Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty
•Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making me...
Saved in:
| Published in: | Energy conversion and management Vol. 208; p. 112589 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
15.03.2020
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0196-8904, 1879-2227 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making methods.•Combine optimization with Monte Carlo simulation for robustness analysis.
The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure. |
|---|---|
| AbstractList | •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic programming.•Generate probabilistic stochastic scenarios capturing multiple uncertainties.•Identify the final optimum solutions by two decision-making methods.•Combine optimization with Monte Carlo simulation for robustness analysis.
The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure. The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system's economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints' probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 103/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure. The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and optimality-robustness, this study proposes a combined multi-objective optimization and robustness analysis framework for optimal design of building integrated energy system. The proposed framework includes two parts. In the optimization part, on the basis of scenario generation for capturing the uncertainties of renewable energy sources and energy demands, two-stage multi-objective stochastic mixed-integer nonlinear programming is conducted to optimize the system‘s economic and environmental objectives. Two decision-making methods are introduced to identify the final optimum solution from the obtained Pareto frontier. In the robustness-analysis part, a combined Monte Carlo simulation and optimization method is implemented to verify the robustness of the optimal solutions. The two parts of the framework are integrated to investigate the case of a hotel in Beijing, China. The results indicate that compared with the stochastic model, the deterministic model underestimates the annual total cost. Achieving economic and environmental optimum is conflicting and needs a trade-off through decision making. Moreover, in the robustness analysis, an acceptable robustness value is identified, considering both the selected objectives and the operation constraints’ probability of failure. The Shannon-entropy-based final optimum solution exhibits the best comprehensive performance, with an annual total cost of $695 × 10³/year, an annual carbon emissions of 2100 tons/year, and an 8.81% probability of failure. |
| ArticleNumber | 112589 |
| Author | Liu, He Wang, Meng Li, Chaoen Chen, Pengda Jing, Rui Yu, Hang |
| Author_xml | – sequence: 1 givenname: Meng surname: Wang fullname: Wang, Meng organization: School of Mechanical Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Hang surname: Yu fullname: Yu, Hang email: tjyuhang@163.com, yuhang@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Rui orcidid: 0000-0002-8924-1665 surname: Jing fullname: Jing, Rui organization: Department of Chemical Engineering, Imperial College London, London, UK – sequence: 4 givenname: He surname: Liu fullname: Liu, He organization: State Grid Tianjin Information & Telecommunication Company, Tianjin, China – sequence: 5 givenname: Pengda surname: Chen fullname: Chen, Pengda organization: School of Mechanical Engineering, Tongji University, Shanghai, China – sequence: 6 givenname: Chaoen surname: Li fullname: Li, Chaoen organization: School of Mechanical Engineering, Tongji University, Shanghai, China |
| BookMark | eNqFkU2LFDEQhoOs4OzqX5CAFy895qO_Ah6UYf2ABS96Dumkeqi2OxmT9Ep78a-bcfSyl71UVcLzvlD1XpMrHzwQ8pKzPWe8fTPtwdvgF-P3gonyyUXTqydkx_tOVUKI7orsGFdt1StWPyPXKU2MMdmwdkd-H8IyoAdHl3XOWIVhApvxHmg4ZVzwl8kYPDXe0RiGNWUPKZWnmbeEiY7RLPAzxO90DJEOK84O_ZGiz3CMJhdb8BCPG01byrDQ1TuIpVqI2RRqe06ejmZO8OJfvyHfPtx-PXyq7r58_Hx4f1dZ2clc8U454erRNS1AWypX0JShZ72xomGDqg00XVNzacZ-GFo1tmrgThiwXS2dvCGvL76nGH6skLJeMFmYZ-MhrEmLWvWi41zKgr56gE5hjWXjMyVV3XPeqEK1F8rGkFKEUZ8iLiZumjN9zkVP-n8u-pyLvuRShG8fCC3mv1fO0eD8uPzdRQ7lWvcIUSeLhQSHsSSnXcDHLP4AYQKz6Q |
| CitedBy_id | crossref_primary_10_1016_j_rser_2025_115931 crossref_primary_10_1016_j_apenergy_2021_116773 crossref_primary_10_1016_j_apenergy_2021_117741 crossref_primary_10_1016_j_buildenv_2021_107855 crossref_primary_10_1016_j_enconman_2024_118137 crossref_primary_10_1016_j_energy_2023_129025 crossref_primary_10_1016_j_energy_2025_135422 crossref_primary_10_3390_en18092224 crossref_primary_10_1016_j_seta_2022_102007 crossref_primary_10_1016_j_enconman_2021_113996 crossref_primary_10_1016_j_enconman_2021_113911 crossref_primary_10_1049_rpg2_12805 crossref_primary_10_1093_ijlct_ctaf085 crossref_primary_10_3390_su16167220 crossref_primary_10_3389_fenrg_2022_975214 crossref_primary_10_1016_j_enconman_2022_115863 crossref_primary_10_1016_j_petsci_2021_09_048 crossref_primary_10_1049_gtd2_12904 crossref_primary_10_1109_TSG_2024_3493818 crossref_primary_10_1016_j_energy_2020_118571 crossref_primary_10_1016_j_scs_2020_102555 crossref_primary_10_1016_j_segan_2024_101351 crossref_primary_10_1002_ese3_788 crossref_primary_10_1016_j_buildenv_2022_109729 crossref_primary_10_1016_j_apenergy_2021_117579 crossref_primary_10_1016_j_seta_2025_104235 crossref_primary_10_3390_en17051132 crossref_primary_10_1016_j_egyr_2023_09_039 crossref_primary_10_1080_01430750_2023_2283817 crossref_primary_10_1007_s11081_021_09679_z crossref_primary_10_1016_j_egyr_2025_05_085 crossref_primary_10_1016_j_gloei_2024_11_018 crossref_primary_10_1016_j_scs_2023_104585 crossref_primary_10_1016_j_energy_2024_131776 crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_1016_j_ijhydene_2022_11_279 crossref_primary_10_1016_j_ijcip_2024_100699 crossref_primary_10_1016_j_apenergy_2023_121066 crossref_primary_10_1016_j_enconman_2022_115996 crossref_primary_10_1016_j_est_2025_115926 crossref_primary_10_1007_s42835_024_01928_2 crossref_primary_10_1016_j_energy_2021_121883 crossref_primary_10_1016_j_ins_2024_120252 crossref_primary_10_1016_j_segan_2022_100973 crossref_primary_10_7717_peerj_cs_2117 crossref_primary_10_1016_j_solener_2024_112821 crossref_primary_10_1016_j_enconman_2020_113370 crossref_primary_10_1016_j_energy_2021_122215 crossref_primary_10_1016_j_ijhydene_2023_01_317 crossref_primary_10_1016_j_egyr_2022_10_314 crossref_primary_10_1016_j_epsr_2025_111715 crossref_primary_10_1016_j_enbuild_2022_112649 crossref_primary_10_1016_j_renene_2025_123373 crossref_primary_10_1016_j_enconman_2025_120432 crossref_primary_10_1016_j_energy_2021_121716 crossref_primary_10_1016_j_jclepro_2023_136120 crossref_primary_10_1016_j_rser_2023_114101 crossref_primary_10_1016_j_enconman_2023_117265 crossref_primary_10_3390_en14175541 crossref_primary_10_3390_en17071570 crossref_primary_10_3390_en17184571 crossref_primary_10_1016_j_enconman_2020_112963 crossref_primary_10_1016_j_apenergy_2023_122088 crossref_primary_10_1016_j_enbuild_2021_111191 crossref_primary_10_1016_j_enconman_2021_114310 crossref_primary_10_3390_buildings14113428 crossref_primary_10_1016_j_ijepes_2023_109148 crossref_primary_10_1016_j_egyr_2022_11_150 crossref_primary_10_1016_j_energy_2021_120102 crossref_primary_10_1016_j_jclepro_2023_137922 crossref_primary_10_1016_j_energy_2023_129679 crossref_primary_10_1016_j_jclepro_2022_131182 crossref_primary_10_1016_j_apenergy_2022_120504 crossref_primary_10_3389_fenrg_2022_959774 crossref_primary_10_1016_j_renene_2023_119381 crossref_primary_10_1016_j_apenergy_2021_117714 crossref_primary_10_1016_j_enconman_2021_113926 crossref_primary_10_1016_j_enconman_2023_116963 crossref_primary_10_1016_j_enconman_2022_116347 crossref_primary_10_1016_j_renene_2022_05_163 crossref_primary_10_1016_j_eneco_2021_105712 crossref_primary_10_1016_j_egyr_2021_10_064 crossref_primary_10_1016_j_epsr_2024_111046 crossref_primary_10_1016_j_enconman_2020_113354 crossref_primary_10_1016_j_enconman_2022_115497 crossref_primary_10_1109_ACCESS_2021_3065087 crossref_primary_10_1109_JSYST_2021_3135295 crossref_primary_10_1016_j_enbuild_2025_116032 crossref_primary_10_1016_j_apenergy_2021_118120 crossref_primary_10_1016_j_ijepes_2020_106680 crossref_primary_10_3390_a17110528 |
| Cites_doi | 10.3390/e12010053 10.1016/j.apenergy.2018.01.062 10.1016/j.apenergy.2018.04.019 10.1016/j.applthermaleng.2012.04.001 10.1016/j.enconman.2018.02.081 10.1016/j.renene.2019.07.011 10.1016/j.energy.2016.01.060 10.1016/j.apenergy.2019.113424 10.1016/j.applthermaleng.2015.10.078 10.1016/j.energy.2016.09.083 10.1016/j.apenergy.2018.09.144 10.1016/j.enconman.2014.12.036 10.1016/j.apenergy.2016.09.110 10.1016/j.enbuild.2019.04.023 10.1016/j.energy.2016.01.027 10.1016/j.apenergy.2018.08.010 10.1016/j.enbuild.2015.02.032 10.1016/j.enconman.2019.111920 10.1016/j.enconman.2018.04.054 10.1016/j.enconman.2017.10.011 10.1016/j.enbuild.2015.11.072 10.1016/j.enconman.2019.03.062 10.1016/j.enconman.2018.03.015 10.1016/j.energy.2015.10.065 10.1016/j.enconman.2019.05.065 10.1016/j.enconman.2018.08.046 10.1016/j.enconman.2017.11.035 10.1016/j.apenergy.2012.09.019 10.1016/j.renene.2018.01.002 10.1016/j.enconman.2015.09.042 10.1016/j.rser.2017.01.069 10.1016/j.apenergy.2019.01.064 10.1016/j.apenergy.2018.09.151 10.1016/j.enconman.2019.112081 10.1016/j.energy.2016.08.102 10.1016/j.energy.2014.02.042 10.1016/j.energy.2016.02.156 10.1016/j.energy.2016.05.085 10.1016/j.applthermaleng.2018.09.075 10.1016/j.applthermaleng.2016.02.027 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Mar 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Mar 15, 2020 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2020.112589 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2020_112589 S0196890420301266 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-179d2d4fd56ee6d5619e5e6d808ac250b94ae575413af8bb69f69b1d2aec743d3 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524305200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Thu Oct 02 10:23:16 EDT 2025 Wed Aug 13 11:15:05 EDT 2025 Sat Nov 29 07:22:06 EST 2025 Tue Nov 18 22:41:10 EST 2025 Fri Feb 23 02:49:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty Multi-objective optimization Robustness analysis Building integrated energy system Stochastic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-179d2d4fd56ee6d5619e5e6d808ac250b94ae575413af8bb69f69b1d2aec743d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8924-1665 |
| PQID | 2439481159 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2498271133 proquest_journals_2439481159 crossref_primary_10_1016_j_enconman_2020_112589 crossref_citationtrail_10_1016_j_enconman_2020_112589 elsevier_sciencedirect_doi_10_1016_j_enconman_2020_112589 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-15 |
| PublicationDateYYYYMMDD | 2020-03-15 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Wang, Lu, Yang, Mao (b0160) 2016; 115 Tran, Narikiyo, Kawanishi, Kikuchi, Takaba (b0055) 2018; 174 Razmi, Janbaz (b0060) 2019; 112320 Sharifzadeh, Lubiano-Walochik, Shah (b0090) 2017; 72 Kang, Wang (b0105) 2018; 231 Zeng, Li, Jiang, Liu, Zhang (b0050) 2016; 112 Li, Mu, Li, Ma (b0185) 2016; 99 Wang, Jing, Zhang, Meng, Li, Zhao (b0200) 2018; 145 Wei, Chen, Sun, Zhang (b0030) 2016; 98 Mavrotas, Florios (b0120) 2013; 219 Razmi, Soltani, Torabi (b0010) 2019; 195 Feng, Hung, Zhang, Li, Yang, Shi (b0205) 2015; 93 Gang, Wang, Shan, Gao (b0110) 2015; 94 Luo, Yang, Xie, Xie, Liu, Souley Agbodjan (b0130) 2019; 200 Zhang, Campana, Lundblad, Zheng, Yan (b0005) 2019; 199 Zeng, Zhang, Deng, Li, Zhang (b0150) 2019; 189 Bischi, Taccari, Martelli, Amaldi, Manzolini, Silva (b0165) 2014; 74 Wu, Ren, Gao, Ren (b0190) 2016; 103 Ju, Tan, Li, Tan, Yu, Song (b0040) 2016; 111 Mavromatidis, Orehounig, Carmeliet (b0070) 2018; 222 Zhou, Zhang, Liu, Li, Georgiadis, Pistikopoulos (b0115) 2013; 103 Chen, Zhang, Yang, Peng (b0170) 2016; 94 Gabrielli, Fürer, Mavromatidis, Mazzotti (b0085) 2019; 238 Jing, Zhu, Zhu, Wang, Meng, Shah (b0175) 2018; 166 Soulouknga, Doka, Revanna, Djongyang, Kofane (b0100) 2018; 121 Gholaminezhad, Jafarpur, Paydar, Karimi (b0210) 2017; 153 Jing, Wang, Wang, Brandon, Li, Chen (b0045) 2017; 154 Jing, Wang, Zhang, Wang, Li, Shah (b0140) 2019; 252 Di Somma, Yan, Bianco, Luh, Graditi, Mongibello (b0035) 2016; 101 Jing, Wang, Liang, Wang, Li, Shah (b0155) 2018; 231 Wang, Yang, Huang, Ma (b0195) 2018; 164 Feng, Hung, Greg, Zhang, Li, Yang (b0125) 2015; 106 Mavromatidis, Orehounig, Carmeliet (b0065) 2018; 214 Akbari, Jolai, Ghaderi (b0080) 2016; 116 Soheyli, Shafiei Mayam, Mehrjoo (b0025) 2016; 184 Gianniou, Liu, Heller, Nielsen, Rode (b0095) 2018; 165 Pagliarini, Corradi, Rainieri (b0015) 2012; 44 Lv, Li, Shan, Jin, Suo (b0075) 2018; 229 You, Wang, Wu, Shi, Li (b0180) 2015; 92 Jing, Wang, Zhang, Liu, Liang, Meng (b0020) 2019; 194 Lotfi, Hosseinzadeh F, Fallahnejad, Reza. Entropy, Vol. 12, Pages 53-62: Imprecise Shannon’s Entropy and Multi Attribute Decision Making 2010. Zhu, Zhan, Liang, Zheng, Qiu, Lin (b0145) 2020; 146 Kang (10.1016/j.enconman.2020.112589_b0105) 2018; 231 Razmi (10.1016/j.enconman.2020.112589_b0010) 2019; 195 Jing (10.1016/j.enconman.2020.112589_b0175) 2018; 166 Li (10.1016/j.enconman.2020.112589_b0185) 2016; 99 Zhu (10.1016/j.enconman.2020.112589_b0145) 2020; 146 Jing (10.1016/j.enconman.2020.112589_b0045) 2017; 154 Zeng (10.1016/j.enconman.2020.112589_b0050) 2016; 112 Lv (10.1016/j.enconman.2020.112589_b0075) 2018; 229 Feng (10.1016/j.enconman.2020.112589_b0205) 2015; 93 Ju (10.1016/j.enconman.2020.112589_b0040) 2016; 111 Pagliarini (10.1016/j.enconman.2020.112589_b0015) 2012; 44 Wang (10.1016/j.enconman.2020.112589_b0200) 2018; 145 Jing (10.1016/j.enconman.2020.112589_b0020) 2019; 194 Wang (10.1016/j.enconman.2020.112589_b0195) 2018; 164 Zhou (10.1016/j.enconman.2020.112589_b0115) 2013; 103 Zeng (10.1016/j.enconman.2020.112589_b0150) 2019; 189 Jing (10.1016/j.enconman.2020.112589_b0140) 2019; 252 Chen (10.1016/j.enconman.2020.112589_b0170) 2016; 94 Jing (10.1016/j.enconman.2020.112589_b0155) 2018; 231 Mavromatidis (10.1016/j.enconman.2020.112589_b0070) 2018; 222 You (10.1016/j.enconman.2020.112589_b0180) 2015; 92 Zhang (10.1016/j.enconman.2020.112589_b0005) 2019; 199 Razmi (10.1016/j.enconman.2020.112589_b0060) 2019; 112320 Feng (10.1016/j.enconman.2020.112589_b0125) 2015; 106 Akbari (10.1016/j.enconman.2020.112589_b0080) 2016; 116 Gang (10.1016/j.enconman.2020.112589_b0110) 2015; 94 Di Somma (10.1016/j.enconman.2020.112589_b0035) 2016; 101 10.1016/j.enconman.2020.112589_b0135 Wu (10.1016/j.enconman.2020.112589_b0190) 2016; 103 Luo (10.1016/j.enconman.2020.112589_b0130) 2019; 200 Tran (10.1016/j.enconman.2020.112589_b0055) 2018; 174 Gianniou (10.1016/j.enconman.2020.112589_b0095) 2018; 165 Gabrielli (10.1016/j.enconman.2020.112589_b0085) 2019; 238 Sharifzadeh (10.1016/j.enconman.2020.112589_b0090) 2017; 72 Mavromatidis (10.1016/j.enconman.2020.112589_b0065) 2018; 214 Soulouknga (10.1016/j.enconman.2020.112589_b0100) 2018; 121 Soheyli (10.1016/j.enconman.2020.112589_b0025) 2016; 184 Wei (10.1016/j.enconman.2020.112589_b0030) 2016; 98 Mavrotas (10.1016/j.enconman.2020.112589_b0120) 2013; 219 Bischi (10.1016/j.enconman.2020.112589_b0165) 2014; 74 Wang (10.1016/j.enconman.2020.112589_b0160) 2016; 115 Gholaminezhad (10.1016/j.enconman.2020.112589_b0210) 2017; 153 |
| References_xml | – volume: 72 start-page: 385 year: 2017 end-page: 398 ident: b0090 article-title: Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies publication-title: Renew Sustain Energy Rev – reference: Lotfi, Hosseinzadeh F, Fallahnejad, Reza. Entropy, Vol. 12, Pages 53-62: Imprecise Shannon’s Entropy and Multi Attribute Decision Making 2010. – volume: 153 start-page: 175 year: 2017 end-page: 187 ident: b0210 article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations publication-title: Energy Convers Manag – volume: 231 start-page: 534 year: 2018 end-page: 548 ident: b0155 article-title: Multi-objective optimization of a neighborhood-level urban energy network: considering Game-theory inspired multi-benefit allocation constraints publication-title: Appl Energy – volume: 222 start-page: 932 year: 2018 end-page: 950 ident: b0070 article-title: Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach publication-title: Appl Energy – volume: 93 start-page: 2018 year: 2015 end-page: 2029 ident: b0205 article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings publication-title: Energy – volume: 200 year: 2019 ident: b0130 article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy publication-title: Energy Convers Manag – volume: 94 start-page: 1 year: 2015 end-page: 9 ident: b0110 article-title: Impacts of cooling load calculation uncertainties on the design optimization of building cooling systems publication-title: Energy Build – volume: 99 start-page: 202 year: 2016 end-page: 220 ident: b0185 article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system publication-title: Energy – volume: 238 start-page: 1192 year: 2019 end-page: 1210 ident: b0085 article-title: Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis publication-title: Appl Energy – volume: 98 start-page: 296 year: 2016 end-page: 307 ident: b0030 article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system publication-title: Energy – volume: 94 start-page: 24 year: 2016 end-page: 39 ident: b0170 article-title: Study on energy and economic benefits of converting a combined heating and power system to a tri-generation system for sewage treatment plants in subtropical area publication-title: Appl Therm Eng – volume: 112 start-page: 149 year: 2016 end-page: 158 ident: b0050 article-title: A novel multi-objective optimization method for CCHP-GSHP coupling systems publication-title: Energy Build – volume: 92 start-page: 47 year: 2015 end-page: 59 ident: b0180 article-title: Performance analysis of hybrid ground-coupled heat pump system with multi-functions publication-title: Energy Convers Manag – volume: 195 start-page: 1199 year: 2019 end-page: 1211 ident: b0010 article-title: Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis publication-title: Energy Convers Manag – volume: 44 start-page: 150 year: 2012 end-page: 158 ident: b0015 article-title: Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool publication-title: Appl Therm Eng – volume: 146 start-page: 2700 year: 2020 end-page: 2715 ident: b0145 article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects publication-title: Renew Energy – volume: 106 start-page: 859 year: 2015 end-page: 872 ident: b0125 article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery publication-title: Energy Convers Manag – volume: 189 start-page: 105 year: 2019 end-page: 117 ident: b0150 article-title: An off-design model to optimize CCHP-GSHP system considering carbon tax publication-title: Energy Convers Manag – volume: 115 start-page: 49 year: 2016 end-page: 59 ident: b0160 article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system publication-title: Energy – volume: 101 start-page: 752 year: 2016 end-page: 761 ident: b0035 article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer publication-title: Appl Therm Eng – volume: 116 start-page: 567 year: 2016 end-page: 582 ident: b0080 article-title: Optimal design of distributed energy system in a neighborhood under uncertainty publication-title: Energy – volume: 252 year: 2019 ident: b0140 article-title: Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties publication-title: Appl Energy – volume: 229 start-page: 389 year: 2018 end-page: 403 ident: b0075 article-title: Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province publication-title: Appl Energy – volume: 103 start-page: 502 year: 2016 end-page: 512 ident: b0190 article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison publication-title: Energy – volume: 145 start-page: 743 year: 2018 end-page: 754 ident: b0200 article-title: An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization publication-title: Appl Therm Eng – volume: 184 start-page: 375 year: 2016 end-page: 395 ident: b0025 article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm publication-title: Appl Energy – volume: 194 start-page: 123 year: 2019 end-page: 139 ident: b0020 article-title: Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives publication-title: Energy Build – volume: 154 start-page: 365 year: 2017 end-page: 379 ident: b0045 article-title: Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system publication-title: Energy Convers Manag – volume: 74 start-page: 12 year: 2014 end-page: 26 ident: b0165 article-title: A detailed MILP optimization model for combined cooling, heat and power system operation planning publication-title: Energy – volume: 112320 year: 2019 ident: b0060 article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES) publication-title: Energy Convers Manag – volume: 121 start-page: 1 year: 2018 end-page: 8 ident: b0100 article-title: Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution publication-title: Renew Energy – volume: 103 start-page: 135 year: 2013 end-page: 144 ident: b0115 article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems publication-title: Appl Energy – volume: 219 start-page: 9652 year: 2013 end-page: 9669 ident: b0120 article-title: An improved version of the augmented s-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems publication-title: Appl Math Comput – volume: 214 start-page: 219 year: 2018 end-page: 238 ident: b0065 article-title: Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems publication-title: Appl Energy – volume: 166 start-page: 445 year: 2018 end-page: 462 ident: b0175 article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning publication-title: Energy Convers Manag – volume: 164 start-page: 93 year: 2018 end-page: 101 ident: b0195 article-title: Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system publication-title: Energy Convers Manag – volume: 111 start-page: 322 year: 2016 end-page: 340 ident: b0040 article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China publication-title: Energy – volume: 174 start-page: 475 year: 2018 end-page: 488 ident: b0055 article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory publication-title: Energy Convers Manag – volume: 231 start-page: 615 year: 2018 end-page: 627 ident: b0105 article-title: Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations publication-title: Appl Energy – volume: 199 year: 2019 ident: b0005 article-title: Planning and operation of an integrated energy system in a Swedish building publication-title: Energy Convers Manag – volume: 165 start-page: 840 year: 2018 end-page: 850 ident: b0095 article-title: Clustering-based analysis for residential district heating data publication-title: Energy Convers Manag – volume: 112320 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0060 article-title: Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES) publication-title: Energy Convers Manag – ident: 10.1016/j.enconman.2020.112589_b0135 doi: 10.3390/e12010053 – volume: 214 start-page: 219 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0065 article-title: Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.01.062 – volume: 222 start-page: 932 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0070 article-title: Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.04.019 – volume: 44 start-page: 150 year: 2012 ident: 10.1016/j.enconman.2020.112589_b0015 article-title: Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.04.001 – volume: 164 start-page: 93 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0195 article-title: Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.02.081 – volume: 146 start-page: 2700 year: 2020 ident: 10.1016/j.enconman.2020.112589_b0145 article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.011 – volume: 99 start-page: 202 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0185 article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system publication-title: Energy doi: 10.1016/j.energy.2016.01.060 – volume: 252 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0140 article-title: Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113424 – volume: 94 start-page: 24 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0170 article-title: Study on energy and economic benefits of converting a combined heating and power system to a tri-generation system for sewage treatment plants in subtropical area publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.10.078 – volume: 116 start-page: 567 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0080 article-title: Optimal design of distributed energy system in a neighborhood under uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.09.083 – volume: 231 start-page: 615 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0105 article-title: Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.144 – volume: 92 start-page: 47 year: 2015 ident: 10.1016/j.enconman.2020.112589_b0180 article-title: Performance analysis of hybrid ground-coupled heat pump system with multi-functions publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.12.036 – volume: 184 start-page: 375 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0025 article-title: Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.110 – volume: 194 start-page: 123 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0020 article-title: Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives publication-title: Energy Build doi: 10.1016/j.enbuild.2019.04.023 – volume: 219 start-page: 9652 year: 2013 ident: 10.1016/j.enconman.2020.112589_b0120 article-title: An improved version of the augmented s-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems publication-title: Appl Math Comput – volume: 98 start-page: 296 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0030 article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system publication-title: Energy doi: 10.1016/j.energy.2016.01.027 – volume: 229 start-page: 389 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0075 article-title: Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.010 – volume: 94 start-page: 1 year: 2015 ident: 10.1016/j.enconman.2020.112589_b0110 article-title: Impacts of cooling load calculation uncertainties on the design optimization of building cooling systems publication-title: Energy Build doi: 10.1016/j.enbuild.2015.02.032 – volume: 199 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0005 article-title: Planning and operation of an integrated energy system in a Swedish building publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.111920 – volume: 166 start-page: 445 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0175 article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.04.054 – volume: 153 start-page: 175 year: 2017 ident: 10.1016/j.enconman.2020.112589_b0210 article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.011 – volume: 112 start-page: 149 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0050 article-title: A novel multi-objective optimization method for CCHP-GSHP coupling systems publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.072 – volume: 189 start-page: 105 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0150 article-title: An off-design model to optimize CCHP-GSHP system considering carbon tax publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.03.062 – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0095 article-title: Clustering-based analysis for residential district heating data publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.015 – volume: 93 start-page: 2018 year: 2015 ident: 10.1016/j.enconman.2020.112589_b0205 article-title: Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings publication-title: Energy doi: 10.1016/j.energy.2015.10.065 – volume: 195 start-page: 1199 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0010 article-title: Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.05.065 – volume: 174 start-page: 475 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0055 article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.08.046 – volume: 154 start-page: 365 year: 2017 ident: 10.1016/j.enconman.2020.112589_b0045 article-title: Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.035 – volume: 103 start-page: 135 year: 2013 ident: 10.1016/j.enconman.2020.112589_b0115 article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.09.019 – volume: 121 start-page: 1 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0100 article-title: Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution publication-title: Renew Energy doi: 10.1016/j.renene.2018.01.002 – volume: 106 start-page: 859 year: 2015 ident: 10.1016/j.enconman.2020.112589_b0125 article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.042 – volume: 72 start-page: 385 year: 2017 ident: 10.1016/j.enconman.2020.112589_b0090 article-title: Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.069 – volume: 238 start-page: 1192 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0085 article-title: Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.064 – volume: 231 start-page: 534 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0155 article-title: Multi-objective optimization of a neighborhood-level urban energy network: considering Game-theory inspired multi-benefit allocation constraints publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.151 – volume: 200 year: 2019 ident: 10.1016/j.enconman.2020.112589_b0130 article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112081 – volume: 115 start-page: 49 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0160 article-title: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system publication-title: Energy doi: 10.1016/j.energy.2016.08.102 – volume: 74 start-page: 12 year: 2014 ident: 10.1016/j.enconman.2020.112589_b0165 article-title: A detailed MILP optimization model for combined cooling, heat and power system operation planning publication-title: Energy doi: 10.1016/j.energy.2014.02.042 – volume: 103 start-page: 502 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0190 article-title: Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan-China comparison publication-title: Energy doi: 10.1016/j.energy.2016.02.156 – volume: 111 start-page: 322 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0040 article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China publication-title: Energy doi: 10.1016/j.energy.2016.05.085 – volume: 145 start-page: 743 year: 2018 ident: 10.1016/j.enconman.2020.112589_b0200 article-title: An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.09.075 – volume: 101 start-page: 752 year: 2016 ident: 10.1016/j.enconman.2020.112589_b0035 article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.027 |
| SSID | ssj0003506 |
| Score | 2.5898702 |
| Snippet | •Propose a multi-objective optimization and robustness analysis integrated framework.•Merge multi-objective optimization with two-stage stochastic... The optimal design of building integrated energy system is sensitive to the variation of uncertain parameters. For addressing the tradeoff of uncertainty and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112589 |
| SubjectTerms | Building integrated energy system carbon China Computer simulation Decision analysis Decision making design Design optimization deterministic models Economic models Economics emissions Energy energy conversion Entropy (Information theory) Entropy of solution Environmental objective exhibitions hospitality industry Identification methods Integrated energy systems Mixed integer Monte Carlo method Monte Carlo simulation Multi-objective optimization Multiple objective analysis Nonlinear programming objectives Parameter sensitivity Parameter uncertainty Pareto optimization Probability theory Renewable energy sources Robustness analysis solutions Stochastic models stochastic processes Stochastic programming system optimization Uncertainty |
| Title | Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty |
| URI | https://dx.doi.org/10.1016/j.enconman.2020.112589 https://www.proquest.com/docview/2439481159 https://www.proquest.com/docview/2498271133 |
| Volume | 208 |
| WOSCitedRecordID | wos000524305200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOiKcYDGQkxKXKyDv2cUKdYKoKQp3ozbITR2q1JaVNpkkc-Nf5_ErCGNo4cLEix06i_H7-_Nn-Hgi9pWEmRMxzz09F7MUkhyFVitLLpCg4zOh5kXKdbCKbz8lySb-MRj-cL8zFWVZV5PKSbv4r1FAHYCvX2X-Au3soVMA1gA4lwA7lrYCHEQ6rXdAjta2gV4u1kWmTGqTDuXW7NGbltWh3jZZ13MUmKZ2xlrHjtEmz-6gSxUQab0ETAlqn0d1CmRvTgua3U-Kpaaot2_W2nH7t-R8WN9_sprUyse3EUKtnRd7XnNj0K1_blauarUwrOdy8gJWqsoRLhvuZNPUINRmInUAOfTLZKN-mhFDvWjFvdhzWhyrWZwVffaiebXv0E5s7zJ9_ZsensxlbTJeLd5vvnko5po7mbf6VO2gvzBJKxmjv6NN0edJN5FGiU7N23zhwML_-1X_Tba7M8lp1WTxED-yaAx8ZrjxCI1k9RvcHkSifoJ-ONfgKa_CQNRjgwz1rsGMN7liDgTXYsQb3rMGGNdiwBmvW4AFrnqLT4-niw0fP5ubw8iiLGhXVtgiLuCySVMoUyoDKBC6IT3gOarWgMZewFAAdiZdEiJSWKRVBEXKZg9JaRM_QuKor-RzhlPAQJAYnPFV-2tDeD0ouyqLwUz-S0T5K3F9luQ1cr_KnnDFnobhmDg2m0GAGjX30vuu3MaFbbuxBHWjMKqBGsWRAvBv7HjiUmZUGOxYqv3MCiy64_aa7DQJcncrxStatakNJmAVBFL24RZuX6F4_jg7QuNm28hW6m180q932tWXwL8QDx3s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+multi-objective+optimization+and+robustness+analysis+framework+for+building+integrated+energy+system+under+uncertainty&rft.jtitle=Energy+conversion+and+management&rft.au=Wang%2C+Meng&rft.au=Yu%2C+Hang&rft.au=Jing%2C+Rui&rft.au=Liu%2C+He&rft.date=2020-03-15&rft.issn=0196-8904&rft.volume=208+p.112589-&rft_id=info:doi/10.1016%2Fj.enconman.2020.112589&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |