Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty

•Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making me...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 208; p. 112589
Main Authors: Wang, Meng, Yu, Hang, Jing, Rui, Liu, He, Chen, Pengda, Li, Chaoen
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.03.2020
Elsevier Science Ltd
Subjects:
ISSN:0196-8904, 1879-2227
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making methods.•Combine optimization with Monte Carlo simulation for robustness analysis. The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure.
AbstractList •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making methods.•Combine optimization with Monte Carlo simulation for robustness analysis. The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure.
The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system's economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints' probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure.
The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 10³/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure.
ArticleNumber 112589
Author Liu, He
Wang, Meng
Li, Chaoen
Chen, Pengda
Jing, Rui
Yu, Hang
Author_xml – sequence: 1
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Hang
  surname: Yu
  fullname: Yu, Hang
  email: tjyuhang@163.com, yuhang@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Rui
  orcidid: 0000-0002-8924-1665
  surname: Jing
  fullname: Jing, Rui
  organization: Department of Chemical Engineering, Imperial College London, London, UK
– sequence: 4
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: State Grid Tianjin Information & Telecommunication Company, Tianjin, China
– sequence: 5
  givenname: Pengda
  surname: Chen
  fullname: Chen, Pengda
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
– sequence: 6
  givenname: Chaoen
  surname: Li
  fullname: Li, Chaoen
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
BookMark eNqFkU2LFDEQhoOs4OzqX5CAFy895qO_Ah6UYf2ABS96Dumkeqi2OxmT9Ep78a-bcfSyl71UVcLzvlD1XpMrHzwQ8pKzPWe8fTPtwdvgF-P3gonyyUXTqydkx_tOVUKI7orsGFdt1StWPyPXKU2MMdmwdkd-H8IyoAdHl3XOWIVhApvxHmg4ZVzwl8kYPDXe0RiGNWUPKZWnmbeEiY7RLPAzxO90DJEOK84O_ZGiz3CMJhdb8BCPG01byrDQ1TuIpVqI2RRqe06ejmZO8OJfvyHfPtx-PXyq7r58_Hx4f1dZ2clc8U454erRNS1AWypX0JShZ72xomGDqg00XVNzacZ-GFo1tmrgThiwXS2dvCGvL76nGH6skLJeMFmYZ-MhrEmLWvWi41zKgr56gE5hjWXjMyVV3XPeqEK1F8rGkFKEUZ8iLiZumjN9zkVP-n8u-pyLvuRShG8fCC3mv1fO0eD8uPzdRQ7lWvcIUSeLhQSHsSSnXcDHLP4AYQKz6Q
CitedBy_id crossref_primary_10_1016_j_rser_2025_115931
crossref_primary_10_1016_j_apenergy_2021_116773
crossref_primary_10_1016_j_apenergy_2021_117741
crossref_primary_10_1016_j_buildenv_2021_107855
crossref_primary_10_1016_j_enconman_2024_118137
crossref_primary_10_1016_j_energy_2023_129025
crossref_primary_10_1016_j_energy_2025_135422
crossref_primary_10_3390_en18092224
crossref_primary_10_1016_j_seta_2022_102007
crossref_primary_10_1016_j_enconman_2021_113996
crossref_primary_10_1016_j_enconman_2021_113911
crossref_primary_10_1049_rpg2_12805
crossref_primary_10_1093_ijlct_ctaf085
crossref_primary_10_3390_su16167220
crossref_primary_10_3389_fenrg_2022_975214
crossref_primary_10_1016_j_enconman_2022_115863
crossref_primary_10_1016_j_petsci_2021_09_048
crossref_primary_10_1049_gtd2_12904
crossref_primary_10_1109_TSG_2024_3493818
crossref_primary_10_1016_j_energy_2020_118571
crossref_primary_10_1016_j_scs_2020_102555
crossref_primary_10_1016_j_segan_2024_101351
crossref_primary_10_1002_ese3_788
crossref_primary_10_1016_j_buildenv_2022_109729
crossref_primary_10_1016_j_apenergy_2021_117579
crossref_primary_10_1016_j_seta_2025_104235
crossref_primary_10_3390_en17051132
crossref_primary_10_1016_j_egyr_2023_09_039
crossref_primary_10_1080_01430750_2023_2283817
crossref_primary_10_1007_s11081_021_09679_z
crossref_primary_10_1016_j_egyr_2025_05_085
crossref_primary_10_1016_j_gloei_2024_11_018
crossref_primary_10_1016_j_scs_2023_104585
crossref_primary_10_1016_j_energy_2024_131776
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_ijhydene_2022_11_279
crossref_primary_10_1016_j_ijcip_2024_100699
crossref_primary_10_1016_j_apenergy_2023_121066
