Transformation‐Invariant Laplacian Metadevices Robust to Environmental Variation
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that h...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 37; no. 8; pp. e2412929 - n/a |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.
Inspired by the recently proposed transformation‐invariant metamaterial, a DC cloak made of judiciously stacked copper/air multilayer is successfully constructed. It shows a robust cloaking performance even if the background conductivity varies from 22 to 859 kS m−1, which demonstrates significantly improved environment‐immune properties compared with those of conventional cloaks, for example traditional TO cloak and bi‐layer cloak. |
|---|---|
| AbstractList | As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m −1 . Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m-1. Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m-1. Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. Inspired by the recently proposed transformation‐invariant metamaterial, a DC cloak made of judiciously stacked copper/air multilayer is successfully constructed. It shows a robust cloaking performance even if the background conductivity varies from 22 to 859 kS m−1, which demonstrates significantly improved environment‐immune properties compared with those of conventional cloaks, for example traditional TO cloak and bi‐layer cloak. As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m . Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. |
| Author | Zhang, Jingjing Qiu, Cheng‐Wei Yang, Qianru Luo, Yu Huang, Yao Meng, Lingsheng Yang, Tianzhi |
| Author_xml | – sequence: 1 givenname: Yao surname: Huang fullname: Huang, Yao organization: Nanyang Technological University – sequence: 2 givenname: Jingjing surname: Zhang fullname: Zhang, Jingjing email: zhangjingjing@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Qianru surname: Yang fullname: Yang, Qianru organization: Nanyang Technological University – sequence: 4 givenname: Lingsheng surname: Meng fullname: Meng, Lingsheng organization: Nanyang Technological University – sequence: 5 givenname: Tianzhi surname: Yang fullname: Yang, Tianzhi organization: Northeastern University – sequence: 6 givenname: Cheng‐Wei surname: Qiu fullname: Qiu, Cheng‐Wei email: chengwei.qiu@nus.edu.sg organization: National University of Singapore Suzhou Research Institute – sequence: 7 givenname: Yu orcidid: 0000-0003-2925-682X surname: Luo fullname: Luo, Yu email: yu.luo@nuaa.edu.cn organization: Nanyang Technological University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39760246$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1r3DAQhkVJaTZprz0WQy-9eDv6sq3jkuYLNhRC2qvRymNQsKWtJG_ZW39CfmN-SbTZJIVA6Wnm8Dwzw7xH5MB5h4R8pDCnAOyr7kY9Z8AEZYqpN2RGJaOlACUPyAwUl6WqRHNIjmK8BQBVQfWOHHJVV9mpZuT6JmgXex9Gnax393_uLt1GB6tdKpZ6PWiT2-IKk-5wYw3G4tqvppiK5ItTt7HBuxFd0kPxc2ftZrwnb3s9RPzwVI_Jj7PTm5OLcvn9_PJksSwNr7kqEaCmTEhoamSosBG9bOqmElpT3QMqDquuoUJyI1eAyHvacWHQQCdp33f8mHzZz10H_2vCmNrRRoPDoB36KbacStrUSjCe0c-v0Fs_BZevy1SdL1AgVKY-PVHTasSuXQc76rBtn7-VgfkeMMHHGLB_QSi0uzjaXRztSxxZEK8EY9Pjk1LQdvi3pvbabzvg9j9L2sW3q8Vf9wEPl5_o |
| CitedBy_id | crossref_primary_10_1002_sstr_202500352 crossref_primary_10_1007_s11664_025_11947_y |
| Cites_doi | 10.1002/adma.201305586 10.1088/2040-8986/aab976 10.1002/adma.201202624 10.1103/PhysRevApplied.14.054024 10.1126/science.1218316 10.1103/PhysRevLett.106.024301 10.1364/OE.18.000244 10.1103/PhysRevLett.108.214303 10.1038/ncomms5130 10.1038/nmat2461 10.1038/nmat2743 10.1002/adma.201500729 10.1126/science.1133628 10.1364/OE.19.008625 10.1364/OE.16.006815 10.1103/PhysRevE.74.036621 10.1364/OE.21.028948 10.1093/nsr/nwab205 10.1126/science.1126493 10.1103/PhysRevB.87.045423 10.1038/srep16032 10.1126/science.1125907 10.1103/PhysRevLett.109.053902 10.1088/0022-3727/43/11/113001 10.1103/PhysRevLett.123.067701 10.1103/PhysRevE.72.016623 10.1103/PhysRevLett.115.195503 10.1038/nphoton.2014.307 10.1021/nl201189z 10.1038/srep09876 10.1103/PhysRevB.93.245127 10.1080/09500349608232782 10.1117/1.AP.1.1.014001 10.1103/PhysRevLett.123.074502 10.1103/PhysRevLett.101.203901 |
| ContentType | Journal Article |
| Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
| Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202412929 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 39760246 10_1002_adma_202412929 ADMA202412929 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: Distinguished Professor Fund of Jiangsu Province funderid: 1004‐YQR24010 – fundername: Shanghai Pujiang Program funderid: 23PJ1421200 – fundername: Nanotech Energy and Environment Platform, National University of Singapore (Suzhou) Research Institute, Science and Technology Project of Jiangsu Province funderid: BZ2022056 – fundername: Fundamental Research Funds for the Central Universities NUAA funderid: NE2024007 – fundername: National Key Research and Development Program of China funderid: 2022YFA1404903 – fundername: National Natural Science Foundation of China funderid: 62271139 U21A20459 – fundername: National Research Foundation Singapore funderid: NRF‐CRP22‐2019‐0006; NRF‐CRP23‐2019‐0007 – fundername: National Research Foundation Singapore grantid: NRF-CRP23-2019-0007 – fundername: National Key Research and Development Program of China grantid: 2022YFA1404903 – fundername: Nanotech Energy and Environment Platform, National University of Singapore (Suzhou) Research Institute, Science and Technology Project of Jiangsu Province grantid: BZ2022056 – fundername: Distinguished Professor Fund of Jiangsu Province grantid: 1004-YQR24010 – fundername: Shanghai Pujiang Program grantid: 23PJ1421200 – fundername: National Research Foundation Singapore grantid: NRF-CRP22-2019-0006 – fundername: Fundamental Research Funds for the Central Universities NUAA grantid: NE2024007 – fundername: National Natural Science Foundation of China grantid: 62271139 U21A20459 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAHHS AAYOK ABTAH ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3739-e0071245087e2e9e84f587864aa1af0e930bd81453c5b0ee3f1d34cec0d51ffd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001389923200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 15:26:50 EDT 2025 Fri Jul 25 22:02:29 EDT 2025 Thu Apr 03 07:00:20 EDT 2025 Tue Nov 18 21:45:43 EST 2025 Sat Nov 29 07:22:01 EST 2025 Sun Jul 06 04:45:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | transformation optics metamaterial static field invisibility cloak |
| Language | English |
| License | 2025 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3739-e0071245087e2e9e84f587864aa1af0e930bd81453c5b0ee3f1d34cec0d51ffd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2925-682X |
| PMID | 39760246 |
| PQID | 3170879049 |
| PQPubID | 2045203 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3151879423 proquest_journals_3170879049 pubmed_primary_39760246 crossref_primary_10_1002_adma_202412929 crossref_citationtrail_10_1002_adma_202412929 wiley_primary_10_1002_adma_202412929_ADMA202412929 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 1062 2006; 74 2015; 5 2013; 87 2013; 21 2010; 18 2019; 1 2008; 16 2014; 26 2011; 11 2020; 14 2016; 93 2006; 314 2008; 101 2015; 9 2011; 19 2018; 20 2012; 108 2019; 123 2006; 312 2012; 109 2010; 43 2014; 5 2015; 27 2011; 106 2015; 115 2022; 9 2009; 8 2005; 72 2012; 24 2012; 335 1996; 43 2010; 9 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 387 year: 2010 publication-title: Nat. Mater. – volume: 72 year: 2005 publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 5 start-page: 4130 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 2825 year: 2011 publication-title: Nano Lett. – volume: 1062 start-page: 1058 year: 2017 – volume: 26 start-page: 3478 year: 2014 publication-title: Adv. Mater. – volume: 24 year: 2012 publication-title: Adv. Mater. – volume: 20 year: 2018 publication-title: J. Opt. – volume: 314 start-page: 977 year: 2006 publication-title: Science – volume: 16 start-page: 6815 year: 2008 publication-title: Opt. Express – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 74 year: 2006 publication-title: Phys. Rev. E – volume: 312 start-page: 1777 year: 2006 publication-title: Science – volume: 18 start-page: 244 year: 2010 publication-title: Opt. Express – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 568 year: 2009 publication-title: Nat. Mater. – volume: 43 year: 2010 publication-title: J. Phys. D Appl. Phys. – volume: 1 start-page: 1 year: 2019 publication-title: Adv. Photon. – volume: 101 start-page: 1 year: 2008 publication-title: Phys. Rev. Lett. – volume: 14 year: 2020 publication-title: Phys. Rev. Appl. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 21 year: 2013 publication-title: Opt. Express – volume: 5 start-page: 9876 year: 2015 publication-title: Sci. Rep. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 335 start-page: 1466 year: 2012 publication-title: Science – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 15 year: 2015 publication-title: Nat. Photonics – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 43 start-page: 773 year: 1996 publication-title: J. Mod. Opt. – volume: 27 start-page: 4628 year: 2015 publication-title: Adv. Mater. – volume: 19 start-page: 8625 year: 2011 publication-title: Opt. Express – ident: e_1_2_8_29_1 doi: 10.1002/adma.201305586 – ident: e_1_2_8_15_1 doi: 10.1088/2040-8986/aab976 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201202624 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevApplied.14.054024 – ident: e_1_2_8_28_1 doi: 10.1126/science.1218316 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevLett.106.024301 – ident: e_1_2_8_9_1 doi: 10.1364/OE.18.000244 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.108.214303 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms5130 – ident: e_1_2_8_33_1 – ident: e_1_2_8_7_1 doi: 10.1038/nmat2461 – ident: e_1_2_8_8_1 doi: 10.1038/nmat2743 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201500729 – ident: e_1_2_8_5_1 doi: 10.1126/science.1133628 – ident: e_1_2_8_10_1 doi: 10.1364/OE.19.008625 – ident: e_1_2_8_14_1 doi: 10.1364/OE.16.006815 – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevE.74.036621 – ident: e_1_2_8_34_1 doi: 10.1364/OE.21.028948 – ident: e_1_2_8_31_1 doi: 10.1093/nsr/nwab205 – ident: e_1_2_8_3_1 doi: 10.1126/science.1126493 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevB.87.045423 – ident: e_1_2_8_35_1 doi: 10.1038/srep16032 – ident: e_1_2_8_2_1 doi: 10.1126/science.1125907 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevLett.109.053902 – ident: e_1_2_8_16_1 doi: 10.1088/0022-3727/43/11/113001 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevLett.123.067701 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevE.72.016623 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.115.195503 – ident: e_1_2_8_12_1 doi: 10.1038/nphoton.2014.307 – ident: e_1_2_8_11_1 doi: 10.1021/nl201189z – ident: e_1_2_8_25_1 doi: 10.1038/srep09876 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.93.245127 – ident: e_1_2_8_1_1 doi: 10.1080/09500349608232782 – ident: e_1_2_8_13_1 doi: 10.1117/1.AP.1.1.014001 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevLett.123.074502 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevLett.101.203901 |
| SSID | ssj0009606 |
| Score | 2.6528578 |
| Snippet | As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the... As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2412929 |
| SubjectTerms | Direct current Electrostatics Invariants invisibility cloak Laplace equation metamaterial Metamaterials Refractivity Robustness static field Stealth technology Thermal diffusion transformation optics Visibility |
| Title | Transformation‐Invariant Laplacian Metadevices Robust to Environmental Variation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202412929 https://www.ncbi.nlm.nih.gov/pubmed/39760246 https://www.proquest.com/docview/3170879049 https://www.proquest.com/docview/3151879423 |
| Volume | 37 |
| WOSCitedRecordID | wos001389923200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5014MefD_qiwqCp2CbpI8cF9dFYRVZVPZW0jQFQVpxu579Cf5Gf4mTttvdRUTQW0vz6mSm802TfANw6iuVUKkEUejOCGeSEYnRMhFCeSKW6PFlSZnfD25vw-FQ3M2c4q_4IZofbsYyyu-1MXAZj86npKEyKXmD0ANRdPGL0KaovLwF7e6g99CfEu_6ZX5Ns95HhM_DCXGjQ8_nW5h3TN_Q5jx4Lb1Pb-3_416H1Rp52p1KVTZgQWebsDLDR7gFg_sZGJtnn-8f19kbBtMofbsvzfYtvLRvdCETXX5h7EEej0eFXeT25fTEHPbyaGqZNrbhoXd5f3FF6qQLRLGACaIN6KAccVugqRY65KkXBqHPpXRl6mjBnDgJXe4x5cWO1ix1E8aVVk7iuWmasB1oZXmm98DGWMlVPDDbrVyOmiLc1KzrIKZEWOQEwgIykXikakZykxjjOaq4lGlkZBU1srLgrCn_UnFx_FjycDKBUW2TowiREr6UwJDIgpPmMVqTWSKRmc7Hpoxn0q8jxrRgt5r4piuD3LAD3wJazu8vY4g63ZtOc7f_l0oHsExNuuFyk_ghtIrXsT6CJfVWPI1ej2ExGIbHtb5_AUT1_x8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9BiwR7YLDBFgYjSJP2ZJHEzh8_VkAFWlqhqky8Ra7jSEgoQTTt8z4Cn5FPwl2SplTThIT2lij-F_vO97N9_h3Aj0Dr1FNaMo3mjAmuOFO4WmZSal9OFFp8VVHmx-FwGN3eyuvGm5DuwtT8EO2GG2lGNV-TgtOG9OmSNVSlFXEQmiAPbfw6dAXKkt-B7vmofxMvmXeDKsAmHfgxGYhowdzoeKerJaxapr_g5ip6rcxP_-N_aPgObDfY0-7VwrILayb_BB9eMRJ-htH4FZAt8uc_T1f5HJfT2P92rMiBCx_tgSlVaqo5xh4Vk9m0tMvCvljemcNaflMuKmMPbvoX47NL1oRdYJqHXDJDsMMTiNxC4xlpIpH5URgFQilXZY6R3JmkkSt8rv2JYwzP3JQLbbST-m6WpXwfOnmRm69g42rJ1SIkhytXoKxIN6OTHUSVCIycUFrAFl2e6IaTnEJj3Cc1m7KXUF8lbV9Z8LNN_1Czcfwz5eFiBJNGK6cJYiX8KYmLIgtO2s-oT3RIonJTzCiNTwHYEWVa8KUe-bYqwm5YQWCBVw3wG21IeueDXvt28J5Mx7B5OR7ESXw1_PUNtjwKPly5jB9Cp3ycmSPY0PPybvr4vRH7F5BjAjY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB6VBKFyKC20YB6tkZA4rbC968ceo4aoiCSKogRxszbrtYRU2Yg4nPkJ_Y39JczYjkOEUKWKmy3vy7M7nm-8s98AnAVaJ57Skmk0Z0xwxZlCb5lJqX05U2jxVUmZ3w-Hw-j2Vo7qaEI6C1PxQzQ_3Egzyu81Kbi5T9KLFWuoSkriIDRBHtr4DWgLXwaom-3uuDftr5h3gzLBJm34MRmIaMnc6HgX6y2sW6ZXcHMdvZbmp7fzDgP_DJ9q7Gl3qsXyBT6YbBe2XzAS7sF48gLI5tnfpz9X2SO60yh_u68ogAsv7YEpVGLKb4w9zmeLeWEXuX25OjOHvdxQLWrjK0x7l5Ofv1iddoFpHnLJDMEOTyByC41npIlE6kdhFAilXJU6RnJnlkSu8Ln2Z44xPHUTLrTRTuK7aZrwb9DK8swcgI3ekqtFSAFXrsC1It2UdnYQVSIwckJpAVuKPNY1JzmlxvgdV2zKXkyyihtZWXDelL-v2DjeLHm8nMG41sp5jFgJX0qiU2TBafMY9Yk2SVRm8gWV8SkBO6JMC_armW-6IuyGHQQWeOUE_2MMcac76DR3h_9T6Qdsjbq9uH81vD6Cjx7lHi4jxo-hVTwszAls6sfibv7wvV71zxcqAbE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation%E2%80%90Invariant+Laplacian+Metadevices+Robust+to+Environmental+Variation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Yao&rft.au=Zhang%2C+Jingjing&rft.au=Yang%2C+Qianru&rft.au=Meng%2C+Lingsheng&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.202412929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |