Hydrogel Electrolyte Enabled High‐Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics

To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Jg. 19; H. 48; S. e2303949 - n/a
Hauptverfasser: Weng, Gao, Yang, Xianzhong, Wang, Zhiqi, Xu, Yan, Liu, Ruiyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.11.2023
Schlagworte:
ISSN:1613-6810, 1613-6829, 1613-6829
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers. This review focuses on hydrogel electrolytes engineering for high‐performance flexible aqueous zinc ion energy storage systems. From basic characteristics, anode and cathode stabilization effects, and functional properties, the corresponding mechanisms of designing desirable hydrogel electrolytes are elaborated. The application of flexible aqueous zinc ion energy storage systems in wearable electronics is also depicted with a bright future.
AbstractList To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers. This review focuses on hydrogel electrolytes engineering for high‐performance flexible aqueous zinc ion energy storage systems. From basic characteristics, anode and cathode stabilization effects, and functional properties, the corresponding mechanisms of designing desirable hydrogel electrolytes are elaborated. The application of flexible aqueous zinc ion energy storage systems in wearable electronics is also depicted with a bright future.
Author Yang, Xianzhong
Liu, Ruiyuan
Xu, Yan
Wang, Zhiqi
Weng, Gao
Author_xml – sequence: 1
  givenname: Gao
  surname: Weng
  fullname: Weng, Gao
  organization: Soochow University
– sequence: 2
  givenname: Xianzhong
  surname: Yang
  fullname: Yang, Xianzhong
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Zhiqi
  surname: Wang
  fullname: Wang, Zhiqi
  organization: Soochow University
– sequence: 4
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
  organization: Soochow University
– sequence: 5
  givenname: Ruiyuan
  orcidid: 0000-0002-1678-3500
  surname: Liu
  fullname: Liu, Ruiyuan
  email: ryliu@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37530198$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4NU7ItePUrASy-75nVmcixl6xZWFFYRvIRM5pk1JZPUZJY64MGP4Gf0k5hluxUK4imB_H7_PC-n6CjEAAi9pGROCWFv8uD9nBHGCVdCPUEntKJ8VjVMHT3cKTlGpznfEMIpE_UzdMxryQlVzQn6sZy6FDfg8cKDHVP00wh4EUzrocNLt_n6--evD5D6mAYTLOArD99decQX37YQtxl_ccHi6xiKBGkz4fUYk9kAXk95hCHjMd6Z1OHPYNIu9PBPcDY_R0974zO8uD_P0KerxcfL5Wz1_u315cVqZnnN1cy2BlrZMiJbpXgrayEr6EVlheh5p4B00vQ10LbtjJGNKJ1RQxpmlRBWSsLP0Pk-9zbFUnUe9eCyBe9N2LWgWSMkJZVktKCvH6E3cZtCqa5QSnBJBWOFenVPbdsBOn2b3GDSpA9zLYDYAzbFnBP02rrRjC6GMRnnNSV6tz69W59-WF_R5o-0Q_I_BbUX7pyH6T-0Xr9brf66fwCuoq9u
CitedBy_id crossref_primary_10_1002_smll_202311012
crossref_primary_10_1016_j_nwnano_2024_100050
crossref_primary_10_1002_cssc_202500942
crossref_primary_10_1002_adma_202413268
crossref_primary_10_1016_j_cej_2025_164988
crossref_primary_10_1016_j_nxener_2025_100370
crossref_primary_10_1039_D4RA06602B
crossref_primary_10_1016_j_jpowsour_2024_235307
crossref_primary_10_1016_j_ijbiomac_2025_142968
crossref_primary_10_1002_adfm_202410140
crossref_primary_10_1007_s40820_025_01704_5
crossref_primary_10_1016_j_matt_2024_03_014
crossref_primary_10_1038_s41467_024_50894_w
crossref_primary_10_1016_j_cej_2024_153816
crossref_primary_10_1002_app_55727
crossref_primary_10_1016_j_foodchem_2025_144126
crossref_primary_10_1016_j_jallcom_2025_179025
crossref_primary_10_1002_aenm_202401293
crossref_primary_10_1016_j_jcis_2025_137537
crossref_primary_10_1007_s12209_023_00381_y
crossref_primary_10_1007_s10854_025_14238_8
crossref_primary_10_1021_acsami_4c15006
crossref_primary_10_1002_adma_202501538
crossref_primary_10_1007_s11426_023_1918_0
crossref_primary_10_1002_adfm_202417890
crossref_primary_10_1002_smll_202312116
crossref_primary_10_1016_j_ensm_2025_104373
crossref_primary_10_1016_j_jpowsour_2024_234823
crossref_primary_10_3390_batteries10060200
crossref_primary_10_1002_adfm_202400839
crossref_primary_10_1002_aenm_202503226
crossref_primary_10_1021_acs_chemrev_5c00159
crossref_primary_10_1002_adfm_202314864
crossref_primary_10_1016_j_jcis_2025_137989
crossref_primary_10_1016_j_cej_2025_162994
crossref_primary_10_1039_D4EE02772H
crossref_primary_10_3390_sci6030050
crossref_primary_10_1016_j_cej_2025_164691
crossref_primary_10_26599_NR_2025_94907536
crossref_primary_10_3390_pr12122650
Cites_doi 10.1021/acsenergylett.8b01552
10.1002/adma.202105416
10.1002/adfm.200305197
10.1021/acsami.1c05941
10.1039/D2SC06035C
10.1126/sciadv.1700015
10.1002/adfm.201801834
10.1002/adfm.202003430
10.1007/s40820-022-00939-w
10.1002/advs.202004689
10.1002/anie.202302583
10.1021/acsenergylett.0c02684
10.1002/smll.202107163
10.1002/adma.202104006
10.1002/aenm.202001599
10.1007/s11581-019-03386-7
10.1016/j.mtphys.2021.100458
10.1039/D2EE02416K
10.1002/adma.202207118
10.1002/adfm.202207732
10.1039/c3ta10639j
10.1002/aenm.202002898
10.1002/adfm.202209028
10.1002/adfm.202009438
10.1016/S0142-9612(99)00036-8
10.1016/j.carbpol.2018.01.060
10.1021/acsnano.2c02996
10.1002/aenm.202202219
10.1021/acsnano.9b07042
10.1021/acsnano.7b09003
10.1021/acsenergylett.0c01235
10.1002/anie.202007274
10.1002/adhm.201700889
10.1016/j.jece.2020.104702
10.1002/aenm.201802288
10.1038/s41578-022-00441-0
10.1002/adfm.202107584
10.1038/s41578-018-0018-7
10.1039/D0TA01553A
10.1007/s40820-019-0328-3
10.1038/s41467-021-27755-x
10.1016/j.ensm.2022.04.010
10.1002/adfm.202209466
10.1039/C8EE02892C
10.1016/j.ensm.2021.11.004
10.1016/j.nanoen.2021.106893
10.1002/adma.202211673
10.1038/nmat3713
10.1039/D2EE03793A
10.1039/D1NR06058A
10.3390/polym14112184
10.1295/polymj.PJ2006239
10.1002/adfm.202001317
10.1016/j.ensm.2022.06.034
10.1002/aenm.201803046
10.1016/j.bioactmat.2020.09.004
10.1039/D1TA08023G
10.1038/nenergy.2016.39
10.1002/adfm.202009209
10.1021/acs.nanolett.1c04216
10.1016/j.cej.2022.140311
10.1002/aenm.202001424
10.1002/adfm.201703852
10.1002/anie.202012030
10.1002/adfm.202213510
10.1002/advs.202104832
10.1021/acs.nanolett.2c02558
10.1002/anie.202105756
10.1021/acsnano.2c09317
10.1007/s12274-022-4370-y
10.1016/j.mtener.2023.101276
10.1002/adfm.201704195
10.1002/adma.202110140
10.1002/adma.202106409
10.1021/acsnano.2c11516
10.1002/adma.201908121
10.1002/adma.201908127
10.1016/j.cej.2022.137056
10.1002/chem.201704440
10.1002/advs.202201433
10.1016/j.ensm.2022.12.023
10.1016/j.est.2021.103858
10.1002/adma.201903675
10.1039/D2TA07410A
10.1002/anie.202218454
10.1021/acsami.0c20388
10.1002/aenm.201902446
10.1002/adfm.201901693
10.1002/adfm.202100251
10.1002/anie.201708614
10.1080/21663831.2022.2059412
10.1016/j.cej.2022.137021
10.1002/adfm.202112540
10.1016/j.cej.2023.142607
10.1016/j.jiec.2018.10.004
10.1126/sciadv.abl3742
10.1016/j.msec.2016.09.081
10.1021/acsami.7b19726
10.1002/smm2.1007
10.1016/j.cej.2023.142535
10.1016/j.ensm.2022.04.018
10.1002/aenm.202101749
10.1039/D1TA10079C
10.1063/1.4898189
10.1021/acsami.7b07445
10.1016/j.jcis.2021.10.121
10.1021/acsami.2c13641
10.1007/s40820-021-00782-5
10.1002/adma.202202382
10.1016/j.ensm.2019.03.007
10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
10.1002/wcms.1477
10.1002/adma.200304907
10.1002/adma.201300817
10.1002/adma.202200860
10.1016/j.nanoen.2022.106991
10.1021/acs.macromol.2c01425
10.1002/anie.201805618
10.1021/acsami.7b15934
10.1002/anie.201705212
10.1021/acsami.8b18003
10.1002/adma.202007559
10.1016/j.jechem.2022.02.040
10.1002/aenm.202102055
10.1126/science.1252389
10.1002/anie.202016531
10.1002/aenm.202003902
10.1016/S0167-2738(97)00074-X
10.1021/acsaem.8b01851
10.1016/j.ensm.2022.09.027
10.1038/nature11409
10.1002/eom2.12008
10.1002/anie.202217833
10.3390/polym14061259
10.1039/D0TA07086F
10.1016/j.polymer.2012.03.013
10.1002/adma.201400910
10.1016/j.cej.2022.135051
10.1021/acsnano.1c01751
10.1002/advs.202201039
10.1002/adfm.201804560
10.1002/adfm.202206653
10.1002/adma.202004579
10.1038/s41467-023-36198-5
10.1016/j.nanoen.2019.104132
10.1039/b924290b
10.1021/ar500105t
10.1039/C9TA10944G
10.1002/aenm.201902473
10.1016/j.ensm.2022.06.056
10.1038/s41928-022-00843-6
10.1002/adfm.201705069
10.1002/anie.202218452
10.1039/D1EE01134K
10.1002/aenm.201903977
10.1021/mz200195n
10.1021/acsenergylett.3c00650
10.1002/aenm.202003065
10.1002/adma.202100187
10.1002/cssc.201801657
10.1002/anie.202210979
10.1021/acsnano.2c07468
10.1002/anie.202215060
10.1016/j.ensm.2022.02.012
10.1002/adfm.202110859
10.1021/acsaem.2c01520
10.1016/j.matt.2022.07.015
10.1016/j.jmrt.2020.12.012
10.1002/adma.202203905
10.1016/j.carbon.2018.04.065
10.3390/gels8050280
10.1002/aenm.202003994
10.1002/aenm.202100982
10.1039/C9EE00596J
10.1002/adsu.202100191
10.1002/smtd.202201683
10.1016/j.scib.2018.06.019
10.1002/advs.202100072
10.1016/j.cbpa.2006.09.020
10.1021/acsami.7b09614
10.1002/adma.202007829
10.1002/advs.202000587
10.1016/j.nanoen.2018.11.057
10.1002/adma.201601613
10.1002/aenm.202300250
10.1016/j.ijbiomac.2023.123450
10.1021/acsami.1c15784
10.1002/adma.202007416
10.1021/acsaem.1c02433
10.1002/anie.201814653
10.1002/chem.201902660
10.1002/anie.201903941
10.1073/pnas.1903019116
10.1021/cr500392w
10.1002/pen.24855
10.1002/anie.202111398
10.1016/j.nanoen.2018.11.038
10.1002/adma.202300073
10.1002/adma.202206793
10.1002/adma.202207587
10.1021/acsnano.7b03322
10.1002/adma.201503724
10.1126/sciadv.aau8528
10.1002/anie.201804400
10.1038/s41545-018-0016-8
10.1021/acsami.8b10064
10.1002/aenm.202000035
10.1021/acsami.2c10517
10.1016/j.ensm.2020.11.041
10.1002/aenm.202101299
10.1016/j.matt.2020.01.022
10.1021/acsnano.1c08193
10.1038/s41467-018-04060-8
10.1002/adfm.202204823
10.1007/s40820-022-00793-w
10.1039/c2jm31778h
10.3390/ijms23031415
10.1038/s41586-021-03212-z
10.1002/adma.201602239
10.1126/science.abg6320
10.1002/smll.201803978
10.1007/s40820-022-00835-3
10.1002/adma.202007548
10.1016/j.ensm.2023.01.034
10.1016/j.pmatsci.2023.101156
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202303949
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37530198
10_1002_smll_202303949
SMLL202303949
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210719
– fundername: National Natural Science Foundation of China
  funderid: 52103306
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210719
– fundername: National Natural Science Foundation of China
  grantid: 52103306
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-cbaeb5b205b993b57456ef46c44f3d9e0d5af7e1bbdaa5840191a082c944c5503
IEDL.DBID DRFUL
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 12:30:44 EDT 2025
Fri Jul 25 12:05:42 EDT 2025
Thu Apr 03 07:00:53 EDT 2025
Sat Nov 29 04:11:05 EST 2025
Tue Nov 18 22:04:13 EST 2025
Sun Jul 06 04:46:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords electrode stabilization
versatility
hydrogel electrolytes
flexible energy storage
wearable electronics
zinc ion energy storage systems
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-cbaeb5b205b993b57456ef46c44f3d9e0d5af7e1bbdaa5840191a082c944c5503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1678-3500
PMID 37530198
PQID 2894351422
PQPubID 1046358
PageCount 45
ParticipantIDs proquest_miscellaneous_2845106521
proquest_journals_2894351422
pubmed_primary_37530198
crossref_citationtrail_10_1002_smll_202303949
crossref_primary_10_1002_smll_202303949
wiley_primary_10_1002_smll_202303949_SMLL202303949
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 1
2019; 11
2019; 13
2019; 12
2023; 464
2023; 463
2022; 23
2014; 26
2020; 10
2022; 22
2012; 489
2018; 7
2023; 62
2018; 9
2018; 8
2018; 3
2017; 70
2018; 1
2023; 454
2019; 23
2019; 25
2022; 34
2022; 608
2022; 32
2022; 33
2012; 22
2010; 6
2022; 446
2019; 7
2018; 28
2018; 187
2019; 9
2023; 55
2023; 56
2019; 5
2019; 31
2022; 93
2019; 2
2022; 95
2019; 1
2014; 47
1999; 20
2020; 32
1937; 22
2018; 24
2016; 1
2015; 115
2020; 30
2022; 5
2022; 6
2022; 7
2022; 8
2022; 9
2017; 56
2022; 12
2022; 13
2022; 14
2020; 26
2022; 15
2022; 10
2021; 374
2018; 12
2021; 60
2018; 11
2016; 28
2018; 10
2022; 16
2022; 18
2018; 14
2007; 39
2023; 35
2013; 25
2021; 20
2017; 3
2023; 33
2022; 71
2023; 8
2019; 56
2019; 58
2003; 15
2020; 59
2017; 9
2012; 53
2020; 8
2021; 35
2020; 7
2020; 5
2021; 31
2020; 2
2020; 1
2021; 33
2019; 66
1997; 97
2013; 12
2018; 136
2019; 69
2023; 138
2019; 116
2021; 590
2001; 13
2021; 9
2021; 8
2021; 7
2021; 6
2023; 13
2021; 4
2023; 14
2023; 17
2006; 10
2017; 27
2023; 16
2022; 51
2023; 19
2022; 46
2022; 47
2018; 63
2022; 44
2022; 49
2022; 435
2021; 14
2021; 13
2014; 105
2021; 15
2021; 10
2015; 27
2021; 11
2012; 1
2023
2022; 61
2004; 14
2017; 11
2023; 232
2022; 53
2022; 55
2018; 58
2014; 344
2018; 57
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
Cao G. H. (e_1_2_10_78_1) 2023; 19
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_212_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
Zhao Y. Q. (e_1_2_10_206_1) 2023; 35
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_224_1
Donnay J. D. H. (e_1_2_10_154_1) 1937; 22
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_215_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_216_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_221_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
Qin T. F. (e_1_2_10_178_1) 2023; 13
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 8953
  year: 2017
  publication-title: ACS Nano
– volume: 18
  year: 2022
  publication-title: Small
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 14
  year: 2018
  publication-title: Small
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 280
  year: 2022
  publication-title: Gels
– volume: 15
  start-page: 7190
  year: 2022
  publication-title: Nano Res.
– volume: 14
  start-page: 601
  year: 2023
  publication-title: Nat. Commun.
– volume: 49
  start-page: 463
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 136
  start-page: 63
  year: 2018
  publication-title: Carbon
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 60
  start-page: 990
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 53
  start-page: 774
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 24
  start-page: 1667
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 70
  start-page: 842
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 60
  start-page: 7366
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 1155
  year: 2003
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1260
  year: 2020
  publication-title: Matter
– volume: 51
  start-page: 286
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 579
  year: 2021
  publication-title: Bioact. Mater.
– volume: 71
  start-page: 192
  year: 2022
  publication-title: J Energy Chem
– volume: 2
  start-page: 1288
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 57
  start-page: 9810
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 4451
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 485
  year: 2001
  publication-title: Adv. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 6899
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1124
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 69
  start-page: 422
  year: 2019
  publication-title: J. Ind. Eng. Chem.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 1923
  year: 2020
  publication-title: Ionics
– volume: 8
  start-page: 2086
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 2620
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 706
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 5017
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 932
  year: 2013
  publication-title: Nat. Mater.
– volume: 1
  start-page: 17
  year: 2018
  publication-title: npj Clean Water
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 56
  start-page: 92
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 3996
  year: 2018
  publication-title: ChemSusChem
– volume: 11
  start-page: 94
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 344
  start-page: 161
  year: 2014
  publication-title: Science
– volume: 1
  start-page: 7433
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 42
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 35
  start-page: 586
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 6828
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 935
  year: 2021
  publication-title: J. Mater. Res. Technol.
– volume: 1
  start-page: 275
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 56
  start-page: 351
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 590
  start-page: 594
  year: 2021
  publication-title: Nature
– volume: 20
  start-page: 1339
  year: 1999
  publication-title: Biomaterials
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3122
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 3765
  year: 2023
  publication-title: ACS Nano
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 25
  start-page: 4171
  year: 2013
  publication-title: Adv. Mater.
– volume: 47
  start-page: 2106
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 1
  year: 2019
  publication-title: EcoMat
– volume: 14
  start-page: 64
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 11
  start-page: 49
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 7794
  year: 2015
  publication-title: Chem. Rev.
– volume: 95
  year: 2022
  publication-title: Nano Energy
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 93
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 26
  start-page: 4763
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3402
  year: 2022
  publication-title: Matter
– volume: 14
  start-page: 331
  year: 2023
  publication-title: Chem. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 46
  year: 2022
  publication-title: J. Energy Storage
– volume: 10
  year: 2020
  publication-title: WIREs Comput. Mol. Sci.
– volume: 22
  start-page: 8152
  year: 2022
  publication-title: Nano Lett.
– volume: 232
  year: 2023
  publication-title: Int. J. Biol. Macromol.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2466
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 501
  year: 2022
  publication-title: Mater. Res. Lett.
– volume: 16
  start-page: 9667
  year: 2022
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2022
  publication-title: Adv. Sustainable Syst.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 138
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 125
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 870
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 597
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 97
  start-page: 105
  year: 1997
  publication-title: Solid State Ion.
– volume: 10
  start-page: 658
  year: 2006
  publication-title: Curr. Opin. Chem. Biol.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 10
  start-page: 7171
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– year: 2023
  publication-title: Small Methods
– volume: 57
  start-page: 9008
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 2119
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 13
  start-page: 132
  year: 2022
  publication-title: Nat. Commun.
– volume: 47
  start-page: 187
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 16
  start-page: 1291
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 63
  start-page: 1077
  year: 2018
  publication-title: Sci. Bull.
– volume: 463
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 5845
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 517
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 1259
  year: 2022
  publication-title: Polymers
– volume: 58
  start-page: 4313
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 694
  year: 2022
  publication-title: Nat. Electron.
– volume: 25
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 22
  start-page: 446
  year: 1937
  publication-title: Am. Mineral.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 28
  start-page: 9060
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 6
  start-page: 1015
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 39
  start-page: 489
  year: 2007
  publication-title: Polym. J.
– volume: 1
  year: 2020
  publication-title: SmartMat
– volume: 14
  start-page: 2184
  year: 2022
  publication-title: Polymers
– volume: 13
  start-page: 745
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 636
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 28
  start-page: 7921
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 7765
  year: 2021
  publication-title: ACS Nano
– volume: 12
  start-page: 3140
  year: 2018
  publication-title: ACS Nano
– volume: 608
  start-page: 1619
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 552
  year: 2023
  publication-title: ACS Nano
– volume: 187
  start-page: 66
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 51
  start-page: 588
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 55
  start-page: 9547
  year: 2022
  publication-title: Macromolecules
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 374
  start-page: 212
  year: 2021
  publication-title: Science
– volume: 49
  start-page: 172
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 53
  start-page: 1805
  year: 2012
  publication-title: Polymer
– volume: 14
  start-page: 205
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 6
  start-page: 2583
  year: 2010
  publication-title: Soft Matter
– volume: 56
  start-page: 9141
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 1415
  year: 2022
  publication-title: Int. J. Mol. Sci.
– volume: 56
  start-page: 454
  year: 2019
  publication-title: Nano Energy
– volume: 22
  start-page: 1100
  year: 2022
  publication-title: Nano Lett.
– volume: 33
  year: 2023
  publication-title: Mater. Today Energy
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_10_169_1
  doi: 10.1021/acsenergylett.8b01552
– ident: e_1_2_10_11_1
  doi: 10.1002/adma.202105416
– ident: e_1_2_10_71_1
  doi: 10.1002/adfm.200305197
– ident: e_1_2_10_52_1
  doi: 10.1021/acsami.1c05941
– ident: e_1_2_10_110_1
  doi: 10.1039/D2SC06035C
– ident: e_1_2_10_17_1
  doi: 10.1126/sciadv.1700015
– ident: e_1_2_10_2_1
  doi: 10.1002/adfm.201801834
– ident: e_1_2_10_73_1
  doi: 10.1002/adfm.202003430
– ident: e_1_2_10_159_1
  doi: 10.1007/s40820-022-00939-w
– ident: e_1_2_10_210_1
  doi: 10.1002/advs.202004689
– ident: e_1_2_10_162_1
  doi: 10.1002/anie.202302583
– ident: e_1_2_10_171_1
  doi: 10.1021/acsenergylett.0c02684
– ident: e_1_2_10_116_1
  doi: 10.1002/smll.202107163
– ident: e_1_2_10_225_1
  doi: 10.1002/adma.202104006
– ident: e_1_2_10_132_1
  doi: 10.1002/aenm.202001599
– ident: e_1_2_10_109_1
  doi: 10.1007/s11581-019-03386-7
– ident: e_1_2_10_191_1
  doi: 10.1016/j.mtphys.2021.100458
– ident: e_1_2_10_135_1
  doi: 10.1039/D2EE02416K
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.202207118
– ident: e_1_2_10_151_1
  doi: 10.1002/adfm.202207732
– ident: e_1_2_10_90_1
  doi: 10.1039/c3ta10639j
– ident: e_1_2_10_31_1
  doi: 10.1002/aenm.202002898
– ident: e_1_2_10_140_1
  doi: 10.1002/adfm.202209028
– ident: e_1_2_10_182_1
  doi: 10.1002/adfm.202009438
– ident: e_1_2_10_105_1
  doi: 10.1016/S0142-9612(99)00036-8
– ident: e_1_2_10_39_1
  doi: 10.1016/j.carbpol.2018.01.060
– ident: e_1_2_10_21_1
  doi: 10.1021/acsnano.2c02996
– ident: e_1_2_10_119_1
  doi: 10.1002/aenm.202202219
– ident: e_1_2_10_167_1
  doi: 10.1021/acsnano.9b07042
– ident: e_1_2_10_204_1
  doi: 10.1021/acsnano.7b09003
– ident: e_1_2_10_88_1
  doi: 10.1021/acsenergylett.0c01235
– ident: e_1_2_10_186_1
  doi: 10.1002/anie.202007274
– ident: e_1_2_10_3_1
  doi: 10.1002/adhm.201700889
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jece.2020.104702
– ident: e_1_2_10_157_1
  doi: 10.1002/aenm.201802288
– ident: e_1_2_10_1_1
  doi: 10.1038/s41578-022-00441-0
– ident: e_1_2_10_138_1
  doi: 10.1002/adfm.202107584
– ident: e_1_2_10_114_1
  doi: 10.1038/s41578-018-0018-7
– ident: e_1_2_10_82_1
  doi: 10.1039/D0TA01553A
– ident: e_1_2_10_58_1
  doi: 10.1007/s40820-019-0328-3
– ident: e_1_2_10_226_1
  doi: 10.1038/s41467-021-27755-x
– ident: e_1_2_10_108_1
  doi: 10.1016/j.ensm.2022.04.010
– ident: e_1_2_10_14_1
  doi: 10.1002/adfm.202209466
– ident: e_1_2_10_49_1
  doi: 10.1039/C8EE02892C
– ident: e_1_2_10_30_1
  doi: 10.1016/j.ensm.2021.11.004
– ident: e_1_2_10_213_1
  doi: 10.1016/j.nanoen.2021.106893
– ident: e_1_2_10_104_1
  doi: 10.1002/adma.202211673
– ident: e_1_2_10_95_1
  doi: 10.1038/nmat3713
– ident: e_1_2_10_33_1
  doi: 10.1039/D2EE03793A
– ident: e_1_2_10_6_1
  doi: 10.1039/D1NR06058A
– ident: e_1_2_10_198_1
  doi: 10.3390/polym14112184
– ident: e_1_2_10_80_1
  doi: 10.1295/polymj.PJ2006239
– ident: e_1_2_10_51_1
  doi: 10.1002/adfm.202001317
– ident: e_1_2_10_117_1
  doi: 10.1016/j.ensm.2022.06.034
– ident: e_1_2_10_62_1
  doi: 10.1002/aenm.201803046
– ident: e_1_2_10_40_1
  doi: 10.1016/j.bioactmat.2020.09.004
– ident: e_1_2_10_152_1
  doi: 10.1039/D1TA08023G
– ident: e_1_2_10_174_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_10_207_1
  doi: 10.1002/adfm.202009209
– ident: e_1_2_10_190_1
  doi: 10.1021/acs.nanolett.1c04216
– ident: e_1_2_10_209_1
  doi: 10.1016/j.cej.2022.140311
– ident: e_1_2_10_216_1
  doi: 10.1002/aenm.202001424
– ident: e_1_2_10_18_1
  doi: 10.1002/adfm.201703852
– volume: 35
  year: 2023
  ident: e_1_2_10_206_1
  publication-title: Adv. Mater.
– ident: e_1_2_10_179_1
  doi: 10.1002/anie.202012030
– ident: e_1_2_10_136_1
  doi: 10.1002/adfm.202213510
– ident: e_1_2_10_27_1
  doi: 10.1002/advs.202104832
– ident: e_1_2_10_111_1
  doi: 10.1021/acs.nanolett.2c02558
– ident: e_1_2_10_7_1
  doi: 10.1002/anie.202105756
– ident: e_1_2_10_158_1
  doi: 10.1021/acsnano.2c09317
– ident: e_1_2_10_102_1
  doi: 10.1007/s12274-022-4370-y
– ident: e_1_2_10_222_1
  doi: 10.1016/j.mtener.2023.101276
– ident: e_1_2_10_124_1
  doi: 10.1002/adfm.201704195
– ident: e_1_2_10_180_1
  doi: 10.1002/adma.202110140
– ident: e_1_2_10_173_1
  doi: 10.1002/adma.202106409
– ident: e_1_2_10_155_1
  doi: 10.1021/acsnano.2c11516
– ident: e_1_2_10_113_1
  doi: 10.1002/adma.201908121
– ident: e_1_2_10_76_1
  doi: 10.1002/adma.201908127
– ident: e_1_2_10_99_1
  doi: 10.1016/j.cej.2022.137056
– ident: e_1_2_10_149_1
  doi: 10.1002/chem.201704440
– ident: e_1_2_10_163_1
  doi: 10.1002/advs.202201433
– ident: e_1_2_10_121_1
  doi: 10.1016/j.ensm.2022.12.023
– ident: e_1_2_10_193_1
  doi: 10.1016/j.est.2021.103858
– ident: e_1_2_10_128_1
  doi: 10.1002/adma.201903675
– ident: e_1_2_10_141_1
  doi: 10.1039/D2TA07410A
– ident: e_1_2_10_22_1
  doi: 10.1002/anie.202218454
– ident: e_1_2_10_29_1
  doi: 10.1021/acsami.0c20388
– ident: e_1_2_10_55_1
  doi: 10.1002/aenm.201902446
– ident: e_1_2_10_126_1
  doi: 10.1002/adfm.201901693
– ident: e_1_2_10_25_1
  doi: 10.1002/adfm.202100251
– ident: e_1_2_10_181_1
  doi: 10.1002/anie.201708614
– ident: e_1_2_10_46_1
  doi: 10.1080/21663831.2022.2059412
– ident: e_1_2_10_143_1
  doi: 10.1016/j.cej.2022.137021
– ident: e_1_2_10_164_1
  doi: 10.1002/adfm.202112540
– ident: e_1_2_10_63_1
  doi: 10.1016/j.cej.2023.142607
– ident: e_1_2_10_106_1
  doi: 10.1016/j.jiec.2018.10.004
– ident: e_1_2_10_203_1
  doi: 10.1126/sciadv.abl3742
– ident: e_1_2_10_38_1
  doi: 10.1016/j.msec.2016.09.081
– ident: e_1_2_10_188_1
  doi: 10.1021/acsami.7b19726
– ident: e_1_2_10_5_1
  doi: 10.1002/smm2.1007
– ident: e_1_2_10_122_1
  doi: 10.1016/j.cej.2023.142535
– ident: e_1_2_10_146_1
  doi: 10.1016/j.ensm.2022.04.018
– ident: e_1_2_10_44_1
  doi: 10.1002/aenm.202101749
– ident: e_1_2_10_137_1
  doi: 10.1039/D1TA10079C
– ident: e_1_2_10_185_1
  doi: 10.1063/1.4898189
– ident: e_1_2_10_66_1
  doi: 10.1021/acsami.7b07445
– ident: e_1_2_10_86_1
  doi: 10.1016/j.jcis.2021.10.121
– ident: e_1_2_10_12_1
  doi: 10.1021/acsami.2c13641
– ident: e_1_2_10_131_1
  doi: 10.1007/s40820-021-00782-5
– volume: 19
  year: 2023
  ident: e_1_2_10_78_1
  publication-title: Small
– ident: e_1_2_10_125_1
  doi: 10.1002/adma.202202382
– ident: e_1_2_10_24_1
  doi: 10.1016/j.ensm.2019.03.007
– ident: e_1_2_10_79_1
  doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
– volume: 13
  year: 2023
  ident: e_1_2_10_178_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_10_197_1
  doi: 10.1002/wcms.1477
– ident: e_1_2_10_89_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_10_70_1
  doi: 10.1002/adma.201300817
– ident: e_1_2_10_127_1
  doi: 10.1002/adma.202200860
– ident: e_1_2_10_16_1
  doi: 10.1016/j.nanoen.2022.106991
– ident: e_1_2_10_69_1
  doi: 10.1021/acs.macromol.2c01425
– ident: e_1_2_10_192_1
  doi: 10.1002/anie.201805618
– ident: e_1_2_10_103_1
  doi: 10.1021/acsami.7b15934
– ident: e_1_2_10_75_1
  doi: 10.1002/anie.201705212
– ident: e_1_2_10_183_1
  doi: 10.1021/acsami.8b18003
– ident: e_1_2_10_32_1
  doi: 10.1002/adma.202007559
– ident: e_1_2_10_217_1
  doi: 10.1016/j.jechem.2022.02.040
– ident: e_1_2_10_224_1
  doi: 10.1002/aenm.202102055
– ident: e_1_2_10_61_1
  doi: 10.1126/science.1252389
– ident: e_1_2_10_153_1
  doi: 10.1002/anie.202016531
– ident: e_1_2_10_227_1
  doi: 10.1002/aenm.202003902
– ident: e_1_2_10_112_1
  doi: 10.1016/S0167-2738(97)00074-X
– ident: e_1_2_10_170_1
  doi: 10.1021/acsaem.8b01851
– ident: e_1_2_10_165_1
  doi: 10.1016/j.ensm.2022.09.027
– ident: e_1_2_10_72_1
  doi: 10.1038/nature11409
– ident: e_1_2_10_50_1
  doi: 10.1002/eom2.12008
– ident: e_1_2_10_81_1
  doi: 10.1002/anie.202217833
– ident: e_1_2_10_36_1
  doi: 10.3390/polym14061259
– ident: e_1_2_10_223_1
  doi: 10.1039/D0TA07086F
– ident: e_1_2_10_67_1
  doi: 10.1016/j.polymer.2012.03.013
– ident: e_1_2_10_4_1
  doi: 10.1002/adma.201400910
– ident: e_1_2_10_211_1
  doi: 10.1016/j.cej.2022.135051
– ident: e_1_2_10_19_1
  doi: 10.1021/acsnano.1c01751
– ident: e_1_2_10_195_1
  doi: 10.1002/advs.202201039
– ident: e_1_2_10_10_1
  doi: 10.1002/adfm.201804560
– ident: e_1_2_10_184_1
  doi: 10.1002/adfm.202206653
– ident: e_1_2_10_205_1
  doi: 10.1002/adma.202004579
– ident: e_1_2_10_220_1
  doi: 10.1038/s41467-023-36198-5
– ident: e_1_2_10_57_1
  doi: 10.1016/j.nanoen.2019.104132
– ident: e_1_2_10_68_1
  doi: 10.1039/b924290b
– ident: e_1_2_10_199_1
  doi: 10.1021/ar500105t
– ident: e_1_2_10_91_1
  doi: 10.1039/C9TA10944G
– ident: e_1_2_10_218_1
  doi: 10.1002/aenm.201902473
– ident: e_1_2_10_212_1
  doi: 10.1016/j.ensm.2022.06.056
– ident: e_1_2_10_219_1
  doi: 10.1038/s41928-022-00843-6
– ident: e_1_2_10_87_1
  doi: 10.1002/adfm.201705069
– ident: e_1_2_10_147_1
  doi: 10.1002/anie.202218452
– ident: e_1_2_10_53_1
  doi: 10.1039/D1EE01134K
– ident: e_1_2_10_166_1
  doi: 10.1002/aenm.201903977
– ident: e_1_2_10_202_1
  doi: 10.1021/mz200195n
– ident: e_1_2_10_160_1
  doi: 10.1021/acsenergylett.3c00650
– ident: e_1_2_10_133_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_10_150_1
  doi: 10.1002/adma.202100187
– ident: e_1_2_10_130_1
  doi: 10.1002/cssc.201801657
– ident: e_1_2_10_118_1
  doi: 10.1002/anie.202210979
– ident: e_1_2_10_8_1
  doi: 10.1021/acsnano.2c07468
– ident: e_1_2_10_92_1
  doi: 10.1002/anie.202215060
– ident: e_1_2_10_208_1
  doi: 10.1016/j.ensm.2022.02.012
– ident: e_1_2_10_100_1
  doi: 10.1002/adfm.202110859
– ident: e_1_2_10_144_1
  doi: 10.1021/acsaem.2c01520
– ident: e_1_2_10_54_1
  doi: 10.1016/j.matt.2022.07.015
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jmrt.2020.12.012
– ident: e_1_2_10_221_1
  doi: 10.1002/adma.202203905
– ident: e_1_2_10_37_1
  doi: 10.1016/j.carbon.2018.04.065
– ident: e_1_2_10_189_1
  doi: 10.3390/gels8050280
– ident: e_1_2_10_60_1
  doi: 10.1002/aenm.202003994
– ident: e_1_2_10_139_1
  doi: 10.1002/aenm.202100982
– ident: e_1_2_10_142_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_10_145_1
  doi: 10.1002/adsu.202100191
– ident: e_1_2_10_172_1
  doi: 10.1002/smtd.202201683
– ident: e_1_2_10_47_1
  doi: 10.1016/j.scib.2018.06.019
– ident: e_1_2_10_194_1
  doi: 10.1002/advs.202100072
– ident: e_1_2_10_77_1
  doi: 10.1016/j.cbpa.2006.09.020
– ident: e_1_2_10_64_1
  doi: 10.1021/acsami.7b09614
– ident: e_1_2_10_65_1
  doi: 10.1002/adma.202007829
– ident: e_1_2_10_85_1
  doi: 10.1002/advs.202000587
– ident: e_1_2_10_74_1
  doi: 10.1016/j.nanoen.2018.11.057
– ident: e_1_2_10_196_1
  doi: 10.1002/adma.201601613
– ident: e_1_2_10_215_1
  doi: 10.1002/aenm.202300250
– ident: e_1_2_10_42_1
  doi: 10.1016/j.ijbiomac.2023.123450
– ident: e_1_2_10_229_1
  doi: 10.1021/acsami.1c15784
– ident: e_1_2_10_161_1
  doi: 10.1002/adma.202007416
– ident: e_1_2_10_101_1
  doi: 10.1021/acsaem.1c02433
– ident: e_1_2_10_48_1
  doi: 10.1002/anie.201814653
– ident: e_1_2_10_134_1
  doi: 10.1002/chem.201902660
– ident: e_1_2_10_168_1
  doi: 10.1002/anie.201903941
– ident: e_1_2_10_98_1
  doi: 10.1073/pnas.1903019116
– ident: e_1_2_10_200_1
  doi: 10.1021/cr500392w
– ident: e_1_2_10_35_1
  doi: 10.1002/pen.24855
– ident: e_1_2_10_56_1
  doi: 10.1002/anie.202111398
– ident: e_1_2_10_129_1
  doi: 10.1016/j.nanoen.2018.11.038
– ident: e_1_2_10_156_1
  doi: 10.1002/adma.202300073
– ident: e_1_2_10_228_1
  doi: 10.1002/adma.202206793
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.202207587
– ident: e_1_2_10_214_1
  doi: 10.1021/acsnano.7b03322
– ident: e_1_2_10_94_1
  doi: 10.1002/adma.201503724
– ident: e_1_2_10_96_1
  doi: 10.1126/sciadv.aau8528
– ident: e_1_2_10_201_1
  doi: 10.1002/anie.201804400
– ident: e_1_2_10_34_1
  doi: 10.1038/s41545-018-0016-8
– ident: e_1_2_10_15_1
  doi: 10.1021/acsami.8b10064
– ident: e_1_2_10_83_1
  doi: 10.1002/aenm.202000035
– ident: e_1_2_10_115_1
  doi: 10.1021/acsami.2c10517
– ident: e_1_2_10_28_1
  doi: 10.1016/j.ensm.2020.11.041
– ident: e_1_2_10_148_1
  doi: 10.1002/aenm.202101299
– ident: e_1_2_10_177_1
  doi: 10.1016/j.matt.2020.01.022
– ident: e_1_2_10_175_1
  doi: 10.1021/acsnano.1c08193
– ident: e_1_2_10_176_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_10_84_1
  doi: 10.1002/adfm.202204823
– volume: 22
  start-page: 446
  year: 1937
  ident: e_1_2_10_154_1
  publication-title: Am. Mineral.
– ident: e_1_2_10_59_1
  doi: 10.1007/s40820-022-00793-w
– ident: e_1_2_10_107_1
  doi: 10.1039/c2jm31778h
– ident: e_1_2_10_43_1
  doi: 10.3390/ijms23031415
– ident: e_1_2_10_97_1
  doi: 10.1038/s41586-021-03212-z
– ident: e_1_2_10_187_1
  doi: 10.1002/adma.201602239
– ident: e_1_2_10_93_1
  doi: 10.1126/science.abg6320
– ident: e_1_2_10_123_1
  doi: 10.1002/smll.201803978
– ident: e_1_2_10_120_1
  doi: 10.1007/s40820-022-00835-3
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.202007548
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ensm.2023.01.034
– ident: e_1_2_10_20_1
  doi: 10.1016/j.pmatsci.2023.101156
SSID ssj0031247
Score 2.6170447
SecondaryResourceType review_article
Snippet To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2303949
SubjectTerms electrode stabilization
Electrolytes
Electronics
Energy storage
flexible energy storage
hydrogel electrolytes
Hydrogels
Nanotechnology
Storage systems
versatility
wearable electronics
Wearable technology
Zinc
zinc ion energy storage systems
Title Hydrogel Electrolyte Enabled High‐Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303949
https://www.ncbi.nlm.nih.gov/pubmed/37530198
https://www.proquest.com/docview/2894351422
https://www.proquest.com/docview/2845106521
Volume 19
WOSCitedRecordID wos001039148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyNBEC407mE9qOuuOr5oQdhT42SmZyZ9FE1QyAZZdQ17GfoVCcSJZBIh4MGf4G_0l1g9rxhEhN3bDP1-VNdX3V1fAxzqyHAdKkkZly5lTNSpjIShaIsIZSIZ8oxI-0876nQa3S6_eOPFn_NDVBtuVjKy9doKuJDp0Yw0NL0b2KMDhNA-Z3wRljycvEENlk5_t67b5Wrso_7KHlhBtUUt91ZJ3Oh6R_M5zCumd2hzHrxm2qe1-v_1XoOVAnmS43yqfIMFk6zD8hs-wu_weDbVo-GtGZBm_jrOYDo2pJm5V2lir4S8PD1fzFwNSMvSaWIgOcZmDCcp-dtPFDkfJpjI-hSSSzTpccUiBTE6GWe3dMkNypfNtCwn6av0B1y3mlcnZ7R4noEqP_I5VVIYGUjPDSSCHBlEiMVMj4WKsZ6vuXF1IHqRqUuphUCcg2CyLhBxKM6YQsPI34BaMkzMFpBQcx3wnnIbArWlLwSvS41QzTOcYyahA7Qcm1gV3OX2CY1BnLMue7Ht1bjqVQd-VvHvc9aOD2PulkMdF9Kbxp4lpQ_s7pgDB1Uwyp09TBGJ7U-Mw3A5CxH9OLCZT5GqKB9tQGxtwwEvmwmf1CG-_NVuV3_b_5JoB77a79xJchdq49HE7MEX9TDup6N9WIy6jf1CMl4BYrEQWA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxNBFD5oK1gf6qW2XVt1BMGnIZvd2d3MY2kTUtyGYlstvixziwTSTcmmQsEHf0J_Y3-J5-ytBhGh-Lg795lz5nxzOd8AvLeJkzY2mgupfS6E6nKdKMdxLaKMS3QsSyLtz2kyGvXOz-VxfZuQfGEqfoh2w400o5yvScFpQ7pzxxpaXEzp7AAxdCiFfAirAmUJhXz14NPgLG2m4xANWPnCCtotTuRbDXOjH3SWc1i2TH_AzWX0WpqfwdP_UPFnsF5jT7ZXCctzeODyF_DkN0bCDfgxvLbz2Tc3Zf3qfZzp9cKxfulgZRldCrn9eXN852zABkSoiYFsD9sxuyrY10lu2OEsx0TkVchOcFGPcxarqdHZoryny76ghlGmTTn5xBQv4WzQP90f8vqBBm7CJJTcaOV0pAM_0ghzdJQgGnNjERshxqGVzreRGieuq7VVCpEOwsmuQsxhpBAGl0bhJqzks9xtA4uttJEcG7-n0F6GSsmutgjWAiclZhJ7wJvByUzNXk6PaEyzinc5yKhXs7ZXPfjQxr-seDv-GnO3Geus1t8iC4iWPqL9MQ_etcGoeXSconLqT4wjcEKLEf94sFXJSFtUiKtAbG3Pg6AUhX_UITs5StP269V9Er2Fx8PTozRLD0cfd2CN_lcuk7uwsphfudfwyHxfTIr5m1pBfgFBSRNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVqQ-eG-NVh1B8GloNpkkO4_FbmgxLou1WnwJc4ssbLNlsxUKPvgT_I39JT0nt7qICOJjMvfLmfPN5XwH4LVNnLSx0VxI7XMh1JDrRDmOexFlXKJjWRNpf8qSyWR0ciKn7WtCsoVp-CH6AzeSjHq9JgF3Z7bYvWYNrU7ndHeAGDqUQt6EDUGeZAawsf8hPc665ThEBVZ7WEG9xYl8q2Nu9IPd9RzWNdNvcHMdvdbqJ733Hyp-H-622JPtNZPlAdxw5UO48wsj4SP4fnBhl4uvbs7GjX-c-cXKsXFtYGUZPQq5_PFzem1swFIi1MRAtoftWJxX7MusNOxwUWIisipkR7ipxzWLtdTobFW_02WfUcIo066ccmaqx3Ccjj--PeCtgwZuwiSU3GjldKQDP9IIc3SUIBpzhYiNEEVopfNtpIrEDbW2SiHSQTg5VIg5jBTC4NYo3IJBuSjdE2CxlTaShfFHCvVlqJQcaotgLXBSYiaxB7wbnNy07OXkRGOeN7zLQU69mve96sGbPv5Zw9vxx5g73VjnrfxWeUC09BGdj3nwqg9GyaPrFFVSf2IcgQtajPjHg-1mjvRFhbgLxNaOPAjqqfCXOuRH77Os_3r6L4lewu3pfppnh5N3z2CTfjcWkzswWC3P3XO4Zb6tZtXyRSsfV7AbEts
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogel+Electrolyte+Enabled+High%E2%80%90Performance+Flexible+Aqueous+Zinc+Ion+Energy+Storage+Systems+toward+Wearable+Electronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Weng%2C+Gao&rft.au=Yang%2C+Xianzhong&rft.au=Wang%2C+Zhiqi&rft.au=Xu%2C+Yan&rft.date=2023-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=48&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202303949&rft.externalDBID=10.1002%252Fsmll.202303949&rft.externalDocID=SMLL202303949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon