Powers of Elliptic Scator Numbers
Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; an...
Uložené v:
| Vydané v: | Axioms Ročník 10; číslo 4; s. 250 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2021
|
| Predmet: | |
| ISSN: | 2075-1680, 2075-1680 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions. |
|---|---|
| AbstractList | Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions. Elliptic scator algebra is possible in 1+n dimensions, n∈ N . It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one hypercomplex component are considered. It is endowed with two representations: an additive one, where the scator components are represented as a sum; and a polar representation, where the scator components are represented as products of exponentials. Within the scator framework, De Moivre’s formula is generalized to 1+n dimensions in the so called Victoria equation. This novel formula is then used to obtain compact expressions for the integer powers of scator elements. A scator in S 1+n can be factored into a product of n scators that are geometrically represented as its projections onto n two dimensional planes. A geometric interpretation of scator multiplication in terms of rotations with respect to the scalar axis is expounded. The powers of scators, when the ratio of their director components is a rational number, lie on closed curves. For 1 + 2 dimensional scators, twisted curves in a three dimensional space are obtained. Collecting previous results, it is possible to evaluate the exponential of a scator element in 1 + 2 dimensions. |
| Author | Fernandez-Guasti, Manuel |
| Author_xml | – sequence: 1 givenname: Manuel orcidid: 0000-0002-1839-6002 surname: Fernandez-Guasti fullname: Fernandez-Guasti, Manuel |
| BookMark | eNp1UE1LAzEQDVLBWnv1vOK5dbLZfOxRStVCUUE9h2x2IinbTU22qP_erRVRwbnMMPPem8c7JoM2tEjIKYUpYyVcmDcf1okCFJBzOCDDHCSfUKFg8GM-IuOUVtBXSZmibEjO7sMrxpQFl82bxm86b7MHa7oQs9vtuupPJ-TQmSbh-KuPyNPV_HF2M1neXS9ml8uJZZJ1E1bWVIJwAGhKU3Oqam4dZ9ZViKXj1jqJoja0EtwhLZyQIBEt8LqwTCAbkcVetw5mpTfRr01818F4_bkI8Vmb2NtrUAtFyzxH5QppCsOsYhSRW1WZXBYCaK91vtfaxPCyxdTpVdjGtrevc0F7kOJyh5ruUTaGlCK6768U9C5V_TvVnlD8IVjfmc6HtovGN__RPgA-eH0K |
| CitedBy_id | crossref_primary_10_1016_j_cnsns_2023_107364 crossref_primary_10_1371_journal_pone_0312502 |
| Cites_doi | 10.3390/sym12091550 10.1007/s00006-020-01055-x 10.32323/ujma.423045 10.1002/mma.4933 10.1007/s00006-016-0658-x 10.1016/j.aml.2008.03.020 10.1007/s00006-015-0539-8 10.3390/sym13081504 10.1007/s00006-016-0664-z 10.1140/epjp/s13360-020-00560-z 10.1007/s00006-012-0364-2 10.1002/mma.5831 10.1142/S0218127414300171 10.1016/S0893-9659(98)00098-6 10.32323/ujma.587816 10.2307/2299031 10.1142/S0218127416300020 10.1119/1.16386 10.3390/sym12111880 |
| ContentType | Journal Article |
| Copyright | 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/axioms10040250 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2075-1680 |
| ExternalDocumentID | oai_doaj_org_article_681922e8f47a4a3c831ee5c8ba274601 10_3390_axioms10040250 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QF4 QN7 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c373t-39d1706f00ea9ad518d5cf53cfbee9f5ccf7e6da1b65fe14f6707eec05d4c36e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735827700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-1680 |
| IngestDate | Tue Oct 14 18:51:33 EDT 2025 Fri Jul 25 12:05:01 EDT 2025 Tue Nov 18 20:58:02 EST 2025 Sat Nov 29 07:18:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-39d1706f00ea9ad518d5cf53cfbee9f5ccf7e6da1b65fe14f6707eec05d4c36e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1839-6002 |
| OpenAccessLink | https://www.proquest.com/docview/2612748571?pq-origsite=%requestingapplication% |
| PQID | 2612748571 |
| PQPubID | 2032429 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_681922e8f47a4a3c831ee5c8ba274601 proquest_journals_2612748571 crossref_primary_10_3390_axioms10040250 crossref_citationtrail_10_3390_axioms10040250 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Axioms |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_16) 2014; 24 (ref_4) 2019; 29 (ref_11) 2018; 1 Hestenes (ref_10) 2016; 27 (ref_18) 2018; 41 Brezov (ref_5) 2020; 30 Sobczyk (ref_9) 2012; 22 (ref_13) 2020; 135 ref_14 Kobus (ref_12) 2017; 27 (ref_2) 2009; 22 (ref_15) 2016; 26 (ref_17) 2020; 43 ref_20 Cho (ref_1) 1998; 11 (ref_6) 2017; 315 ref_19 Swift (ref_21) 1922; 29 ref_8 (ref_7) 2015; 25 Gungor (ref_3) 2019; 2 |
| References_xml | – volume: 29 start-page: 1 year: 2019 ident: ref_4 article-title: Finding n-th roots of a 2×2 real matrix using De Moivre’s formula publication-title: Adv. Appl. Clifford Alg. – ident: ref_19 doi: 10.3390/sym12091550 – volume: 30 start-page: 29 year: 2020 ident: ref_5 article-title: Factorization and generalized roots of dual complex matrices with Rodrigues’ formula publication-title: Adv. Appl. Clifford Alg. doi: 10.1007/s00006-020-01055-x – volume: 1 start-page: 80 year: 2018 ident: ref_11 article-title: Associativity in scator algebra and the quantum wavefunction collapse publication-title: Univ. J. Math. Appl. doi: 10.32323/ujma.423045 – volume: 41 start-page: 4827 year: 2018 ident: ref_18 article-title: Differential quotients in elliptic scator algebra publication-title: Math. Meth. App. Sci. doi: 10.1002/mma.4933 – volume: 27 start-page: 1369 year: 2017 ident: ref_12 article-title: On the geometry of the hyperbolic scator space in 1+2 dimensions publication-title: Adv. Appl. Clifford Algebr. doi: 10.1007/s00006-016-0658-x – volume: 22 start-page: 258 year: 2009 ident: ref_2 article-title: The roots of a split quaternion publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.03.020 – volume: 25 start-page: 829 year: 2015 ident: ref_7 article-title: A non-distributive extension of complex numbers to higher dimensions publication-title: Adv. Appl. Clifford Algebr. doi: 10.1007/s00006-015-0539-8 – ident: ref_20 doi: 10.3390/sym13081504 – volume: 27 start-page: 351 year: 2016 ident: ref_10 article-title: The genesis of geometric algebra: A personal retrospective publication-title: Adv. Appl. Clifford Algebr. doi: 10.1007/s00006-016-0664-z – volume: 135 start-page: 542 year: 2020 ident: ref_13 article-title: Composition of velocities in a scator deformed Lorentz metric publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/s13360-020-00560-z – volume: 22 start-page: 827 year: 2012 ident: ref_9 article-title: Unitary geometric algebra publication-title: Adv. Appl. Clifford Algebr. doi: 10.1007/s00006-012-0364-2 – volume: 43 start-page: 1017 year: 2020 ident: ref_17 article-title: Components exponential scator holomorphic function publication-title: Math. Meth. App. Sci. doi: 10.1002/mma.5831 – volume: 24 start-page: 1430017 year: 2014 ident: ref_16 article-title: An intrinsically three dimensional fractal publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127414300171 – volume: 11 start-page: 33 year: 1998 ident: ref_1 article-title: De Moivre’s formula for quaternions publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(98)00098-6 – volume: 2 start-page: 126 year: 2019 ident: ref_3 article-title: De-Moivre and Euler formulae for dual-complex numbers publication-title: Univ. J. Math. Appl. doi: 10.32323/ujma.587816 – volume: 29 start-page: 404 year: 1922 ident: ref_21 article-title: Discussions: Note on trigonometric functions publication-title: Am. Math. Mon. doi: 10.2307/2299031 – volume: 26 start-page: 1630002 year: 2016 ident: ref_15 article-title: Imaginary scators bound set under the iterated quadratic mapping in 1+2 dimensional parameter space publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127416300020 – ident: ref_8 doi: 10.1119/1.16386 – volume: 315 start-page: 468 year: 2017 ident: ref_6 article-title: On exponential of split quaternionic matrices publication-title: Appl. Math. Comput. – ident: ref_14 doi: 10.3390/sym12111880 |
| SSID | ssj0000913813 |
| Score | 2.2073827 |
| Snippet | Elliptic scator algebra is possible in 1+n dimensions, n∈N. It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one... Elliptic scator algebra is possible in 1+n dimensions, n∈ N . It is isomorphic to complex algebra in 1 + 1 dimensions, when the real part and any one... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 250 |
| SubjectTerms | Algebra algebraic geometry functions of hypercomplex variables Multiplication Representations scator algebra |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NS8NAEIYHKR70IH5itUoEwVNo9iubPapYPGgpqOAtbCazUNBWmir-fLObtFhEvHgNA0lmdnZ2YPZ5Ac6NKkVhLY8RtY4lchVnltd5xVkhjeSJcgGZf6eHw-z52Yy-SX35mbAGD9w4rp96YhenzEltpRWYCUakMCts3U-lzc2tRJtvzVTYgw2rS5FoKI2i7uv79nM8fa08H81X_ZUqFGD9P_biUGAG27DVngyjy-aLdmCNJruweb_EqlZ7cDYKmmbR1EV-1qLOdowe0LfN0TAoe1T78DS4eby-jVuNgxiFFvNYmNIDbFySkDW2VCwrFTol0BVExilEpyktLStS5YhJl-pEE2GiSokiJXEAncl0QocQCYUytSyx0lP1CI1mJRlmneKomBZdiBf_nGMLAPc6FC953Qh4H-WrPurCxdL-rUFf_Gp55V24tPLI6vCgDmTeBjL_K5Bd6C0CkLd5VOUecKZlpjQ7-o93HMMG9zMpYRylB5357J1OYB0_5uNqdhqW0BeeU8mF priority: 102 providerName: Directory of Open Access Journals |
| Title | Powers of Elliptic Scator Numbers |
| URI | https://www.proquest.com/docview/2612748571 https://doaj.org/article/681922e8f47a4a3c831ee5c8ba274601 |
| Volume | 10 |
| WOSCitedRecordID | wos000735827700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: K7- dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M7S dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMct1u6wHfixDVEoVZCQdrIWx3acnBBFrUDQKqJDKqfIebGnStB0TUGc-Nvxc92iCm0XLj7EPkTP7z3nOU-fLyGvc1nzSuuEAihFBSSSZjpxcZWwSuQiiaX1yPxPajrN5vO8CBdubWir3OVEn6jrBvCO_ApRV0pkUrE3q1uKqlH4dzVIaByRLpLKnJ93h6Np8Xl_y4LUy4zxLa2Ru_r-Sv9aNN9b5KTh6X9wGnlo_z852R8040f_-4qPycPwiRm93frEE_LALM_I6WTPZ23PyavCi6NFjY2wacOlDYhmgPV3NPUSIe0F-TIeXb97T4NYAgWu-IbyvEYSjo1jo3NdS5bVEqzkYCtjcisBrDJprVmVSmuYsKmKlTEQy1oATw1_SjrLZmmekYhLEKlmsRaI5zOQK1abnGkrE5BM8R6hO6OVEEjiKGjxrXQVBRq5PDRyj1zu16-2DI07Vw5xD_arkH3tHzTrmzKEUpkiwy0xmRVKC80h48wYCVmlnfVdfdkj_d32lCEg2_Lv3jy_f_oFOUmwbcV3rPRJZ7P-YV6SY_i5WbTrQfCvgS_d3fhR0QG2i85w_D1y88WHSfH1D6W43y0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RQEB3qVrA--C2uVo2g-BSa-5Wb-yBitaWl27Bohb7Fm8lcKdRN3axff8rfaCabrBTRtz74mlxCyDmZuTOZnAPw1JlKld7LGNHaWKM0ceZl-15JUWqnZWJCJ5k_sXmeHR-76Rr8HP6F4bHKISZ2gbqqkXvkWyx1ZXVmrHh59jlm1yj-ujpYaCxpcUA_vrUlW_Ni_02L7zMpd3eOXu_FvatAjMqqRaxcxZIxIUnIO18ZkVUGg1EYSiIXDGKwlFZelKkJJHRIbWKJMDGVRpWSaq97Cda10qkZwfr2Tj59u-rqsMpmJtRSHVIpl2z57yf1p4Z12Xi3cS77dSYBf-SALrHtXv_fHskNuNZvoaNXS87fhDWa3YKrhyv92eY2PJl25m9RHSIeSmnDIkbvkPsLUd5ZoDR34P2F3ONdGM3qGd2DSBnUqReJ1yw_SOisqMgJH4xEI6waQzyAVGCvlM6GHadFWzExqMV5UMfwfLX-bKkR8teV24z5ahVre3cH6vnHog8VRcoadZKyoK3XXmGmBJHBrPQt2m39PIbNgQ5FH3Ca4jcX7v_79GO4snd0OCkm-_nBA9iQPKLTTedswmgx_0IP4TJ-XZw080c9tyP4cNHc-QV1FDpM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-CzqQoEggThFG3_F8QEhoKyoWlYrFaTegjMZo0p0UzbL11_j15HxJosqBLceuCZWFGWeZ-zJ83sAj52pVeW9TBGtTTVKkxZedvNKiko7LTMTomT-gZ1Oi6MjN9uAn8NZGKZVDjkxJuq6Qe6Rj1nqyurCWDEOPS1itjt5fvo5ZQcp_tM62GmsILJPP75127f22d5uF-snUk5ev3v1Ju0dBlJUVi1T5WqWjwlZRt752oiiNhiMwlARuWAQg6W89qLKTSChQ24zS4SZqTWqnFT33Atw0eo805E2eLju77DeZiHUSidSKZeN_ffj5qRlhTZed5ypg9Eu4I9qEEvc5Pr__HFuwLV-YZ28WM2Em7BB81tw9e1alba9DY9m0RIuaULCVJUuWWJyiNx1SKbRGKXdgvfn8o53YHPezGkbEmVQ515kXrMoIaGzoiYnfDASjbBqBOkQsBJ7_XS28fhUdvsoDnB5NsAjeLoef7pSDvnryJcc__UoVvyOF5rFx7JPIGXOynWSiqCt115hoQSRwaLykuEnRrAzQKPs01Bb_sbF3X_ffgiXO8CUB3vT_XtwRTJvJ1J2dmBzufhC9-ESfl0et4sHEeQJfDhv4PwCdV5BxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powers+of+Elliptic+Scator+Numbers&rft.jtitle=Axioms&rft.au=Fernandez-Guasti%2C+Manuel&rft.date=2021-12-01&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=10&rft.issue=4&rft.spage=250&rft_id=info:doi/10.3390%2Faxioms10040250&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_axioms10040250 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |