Capacity-Resolution Trade-Off in the Optimal Learning of Multiple Low-Dimensional Manifolds by Attractor Neural Networks
Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from noisy, high-dimensional dynamics. We study here how to learn the ∼N^{2} pairwise interactions in a RNN with N neurons to embed L manifolds of dimension D≪N. We show that the capacity, i.e., the maximal ratio...
Gespeichert in:
| Veröffentlicht in: | Physical review letters Jg. 124; H. 4; S. 048302 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Physical Society
31.01.2020
|
| Schlagworte: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from noisy, high-dimensional dynamics. We study here how to learn the ∼N^{2} pairwise interactions in a RNN with N neurons to embed L manifolds of dimension D≪N. We show that the capacity, i.e., the maximal ratio L/N, decreases as |logε|^{-D}, where ε is the error on the position encoded by the neural activity along each manifold. Hence, RNN are flexible memory devices capable of storing a large number of manifolds at high spatial resolution. Our results rely on a combination of analytical tools from statistical mechanics and random matrix theory, extending Gardner's classical theory of learning to the case of patterns with strong spatial correlations. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0031-9007 1079-7114 1079-7114 |
| DOI: | 10.1103/PhysRevLett.124.048302 |