Spectral clustering for divide-and-conquer graph matching

•We present a novel divide-and-conquer bijective graph matching algorithm.•The algorithm is fully parallelizable, and scales to match “big data” graphs.•We demonstrate the effectiveness of the algorithm by matching DTMRI human connectomes. We present a parallelized bijective graph matching algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel computing Ročník 47; s. 70 - 87
Hlavní autoři: Lyzinski, Vince, Sussman, Daniel L., Fishkind, Donniell E., Pao, Henry, Chen, Li, Vogelstein, Joshua T., Park, Youngser, Priebe, Carey E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2015
Témata:
ISSN:0167-8191, 1872-7336
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•We present a novel divide-and-conquer bijective graph matching algorithm.•The algorithm is fully parallelizable, and scales to match “big data” graphs.•We demonstrate the effectiveness of the algorithm by matching DTMRI human connectomes. We present a parallelized bijective graph matching algorithm that leverages seeds and is designed to match very large graphs. Our algorithm combines spectral graph embedding with existing state-of-the-art seeded graph matching procedures. We justify our approach by proving that modestly correlated, large stochastic block model random graphs are correctly matched utilizing very few seeds through our divide-and-conquer procedure. We also demonstrate the effectiveness of our approach in matching very large graphs in simulated and real data examples, showing up to a factor of 8 improvement in runtime with minimal sacrifice in accuracy.
ISSN:0167-8191
1872-7336
DOI:10.1016/j.parco.2015.03.004