Transformation‐Invariant Laplacian Metadevices Robust to Environmental Variation

As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 37; číslo 8; s. e2412929 - n/a
Hlavní autoři: Huang, Yao, Zhang, Jingjing, Yang, Qianru, Meng, Lingsheng, Yang, Tianzhi, Qiu, Cheng‐Wei, Luo, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.02.2025
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. Inspired by the recently proposed transformation‐invariant metamaterial, a DC cloak made of judiciously stacked copper/air multilayer is successfully constructed. It shows a robust cloaking performance even if the background conductivity varies from 22 to 859 kS m−1, which demonstrates significantly improved environment‐immune properties compared with those of conventional cloaks, for example traditional TO cloak and bi‐layer cloak.
AbstractList As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m−1. Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios. Inspired by the recently proposed transformation‐invariant metamaterial, a DC cloak made of judiciously stacked copper/air multilayer is successfully constructed. It shows a robust cloaking performance even if the background conductivity varies from 22 to 859 kS m−1, which demonstrates significantly improved environment‐immune properties compared with those of conventional cloaks, for example traditional TO cloak and bi‐layer cloak.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation‐invariant metamaterials (TIMs) is applied to static‐field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak‐is implemented based on TIMs and near‐field measurement results demonstrate that such a cloak can successfully conceal a large‐scale object when the background conductivity varies from 22 to 859 kS m −1 . Moreover, the background‐immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m-1. Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m-1. Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index. To tackle such a challenge, the concept of transformation-invariant metamaterials (TIMs) is applied to static-field systems and shows that, for any physical fields governed by Laplace equation, judiciously designed TIMs can be used to realize invisibility cloaks robust to the environment variation. As an experimental proof, an ideal direct current (DC) cloak-is implemented based on TIMs and near-field measurement results demonstrate that such a cloak can successfully conceal a large-scale object when the background conductivity varies from 22 to 859 kS m . Moreover, the background-immune cloaking effect is observed under arbitrary electric sources. The approach proposed in this work can be also applied to static magnetics, thermal diffusion, and beyond, enabling robust isolation of the target from the external field in versatile application scenarios.
Author Zhang, Jingjing
Qiu, Cheng‐Wei
Yang, Qianru
Luo, Yu
Huang, Yao
Meng, Lingsheng
Yang, Tianzhi
Author_xml – sequence: 1
  givenname: Yao
  surname: Huang
  fullname: Huang, Yao
  organization: Nanyang Technological University
– sequence: 2
  givenname: Jingjing
  surname: Zhang
  fullname: Zhang, Jingjing
  email: zhangjingjing@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Qianru
  surname: Yang
  fullname: Yang, Qianru
  organization: Nanyang Technological University
– sequence: 4
  givenname: Lingsheng
  surname: Meng
  fullname: Meng, Lingsheng
  organization: Nanyang Technological University
– sequence: 5
  givenname: Tianzhi
  surname: Yang
  fullname: Yang, Tianzhi
  organization: Northeastern University
– sequence: 6
  givenname: Cheng‐Wei
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: chengwei.qiu@nus.edu.sg
  organization: National University of Singapore Suzhou Research Institute
– sequence: 7
  givenname: Yu
  orcidid: 0000-0003-2925-682X
  surname: Luo
  fullname: Luo, Yu
  email: yu.luo@nuaa.edu.cn
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39760246$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZprz0WQy-9eDv6sq3jkuYLNhRC2qvRymNQsKWtJG_ZW39CfmN-SbTZJIVA6Wnm8Dwzw7xH5MB5h4R8pDCnAOyr7kY9Z8AEZYqpN2RGJaOlACUPyAwUl6WqRHNIjmK8BQBVQfWOHHJVV9mpZuT6JmgXex9Gnax393_uLt1GB6tdKpZ6PWiT2-IKk-5wYw3G4tqvppiK5ItTt7HBuxFd0kPxc2ftZrwnb3s9RPzwVI_Jj7PTm5OLcvn9_PJksSwNr7kqEaCmTEhoamSosBG9bOqmElpT3QMqDquuoUJyI1eAyHvacWHQQCdp33f8mHzZz10H_2vCmNrRRoPDoB36KbacStrUSjCe0c-v0Fs_BZevy1SdL1AgVKY-PVHTasSuXQc76rBtn7-VgfkeMMHHGLB_QSi0uzjaXRztSxxZEK8EY9Pjk1LQdvi3pvbabzvg9j9L2sW3q8Vf9wEPl5_o
CitedBy_id crossref_primary_10_1002_sstr_202500352
crossref_primary_10_1007_s11664_025_11947_y
Cites_doi 10.1002/adma.201305586
10.1088/2040-8986/aab976
10.1002/adma.201202624
10.1103/PhysRevApplied.14.054024
10.1126/science.1218316
10.1103/PhysRevLett.106.024301
10.1364/OE.18.000244
10.1103/PhysRevLett.108.214303
10.1038/ncomms5130
10.1038/nmat2461
10.1038/nmat2743
10.1002/adma.201500729
10.1126/science.1133628
10.1364/OE.19.008625
10.1364/OE.16.006815
10.1103/PhysRevE.74.036621
10.1364/OE.21.028948
10.1093/nsr/nwab205
10.1126/science.1126493
10.1103/PhysRevB.87.045423
10.1038/srep16032
10.1126/science.1125907
10.1103/PhysRevLett.109.053902
10.1088/0022-3727/43/11/113001
10.1103/PhysRevLett.123.067701
10.1103/PhysRevE.72.016623
10.1103/PhysRevLett.115.195503
10.1038/nphoton.2014.307
10.1021/nl201189z
10.1038/srep09876
10.1103/PhysRevB.93.245127
10.1080/09500349608232782
10.1117/1.AP.1.1.014001
10.1103/PhysRevLett.123.074502
10.1103/PhysRevLett.101.203901
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202412929
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39760246
10_1002_adma_202412929
ADMA202412929
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Distinguished Professor Fund of Jiangsu Province
  funderid: 1004‐YQR24010
– fundername: Shanghai Pujiang Program
  funderid: 23PJ1421200
– fundername: Nanotech Energy and Environment Platform, National University of Singapore (Suzhou) Research Institute, Science and Technology Project of Jiangsu Province
  funderid: BZ2022056
– fundername: Fundamental Research Funds for the Central Universities NUAA
  funderid: NE2024007
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1404903
– fundername: National Natural Science Foundation of China
  funderid: 62271139 U21A20459
– fundername: National Research Foundation Singapore
  funderid: NRF‐CRP22‐2019‐0006; NRF‐CRP23‐2019‐0007
– fundername: National Research Foundation Singapore
  grantid: NRF-CRP23-2019-0007
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1404903
– fundername: Nanotech Energy and Environment Platform, National University of Singapore (Suzhou) Research Institute, Science and Technology Project of Jiangsu Province
  grantid: BZ2022056
– fundername: Distinguished Professor Fund of Jiangsu Province
  grantid: 1004-YQR24010
– fundername: Shanghai Pujiang Program
  grantid: 23PJ1421200
– fundername: National Research Foundation Singapore
  grantid: NRF-CRP22-2019-0006
– fundername: Fundamental Research Funds for the Central Universities NUAA
  grantid: NE2024007
– fundername: National Natural Science Foundation of China
  grantid: 62271139 U21A20459
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAHHS
AAYOK
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3739-e0071245087e2e9e84f587864aa1af0e930bd81453c5b0ee3f1d34cec0d51ffd3
IEDL.DBID DRFUL
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001389923200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:26:50 EDT 2025
Fri Jul 25 22:02:29 EDT 2025
Thu Apr 03 07:00:20 EDT 2025
Tue Nov 18 21:45:43 EST 2025
Sat Nov 29 07:22:01 EST 2025
Sun Jul 06 04:45:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords transformation optics
metamaterial
static field
invisibility cloak
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-e0071245087e2e9e84f587864aa1af0e930bd81453c5b0ee3f1d34cec0d51ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2925-682X
PMID 39760246
PQID 3170879049
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_3151879423
proquest_journals_3170879049
pubmed_primary_39760246
crossref_primary_10_1002_adma_202412929
crossref_citationtrail_10_1002_adma_202412929
wiley_primary_10_1002_adma_202412929_ADMA202412929
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1062
2006; 74
2015; 5
2013; 87
2013; 21
2010; 18
2019; 1
2008; 16
2014; 26
2011; 11
2020; 14
2016; 93
2006; 314
2008; 101
2015; 9
2011; 19
2018; 20
2012; 108
2019; 123
2006; 312
2012; 109
2010; 43
2014; 5
2015; 27
2011; 106
2015; 115
2022; 9
2009; 8
2005; 72
2012; 24
2012; 335
1996; 43
2010; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 387
  year: 2010
  publication-title: Nat. Mater.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
– volume: 5
  start-page: 4130
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2825
  year: 2011
  publication-title: Nano Lett.
– volume: 1062
  start-page: 1058
  year: 2017
– volume: 26
  start-page: 3478
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  year: 2012
  publication-title: Adv. Mater.
– volume: 20
  year: 2018
  publication-title: J. Opt.
– volume: 314
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 16
  start-page: 6815
  year: 2008
  publication-title: Opt. Express
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. E
– volume: 312
  start-page: 1777
  year: 2006
  publication-title: Science
– volume: 18
  start-page: 244
  year: 2010
  publication-title: Opt. Express
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  start-page: 568
  year: 2009
  publication-title: Nat. Mater.
– volume: 43
  year: 2010
  publication-title: J. Phys. D Appl. Phys.
– volume: 1
  start-page: 1
  year: 2019
  publication-title: Adv. Photon.
– volume: 101
  start-page: 1
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 5
  start-page: 9876
  year: 2015
  publication-title: Sci. Rep.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 335
  start-page: 1466
  year: 2012
  publication-title: Science
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 15
  year: 2015
  publication-title: Nat. Photonics
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 43
  start-page: 773
  year: 1996
  publication-title: J. Mod. Opt.
– volume: 27
  start-page: 4628
  year: 2015
  publication-title: Adv. Mater.
– volume: 19
  start-page: 8625
  year: 2011
  publication-title: Opt. Express
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201305586
– ident: e_1_2_8_15_1
  doi: 10.1088/2040-8986/aab976
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201202624
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevApplied.14.054024
– ident: e_1_2_8_28_1
  doi: 10.1126/science.1218316
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevLett.106.024301
– ident: e_1_2_8_9_1
  doi: 10.1364/OE.18.000244
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.108.214303
– ident: e_1_2_8_30_1
  doi: 10.1038/ncomms5130
– ident: e_1_2_8_33_1
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat2461
– ident: e_1_2_8_8_1
  doi: 10.1038/nmat2743
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201500729
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1133628
– ident: e_1_2_8_10_1
  doi: 10.1364/OE.19.008625
– ident: e_1_2_8_14_1
  doi: 10.1364/OE.16.006815
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevE.74.036621
– ident: e_1_2_8_34_1
  doi: 10.1364/OE.21.028948
– ident: e_1_2_8_31_1
  doi: 10.1093/nsr/nwab205
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1126493
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.87.045423
– ident: e_1_2_8_35_1
  doi: 10.1038/srep16032
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1125907
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevLett.109.053902
– ident: e_1_2_8_16_1
  doi: 10.1088/0022-3727/43/11/113001
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevLett.123.067701
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevE.72.016623
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_8_12_1
  doi: 10.1038/nphoton.2014.307
– ident: e_1_2_8_11_1
  doi: 10.1021/nl201189z
– ident: e_1_2_8_25_1
  doi: 10.1038/srep09876
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.93.245127
– ident: e_1_2_8_1_1
  doi: 10.1080/09500349608232782
– ident: e_1_2_8_13_1
  doi: 10.1117/1.AP.1.1.014001
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevLett.123.074502
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevLett.101.203901
SSID ssj0009606
Score 2.65281
Snippet As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years’ research efforts, the...
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2412929
SubjectTerms Direct current
Electrostatics
Invariants
invisibility cloak
Laplace equation
metamaterial
Metamaterials
Refractivity
Robustness
static field
Stealth technology
Thermal diffusion
transformation optics
Visibility
Title Transformation‐Invariant Laplacian Metadevices Robust to Environmental Variation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202412929
https://www.ncbi.nlm.nih.gov/pubmed/39760246
https://www.proquest.com/docview/3170879049
https://www.proquest.com/docview/3151879423
Volume 37
WOSCitedRecordID wos001389923200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD7o6IP7sF53t-uFCoJPwTZJm-RxWB0URpFBZd5K0iQgSLs4HZ_3J-xv3F-ySdvpzCAi6FtLTy49ycn5cvsOwIn2IIJxgYhSFlGeUKTcrAMZIXPmADzHNZH2w5Dd3PDxWNwu3OJv-CG6BTdvGfV47Q1cqsnZnDRU6po3yHkg7Fz8Kqxh13lpD9bOR4P74Zx4N63ja_r9PiRSymfEjRE-W85h2TG9QpvL4LX2PoPNz9d7C762yDPsN11lG1ZMsQNfFvgId2F0twBjy-Lfn79XxYubTDvth0Ppj2-5x_DaVFKbeoQJR6WaTqqwKsOL-Y05V8qDT-Xz2IP7wcXdr0vUBl1AOWFEIONBB6YOtzGDjTCc2oQznlIpY2kjI0ikNI9pQvJERcYQG2tCc5NHOomt1eQb9IqyMD8gjAQnqUhyG1tNtWTKSzBOtFTEMhsFgGYaz_KWkdwHxnjKGi5lnHldZZ2uAjjt5H83XBxvSh7MGjBrbXKSOaTkfkq4KVEAx91nZ01-i0QWppx6mcSHX3cYM4DvTcN3RXnk5gpIA8B1-75Th6x_ft3v3n5-JNE-bGAfbrg-JH4Avep5ag5hPX-pHifPR7DKxvyo7e__AVep_3g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aTaHpoe8kbpLWhUJPIrYlW9JxabIkxLuUZRNyM7IlQaDYIevNOT8hvzG_pBrb681SSiDkZuPRwyON5tPrG4AfGkEEF5LQPLeEiZiR3M06iJGq4A7Ai6gh0j5P-WQiLi7k7-40Id6Fafkh-gU3tIxmvEYDxwXpgxVrqNINcZBzQZHz8S9hg7m-FA9g43A6OktXzLtJE2ATN_yITJhYMjcG0cF6Duue6R-4uY5eG_czevcMFX8Pbzvs6Q_bzvIBXpjyI7x5wEj4CaazB0C2Ku9v707KGzeddvr3U4UHuNyjPza10qYZY_xplS_mtV9X_tHqzpwr5RxTYR6f4Wx0NPt1TLqwC6SgnEpiEHZEzCE3biIjjWA2FlwkTKlQ2cBIGuRahCymRZwHxlAbasoKUwQ6Dq3VdAsGZVWaHfADKWgi48KGVjOteI4SXFCtcmq5DTwgS5VnRcdJjqEx_mQtm3KUoa6yXlce_Ozlr1o2jv9K7i1bMOuscp45rOR-SrpJkQff-8_OnnCTRJWmWqBMjAHYHcr0YLtt-b4oxG6ugMSDqGngR-qQDQ_Hw_7ty1MSfYPXx7NxmqUnk9Nd2Iww-HBzZHwPBvX1wuzDq-Kmvpxff-26_V-j2wKP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xqBAcSgsFUihNJSROFknsxPZxxbIqYlmhFSBukRPbUiWUIDbLuT-hv5FfgifJZlmhCqnqLVHGj4w9ns-vbwCONIIILiShWWYJEzEjmZt1ECNVzh2AF1FNpH075KORuLuTV-1pQrwL0_BDdAtuaBn1eI0Gbh60PZmzhipdEwc5FxQ5H78MqyyWibPN1f54cDOcM-8mdYBN3PAjMmFixtwYRCeLOSx6pjdwcxG91u5nsPkfKv4JPrbY0-81neUzLJliCzZeMRJuw_j6FZAti-fff86LJzeddvr3hwoPcLlH_9JUSpt6jPHHZTadVH5V-mfzO3OulFtMhXl8gZvB2fXpT9KGXSA55VQSg7AjYg65cRMZaQSzseAiYUqFygZG0iDTImQxzeMsMIbaUFOWmzzQcWitpjuwUpSF2QM_kIImMs5taDXTimcowQXVKqOW28ADMlN5mrec5Bga4z5t2JSjFHWVdrry4LiTf2jYOP4qeTBrwbS1yknqsJL7KekmRR786D47e8JNElWYcooyMQZgdyjTg92m5buiELu5AhIPorqB36lD2utf9rq3r_-S6DusXfUH6fB8dLEP6xHGHq5PjB_ASvU4Nd_gQ_5U_Zo8Hra9_gUqSQIK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation%E2%80%90Invariant+Laplacian+Metadevices+Robust+to+Environmental+Variation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Yao&rft.au=Zhang%2C+Jingjing&rft.au=Yang%2C+Qianru&rft.au=Meng%2C+Lingsheng&rft.date=2025-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202412929&rft.externalDBID=10.1002%252Fadma.202412929&rft.externalDocID=ADMA202412929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon