Capacity-Resolution Trade-Off in the Optimal Learning of Multiple Low-Dimensional Manifolds by Attractor Neural Networks
Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from noisy, high-dimensional dynamics. We study here how to learn the ∼N^{2} pairwise interactions in a RNN with N neurons to embed L manifolds of dimension D≪N. We show that the capacity, i.e., the maximal ratio...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 124; číslo 4; s. 048302 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society
31.01.2020
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from noisy, high-dimensional dynamics. We study here how to learn the ∼N^{2} pairwise interactions in a RNN with N neurons to embed L manifolds of dimension D≪N. We show that the capacity, i.e., the maximal ratio L/N, decreases as |logε|^{-D}, where ε is the error on the position encoded by the neural activity along each manifold. Hence, RNN are flexible memory devices capable of storing a large number of manifolds at high spatial resolution. Our results rely on a combination of analytical tools from statistical mechanics and random matrix theory, extending Gardner's classical theory of learning to the case of patterns with strong spatial correlations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0031-9007 1079-7114 1079-7114 |
| DOI: | 10.1103/PhysRevLett.124.048302 |