crossref_primary_10_1016_j_enconman_2022_115996
crossref_primary_10_1016_j_est_2025_115926
crossref_primary_10_1007_s42835_024_01928_2
crossref_primary_10_1016_j_energy_2021_121883
crossref_primary_10_1016_j_ins_2024_120252
crossref_primary_10_1016_j_segan_2022_100973
crossref_primary_10_7717_peerj_cs_2117
crossref_primary_10_1016_j_solener_2024_112821
crossref_primary_10_1016_j_enconman_2020_113370
crossref_primary_10_1016_j_energy_2021_122215
crossref_primary_10_1016_j_ijhydene_2023_01_317
crossref_primary_10_1016_j_egyr_2022_10_314
crossref_primary_10_1016_j_epsr_2025_111715
crossref_primary_10_1016_j_enbuild_2022_112649
crossref_primary_10_1016_j_renene_2025_123373
crossref_primary_10_1016_j_enconman_2025_120432
crossref_primary_10_1016_j_energy_2021_121716
crossref_primary_10_1016_j_jclepro_2023_136120
crossref_primary_10_1016_j_rser_2023_114101
crossref_primary_10_1016_j_enconman_2023_117265
crossref_primary_10_3390_en14175541
crossref_primary_10_3390_en17071570
crossref_primary_10_3390_en17184571
crossref_primary_10_1016_j_enconman_2020_112963
crossref_primary_10_1016_j_apenergy_2023_122088
crossref_primary_10_1016_j_enbuild_2021_111191
crossref_primary_10_1016_j_enconman_2021_114310
crossref_primary_10_3390_buildings14113428
crossref_primary_10_1016_j_ijepes_2023_109148
crossref_primary_10_1016_j_egyr_2022_11_150
crossref_primary_10_1016_j_energy_2021_120102
crossref_primary_10_1016_j_jclepro_2023_137922
crossref_primary_10_1016_j_energy_2023_129679
crossref_primary_10_1016_j_jclepro_2022_131182
crossref_primary_10_1016_j_apenergy_2022_120504
crossref_primary_10_3389_fenrg_2022_959774
crossref_primary_10_1016_j_renene_2023_119381
crossref_primary_10_1016_j_apenergy_2021_117714
crossref_primary_10_1016_j_enconman_2021_113926
crossref_primary_10_1016_j_enconman_2023_116963
crossref_primary_10_1016_j_enconman_2022_116347
crossref_primary_10_1016_j_renene_2022_05_163
crossref_primary_10_1016_j_eneco_2021_105712
crossref_primary_10_1016_j_egyr_2021_10_064
crossref_primary_10_1016_j_epsr_2024_111046
crossref_primary_10_1016_j_enconman_2020_113354
crossref_primary_10_1016_j_enconman_2022_115497
crossref_primary_10_1109_ACCESS_2021_3065087
crossref_primary_10_1109_JSYST_2021_3135295
crossref_primary_10_1016_j_enbuild_2025_116032
crossref_primary_10_1016_j_apenergy_2021_118120
crossref_primary_10_1016_j_ijepes_2020_106680
crossref_primary_10_3390_a17110528
Cites_doi 10.3390/e12010053
10.1016/j.apenergy.2018.01.062
10.1016/j.apenergy.2018.04.019
10.1016/j.applthermaleng.2012.04.001
10.1016/j.enconman.2018.02.081
10.1016/j.renene.2019.07.011
10.1016/j.energy.2016.01.060
10.1016/j.apenergy.2019.113424
10.1016/j.applthermaleng.2015.10.078
10.1016/j.energy.2016.09.083
10.1016/j.apenergy.2018.09.144
10.1016/j.enconman.2014.12.036
10.1016/j.apenergy.2016.09.110
10.1016/j.enbuild.2019.04.023
10.1016/j.energy.2016.01.027
10.1016/j.apenergy.2018.08.010
10.1016/j.enbuild.2015.02.032
10.1016/j.enconman.2019.111920
10.1016/j.enconman.2018.04.054
10.1016/j.enconman.2017.10.011
10.1016/j.enbuild.2015.11.072
10.1016/j.enconman.2019.03.062
10.1016/j.enconman.2018.03.015
10.1016/j.energy.2015.10.065
10.1016/j.enconman.2019.05.065
10.1016/j.enconman.2018.08.046
10.1016/j.enconman.2017.11.035
10.1016/j.apenergy.2012.09.019
10.1016/j.renene.2018.01.002
10.1016/j.enconman.2015.09.042
10.1016/j.rser.2017.01.069
10.1016/j.apenergy.2019.01.064
10.1016/j.apenergy.2018.09.151
10.1016/j.enconman.2019.112081
10.1016/j.energy.2016.08.102
10.1016/j.energy.2014.02.042
10.1016/j.energy.2016.02.156
10.1016/j.energy.2016.05.085
10.1016/j.applthermaleng.2018.09.075
10.1016/j.applthermaleng.2016.02.027
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Mar 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Mar 15, 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2020.112589
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2020_112589
S0196890420301266
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-179d2d4fd56ee6d5619e5e6d808ac250b94ae575413af8bb69f69b1d2aec743d3
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524305200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Thu Oct 02 10:23:16 EDT 2025
Wed Aug 13 11:15:05 EDT 2025
Sat Nov 29 07:22:06 EST 2025
Tue Nov 18 22:41:10 EST 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Multi-objective optimization
Robustness analysis
Building integrated energy system
Stochastic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-179d2d4fd56ee6d5619e5e6d808ac250b94ae575413af8bb69f69b1d2aec743d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8924-1665
PQID 2439481159
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2498271133
proquest_journals_2439481159
crossref_primary_10_1016_j_enconman_2020_112589
crossref_citationtrail_10_1016_j_enconman_2020_112589
elsevier_sciencedirect_doi_10_1016_j_enconman_2020_112589
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Wang, Lu, Yang, Mao (b0160) 2016; 115
Tran, Narikiyo, Kawanishi, Kikuchi, Takaba (b0055) 2018; 174
Razmi, Janbaz (b0060) 2019; 112320
Sharifzadeh, Lubiano-Walochik, Shah (b0090) 2017; 72
Kang, Wang (b0105) 2018; 231
Zeng, Li, Jiang, Liu, Zhang (b0050) 2016; 112
Li, Mu, Li, Ma (b0185) 2016; 99
Wang, Jing, Zhang, Meng, Li, Zhao (b0200) 2018; 145
Wei, Chen, Sun, Zhang (b0030) 2016; 98
Mavrotas, Florios (b0120) 2013; 219
Razmi, Soltani, Torabi (b0010) 2019; 195
Feng, Hung, Zhang, Li, Yang, Shi (b0205) 2015; 93
Gang, Wang, Shan, Gao (b0110) 2015; 94
Luo, Yang, Xie, Xie, Liu, Souley Agbodjan (b0130) 2019; 200
Zhang, Campana, Lundblad, Zheng, Yan (b0005) 2019; 199
Zeng, Zhang, Deng, Li, Zhang (b0150) 2019; 189
Bischi, Taccari, Martelli, Amaldi, Manzolini, Silva (b0165) 2014; 74
Wu, Ren, Gao, Ren (b0190) 2016; 103
Ju, Tan, Li, Tan, Yu, Song (b0040) 2016; 111
Mavromatidis, Orehounig, Carmeliet (b0070) 2018; 222
Zhou, Zhang, Liu, Li, Georgiadis, Pistikopoulos (b0115) 2013; 103
Chen, Zhang, Yang, Peng (b0170) 2016; 94
Gabrielli, Fürer, Mavromatidis, Mazzotti (b0085) 2019; 238
Jing, Zhu, Zhu, Wang, Meng, Shah (b0175) 2018; 166
Soulouknga, Doka, Revanna, Djongyang, Kofane (b0100) 2018; 121
Gholaminezhad, Jafarpur, Paydar, Karimi (b0210) 2017; 153
Jing, Wang, Wang, Brandon, Li, Chen (b0045) 2017; 154
Jing, Wang, Zhang, Wang, Li, Shah (b0140) 2019; 252
Di Somma, Yan, Bianco, Luh, Graditi, Mongibello (b0035) 2016; 101
Jing, Wang, Liang, Wang, Li, Shah (b0155) 2018; 231
Wang, Yang, Huang, Ma (b0195) 2018; 164
Feng, Hung, Greg, Zhang, Li, Yang (b0125) 2015; 106
Mavromatidis, Orehounig, Carmeliet (b0065) 2018; 214
Akbari, Jolai, Ghaderi (b0080) 2016; 116
Soheyli, Shafiei Mayam, Mehrjoo (b0025) 2016; 184
Gianniou, Liu, Heller, Nielsen, Rode (b0095) 2018; 165
Pagliarini, Corradi, Rainieri (b0015) 2012; 44
Lv, Li, Shan, Jin, Suo (b0075) 2018; 229
You, Wang, Wu, Shi, Li (b0180) 2015; 92
Jing, Wang, Zhang, Liu, Liang, Meng (b0020) 2019; 194
Lotfi, Hosseinzadeh F, Fallahnejad, Reza. Entropy, Vol. 12, Pages 53-62: Imprecise Shannon’s Entropy and Multi Attribute Decision Making 2010.
Zhu, Zhan, Liang, Zheng, Qiu, Lin (b0145) 2020; 146
Kang (10.1016/j.enconman.2020.112589_b0105) 2018; 231
Razmi (10.1016/j.enconman.2020.112589_b0010) 2019; 195
Jing (10.1016/j.enconman.2020.112589_b0175) 2018; 166
Li (10.1016/j.enconman.2020.112589_b0185) 2016; 99
Zhu (10.1016/j.enconman.2020.112589_b0145) 2020; 146
Jing (10.1016/j.enconman.2020.112589_b0045) 2017; 154
Zeng (10.1016/j.enconman.2020.112589_b0050) 2016; 112
Lv (10.1016/j.enconman.2020.112589_b0075) 2018; 229
Feng (10.1016/j.enconman.2020.112589_b0205) 2015; 93
Ju (10.1016/j.enconman.2020.112589_b0040) 2016; 111
Pagliarini (10.1016/j.enconman.2020.112589_b0015) 2012; 44
Wang (10.1016/j.enconman.2020.112589_b0200) 2018; 145
Jing (10.1016/j.enconman.2020.112589_b0020) 2019; 194
Wang (10.1016/j.enconman.2020.112589_b0195) 2018; 164
Zhou (10.1016/j.enconman.2020.112589_b0115) 2013; 103
Zeng (10.1016/j.enconman.2020.112589_b0150) 2019; 189
Jing (10.1016/j.enconman.2020.112589_b0140) 2019; 252
Chen (10.1016/j.enconman.2020.112589_b0170) 2016; 94
Jing (10.1016/j.enconman.2020.112589_b0155) 2018; 231
Mavromatidis (10.1016/j.enconman.2020.112589_b0070) 2018; 222
You (10.1016/j.enconman.2020.112589_b0180) 2015; 92
Zhang (10.1016/j.enconman.2020.112589_b0005) 2019; 199
Razmi (10.1016/j.enconman.2020.112589_b0060) 2019; 112320
Feng (10.1016/j.enconman.2020.112589_b0125) 2015; 106
Akbari (10.1016/j.enconman.2020.112589_b0080) 2016; 116
Gang (10.1016/j.enconman.2020.112589_b0110) 2015; 94
Di Somma (10.1016/j.enconman.2020.112589_b0035) 2016; 101
10.1016/j.enconman.2020.112589_b0135
Wu (10.1016/j.enconman.2020.112589_b0190) 2016; 103
Luo (10.1016/j.enconman.2020.112589_b0130) 2019; 200
Tran (10.1016/j.enconman.2020.112589_b0055) 2018; 174
Gianniou (10.1016/j.enconman.2020.112589_b0095) 2018; 165
Gabrielli (10.1016/j.enconman.2020.112589_b0085) 2019; 238
Sharifzadeh (10.1016/j.enconman.2020.112589_b0090) 2017; 72
Mavromatidis (10.1016/j.enconman.2020.112589_b0065) 2018; 214
Soulouknga (10.1016/j.enconman.2020.112589_b0100) 2018; 121
Soheyli (10.1016/j.enconman.2020.112589_b0025) 2016; 184
Wei (10.1016/j.enconman.2020.112589_b0030) 2016; 98
Mavrotas (10.1016/j.enconman.2020.112589_b0120) 2013; 219
Bischi (10.1016/j.enconman.2020.112589_b0165) 2014; 74
Wang (10.1016/j.enconman.2020.112589_b0160) 2016; 115
Gholaminezhad (10.1016/j.enconman.2020.112589_b0210) 2017; 153
References_xml – volume: 72
  start-page: 385
  year: 2017
  end-page: 398
  ident: b0090
  article-title: Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies
  publication-title: Renew Sustain Energy Rev
– reference: Lotfi, Hosseinzadeh F, Fallahnejad, Reza. Entropy, Vol. 12, Pages 53-62: Imprecise Shannon’s Entropy and Multi Attribute Decision Making 2010.
– volume: 153
  start-page: 175
  year: 2017
  end-page: 187
  ident: b0210
  article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations
  publication-title: Energy Convers Manag
– volume: 231
  start-page: 534
  year: 2018
  end-page: 548
  ident: b0155
  article-title: Multi-objective optimization of a neighborhood-level urban energy network: considering Game-theory inspired multi-benefit allocation constraints
  publication-title: Appl Energy
– volume: 222
  start-page: 932
  year: 2018
  end-page: 950
  ident: b0070
  article-title: Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach
  publication-title: Appl Energy
– volume: 93
  start-page: 2018
  year: 2015
  end-page: 2029
  ident: b0205
  article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings
  publication-title: Energy
– volume: 200
  year: 2019
  ident: b0130
  article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy
  publication-title: Energy Convers Manag
– volume: 94
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0110
  article-title: Impacts of cooling load calculation uncertainties on the design optimization of building cooling systems
  publication-title: Energy Build
– volume: 99
  start-page: 202
  year: 2016
  end-page: 220
  ident: b0185
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
– volume: 238
  start-page: 1192
  year: 2019
  end-page: 1210
  ident: b0085
  article-title: Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis
  publication-title: Appl Energy
– volume: 98
  start-page: 296
  year: 2016
  end-page: 307
  ident: b0030
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
– volume: 94
  start-page: 24
  year: 2016
  end-page: 39
  ident: b0170
  article-title: Study on energy and economic benefits of converting a combined heating and power system to a tri-generation system for sewage treatment plants in subtropical area
  publication-title: Appl Therm Eng
– volume: 112
  start-page: 149
  year: 2016
  end-page: 158
  ident: b0050
  article-title: A novel multi-objective optimization method for CCHP-GSHP coupling systems
  publication-title: Energy Build
– volume: 92
  start-page: 47
  year: 2015
  end-page: 59
  ident: b0180
  article-title: Performance analysis of hybrid ground-coupled heat pump system with multi-functions
  publication-title: Energy Convers Manag
– volume: 195
  start-page: 1199
  year: 2019
  end-page: 1211
  ident: b0010
  article-title: Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis
  publication-title: Energy Convers Manag
– volume: 44
  start-page: 150
  year: 2012
  end-page: 158
  ident: b0015
  article-title: Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool
  publication-title: Appl Therm Eng
– volume: 146
  start-page: 2700
  year: 2020
  end-page: 2715
  ident: b0145
  article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects
  publication-title: Renew Energy
– volume: 106
  start-page: 859
  year: 2015
  end-page: 872
  ident: b0125
  article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery
  publication-title: Energy Convers Manag
– volume: 189
  start-page: 105
  year: 2019
  end-page: 117
  ident: b0150
  article-title: An off-design model to optimize CCHP-GSHP system considering carbon tax
  publication-title: Energy Convers Manag
– volume: 115
  start-page: 49
  year: 2016
  end-page: 59
  ident: b0160
  article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system
  publication-title: Energy
– volume: 101
  start-page: 752
  year: 2016
  end-page: 761
  ident: b0035
  article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer
  publication-title: Appl Therm Eng
– volume: 116
  start-page: 567
  year: 2016
  end-page: 582
  ident: b0080
  article-title: Optimal design of distributed energy system in a neighborhood under uncertainty
  publication-title: Energy
– volume: 252
  year: 2019
  ident: b0140
  article-title: Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties
  publication-title: Appl Energy
– volume: 229
  start-page: 389
  year: 2018
  end-page: 403
  ident: b0075
  article-title: Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province
  publication-title: Appl Energy
– volume: 103
  start-page: 502
  year: 2016
  end-page: 512
  ident: b0190
  article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison
  publication-title: Energy
– volume: 145
  start-page: 743
  year: 2018
  end-page: 754
  ident: b0200
  article-title: An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization
  publication-title: Appl Therm Eng
– volume: 184
  start-page: 375
  year: 2016
  end-page: 395
  ident: b0025
  article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm
  publication-title: Appl Energy
– volume: 194
  start-page: 123
  year: 2019
  end-page: 139
  ident: b0020
  article-title: Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives
  publication-title: Energy Build
– volume: 154
  start-page: 365
  year: 2017
  end-page: 379
  ident: b0045
  article-title: Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system
  publication-title: Energy Convers Manag
– volume: 74
  start-page: 12
  year: 2014
  end-page: 26
  ident: b0165
  article-title: A detailed MILP optimization model for combined cooling, heat and power system operation planning
  publication-title: Energy
– volume: 112320
  year: 2019
  ident: b0060
  article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES)
  publication-title: Energy Convers Manag
– volume: 121
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0100
  article-title: Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution
  publication-title: Renew Energy
– volume: 103
  start-page: 135
  year: 2013
  end-page: 144
  ident: b0115
  article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems
  publication-title: Appl Energy
– volume: 219
  start-page: 9652
  year: 2013
  end-page: 9669
  ident: b0120
  article-title: An improved version of the augmented s-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems
  publication-title: Appl Math Comput
– volume: 214
  start-page: 219
  year: 2018
  end-page: 238
  ident: b0065
  article-title: Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems
  publication-title: Appl Energy
– volume: 166
  start-page: 445
  year: 2018
  end-page: 462
  ident: b0175
  article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning
  publication-title: Energy Convers Manag
– volume: 164
  start-page: 93
  year: 2018
  end-page: 101
  ident: b0195
  article-title: Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system
  publication-title: Energy Convers Manag
– volume: 111
  start-page: 322
  year: 2016
  end-page: 340
  ident: b0040
  article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China
  publication-title: Energy
– volume: 174
  start-page: 475
  year: 2018
  end-page: 488
  ident: b0055
  article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory
  publication-title: Energy Convers Manag
– volume: 231
  start-page: 615
  year: 2018
  end-page: 627
  ident: b0105
  article-title: Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations
  publication-title: Appl Energy
– volume: 199
  year: 2019
  ident: b0005
  article-title: Planning and operation of an integrated energy system in a Swedish building
  publication-title: Energy Convers Manag
– volume: 165
  start-page: 840
  year: 2018
  end-page: 850
  ident: b0095
  article-title: Clustering-based analysis for residential district heating data
  publication-title: Energy Convers Manag
– volume: 112320
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0060
  article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES)
  publication-title: Energy Convers Manag
– ident: 10.1016/j.enconman.2020.112589_b0135
  doi: 10.3390/e12010053
– volume: 214
  start-page: 219
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0065
  article-title: Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.01.062
– volume: 222
  start-page: 932
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0070
  article-title: Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.019
– volume: 44
  start-page: 150
  year: 2012
  ident: 10.1016/j.enconman.2020.112589_b0015
  article-title: Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.04.001
– volume: 164
  start-page: 93
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0195
  article-title: Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.02.081
– volume: 146
  start-page: 2700
  year: 2020
  ident: 10.1016/j.enconman.2020.112589_b0145
  article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.011
– volume: 99
  start-page: 202
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0185
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.060
– volume: 252
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0140
  article-title: Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113424
– volume: 94
  start-page: 24
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0170
  article-title: Study on energy and economic benefits of converting a combined heating and power system to a tri-generation system for sewage treatment plants in subtropical area
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.10.078
– volume: 116
  start-page: 567
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0080
  article-title: Optimal design of distributed energy system in a neighborhood under uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.083
– volume: 231
  start-page: 615
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0105
  article-title: Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.144
– volume: 92
  start-page: 47
  year: 2015
  ident: 10.1016/j.enconman.2020.112589_b0180
  article-title: Performance analysis of hybrid ground-coupled heat pump system with multi-functions
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.036
– volume: 184
  start-page: 375
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0025
  article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.110
– volume: 194
  start-page: 123
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0020
  article-title: Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.04.023
– volume: 219
  start-page: 9652
  year: 2013
  ident: 10.1016/j.enconman.2020.112589_b0120
  article-title: An improved version of the augmented s-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems
  publication-title: Appl Math Comput
– volume: 98
  start-page: 296
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0030
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.027
– volume: 229
  start-page: 389
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0075
  article-title: Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.010
– volume: 94
  start-page: 1
  year: 2015
  ident: 10.1016/j.enconman.2020.112589_b0110
  article-title: Impacts of cooling load calculation uncertainties on the design optimization of building cooling systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.02.032
– volume: 199
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0005
  article-title: Planning and operation of an integrated energy system in a Swedish building
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111920
– volume: 166
  start-page: 445
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0175
  article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.04.054
– volume: 153
  start-page: 175
  year: 2017
  ident: 10.1016/j.enconman.2020.112589_b0210
  article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.011
– volume: 112
  start-page: 149
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0050
  article-title: A novel multi-objective optimization method for CCHP-GSHP coupling systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.072
– volume: 189
  start-page: 105
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0150
  article-title: An off-design model to optimize CCHP-GSHP system considering carbon tax
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.03.062
– volume: 165
  start-page: 840
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0095
  article-title: Clustering-based analysis for residential district heating data
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.015
– volume: 93
  start-page: 2018
  year: 2015
  ident: 10.1016/j.enconman.2020.112589_b0205
  article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.065
– volume: 195
  start-page: 1199
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0010
  article-title: Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.05.065
– volume: 174
  start-page: 475
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0055
  article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.08.046
– volume: 154
  start-page: 365
  year: 2017
  ident: 10.1016/j.enconman.2020.112589_b0045
  article-title: Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.035
– volume: 103
  start-page: 135
  year: 2013
  ident: 10.1016/j.enconman.2020.112589_b0115
  article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.019
– volume: 121
  start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0100
  article-title: Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.01.002
– volume: 106
  start-page: 859
  year: 2015
  ident: 10.1016/j.enconman.2020.112589_b0125
  article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.042
– volume: 72
  start-page: 385
  year: 2017
  ident: 10.1016/j.enconman.2020.112589_b0090
  article-title: Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.069
– volume: 238
  start-page: 1192
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0085
  article-title: Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.064
– volume: 231
  start-page: 534
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0155
  article-title: Multi-objective optimization of a neighborhood-level urban energy network: considering Game-theory inspired multi-benefit allocation constraints
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.151
– volume: 200
  year: 2019
  ident: 10.1016/j.enconman.2020.112589_b0130
  article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112081
– volume: 115
  start-page: 49
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0160
  article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.102
– volume: 74
  start-page: 12
  year: 2014
  ident: 10.1016/j.enconman.2020.112589_b0165
  article-title: A detailed MILP optimization model for combined cooling, heat and power system operation planning
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.042
– volume: 103
  start-page: 502
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0190
  article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.156
– volume: 111
  start-page: 322
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0040
  article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.085
– volume: 145
  start-page: 743
  year: 2018
  ident: 10.1016/j.enconman.2020.112589_b0200
  article-title: An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.09.075
– volume: 101
  start-page: 752
  year: 2016
  ident: 10.1016/j.enconman.2020.112589_b0035
  article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.027
SSID ssj0003506
Score 2.5898702
Snippet •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic...
The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112589
SubjectTerms Building integrated energy system
carbon
China
Computer simulation
Decision analysis
Decision making
design
Design optimization
deterministic models
Economic models
Economics
emissions
Energy
energy conversion
Entropy (Information theory)
Entropy of solution
Environmental objective
exhibitions
hospitality industry
Identification methods
Integrated energy systems
Mixed integer
Monte Carlo method
Monte Carlo simulation
Multi-objective optimization
Multiple objective analysis
Nonlinear programming
objectives
Parameter sensitivity
Parameter uncertainty
Pareto optimization
Probability theory
Renewable energy sources
Robustness analysis
solutions
Stochastic models
stochastic processes
Stochastic programming
system optimization
Uncertainty
Title Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty
URI https://dx.doi.org/10.1016/j.enconman.2020.112589
https://www.proquest.com/docview/2439481159
https://www.proquest.com/docview/2498271133
Volume 208
WOSCitedRecordID wos000524305200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOiKcYDGQkxKXKyDv2cUKdYKoKQp3ozbITR2q1JaVNpkkc-Nf5_ErCGNo4cLEix06i_H7-_Nn-Hgi9pWEmRMxzz09F7MUkhyFVitLLpCg4zOh5kXKdbCKbz8lySb-MRj-cL8zFWVZV5PKSbv4r1FAHYCvX2X-Au3soVMA1gA4lwA7lrYCHEQ6rXdAjta2gV4u1kWmTGqTDuXW7NGbltWh3jZZ13MUmKZ2xlrHjtEmz-6gSxUQab0ETAlqn0d1CmRvTgua3U-Kpaaot2_W2nH7t-R8WN9_sprUyse3EUKtnRd7XnNj0K1_blauarUwrOdy8gJWqsoRLhvuZNPUINRmInUAOfTLZKN-mhFDvWjFvdhzWhyrWZwVffaiebXv0E5s7zJ9_ZsensxlbTJeLd5vvnko5po7mbf6VO2gvzBJKxmjv6NN0edJN5FGiU7N23zhwML_-1X_Tba7M8lp1WTxED-yaAx8ZrjxCI1k9RvcHkSifoJ-ONfgKa_CQNRjgwz1rsGMN7liDgTXYsQb3rMGGNdiwBmvW4AFrnqLT4-niw0fP5ubw8iiLGhXVtgiLuCySVMoUyoDKBC6IT3gOarWgMZewFAAdiZdEiJSWKRVBEXKZg9JaRM_QuKor-RzhlPAQJAYnPFV-2tDeD0ouyqLwUz-S0T5K3F9luQ1cr_KnnDFnobhmDg2m0GAGjX30vuu3MaFbbuxBHWjMKqBGsWRAvBv7HjiUmZUGOxYqv3MCiy64_aa7DQJcncrxStatakNJmAVBFL24RZuX6F4_jg7QuNm28hW6m180q932tWXwL8QDx3s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+multi-objective+optimization+and+robustness+analysis+framework+for+building+integrated+energy+system+under+uncertainty&rft.jtitle=Energy+conversion+and+management&rft.au=Wang%2C+Meng&rft.au=Yu%2C+Hang&rft.au=Jing%2C+Rui&rft.au=Liu%2C+He&rft.date=2020-03-15&rft.issn=0196-8904&rft.volume=208+p.112589-&rft_id=info:doi/10.1016%2Fj.enconman.2020.112589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon