5BxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powers+of+Elliptic+Scator+Numbers&rft.jtitle=Axioms&rft.au=Fernandez-Guasti%2C+Manuel&rft.date=2021-12-01&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=10&rft.issue=4&rft.spage=250&rft_id=info:doi/10.3390%2Faxioms10040250&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_axioms10040250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon