Hydrogel Electrolyte Enabled High‐Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid s...
Uložené v:
| Vydané v: | Small (Weinheim an der Bergstrasse, Germany) Ročník 19; číslo 48; s. e2303949 - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
| Predmet: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
This review focuses on hydrogel electrolytes engineering for high‐performance flexible aqueous zinc ion energy storage systems. From basic characteristics, anode and cathode stabilization effects, and functional properties, the corresponding mechanisms of designing desirable hydrogel electrolytes are elaborated. The application of flexible aqueous zinc ion energy storage systems in wearable electronics is also depicted with a bright future. |
|---|---|
| AbstractList | To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers. To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi‐solid substances, are the appropriate and burgeoning electrolytes that enable high‐performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte‐based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high‐performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte‐based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers. This review focuses on hydrogel electrolytes engineering for high‐performance flexible aqueous zinc ion energy storage systems. From basic characteristics, anode and cathode stabilization effects, and functional properties, the corresponding mechanisms of designing desirable hydrogel electrolytes are elaborated. The application of flexible aqueous zinc ion energy storage systems in wearable electronics is also depicted with a bright future. To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers. |
| Author | Yang, Xianzhong Liu, Ruiyuan Xu, Yan Wang, Zhiqi Weng, Gao |
| Author_xml | – sequence: 1 givenname: Gao surname: Weng fullname: Weng, Gao organization: Soochow University – sequence: 2 givenname: Xianzhong surname: Yang fullname: Yang, Xianzhong organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Zhiqi surname: Wang fullname: Wang, Zhiqi organization: Soochow University – sequence: 4 givenname: Yan surname: Xu fullname: Xu, Yan organization: Soochow University – sequence: 5 givenname: Ruiyuan orcidid: 0000-0002-1678-3500 surname: Liu fullname: Liu, Ruiyuan email: ryliu@suda.edu.cn organization: Soochow University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37530198$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rFDEYx4NU7ItePUrASy-75nVmcixl6xZWFFYRvIRM5pk1JZPUZJY64MGP4Gf0k5hluxUK4imB_H7_PC-n6CjEAAi9pGROCWFv8uD9nBHGCVdCPUEntKJ8VjVMHT3cKTlGpznfEMIpE_UzdMxryQlVzQn6sZy6FDfg8cKDHVP00wh4EUzrocNLt_n6--evD5D6mAYTLOArD99decQX37YQtxl_ccHi6xiKBGkz4fUYk9kAXk95hCHjMd6Z1OHPYNIu9PBPcDY_R0974zO8uD_P0KerxcfL5Wz1_u315cVqZnnN1cy2BlrZMiJbpXgrayEr6EVlheh5p4B00vQ10LbtjJGNKJ1RQxpmlRBWSsLP0Pk-9zbFUnUe9eCyBe9N2LWgWSMkJZVktKCvH6E3cZtCqa5QSnBJBWOFenVPbdsBOn2b3GDSpA9zLYDYAzbFnBP02rrRjC6GMRnnNSV6tz69W59-WF_R5o-0Q_I_BbUX7pyH6T-0Xr9brf66fwCuoq9u |
| CitedBy_id | crossref_primary_10_1002_smll_202311012 crossref_primary_10_1016_j_nwnano_2024_100050 crossref_primary_10_1002_cssc_202500942 crossref_primary_10_1002_adma_202413268 crossref_primary_10_1016_j_cej_2025_164988 crossref_primary_10_1016_j_nxener_2025_100370 crossref_primary_10_1039_D4RA06602B crossref_primary_10_1016_j_jpowsour_2024_235307 crossref_primary_10_1016_j_ijbiomac_2025_142968 crossref_primary_10_1002_adfm_202410140 crossref_primary_10_1007_s40820_025_01704_5 crossref_primary_10_1016_j_matt_2024_03_014 crossref_primary_10_1038_s41467_024_50894_w crossref_primary_10_1016_j_cej_2024_153816 crossref_primary_10_1002_app_55727 crossref_primary_10_1016_j_foodchem_2025_144126 crossref_primary_10_1016_j_jallcom_2025_179025 crossref_primary_10_1002_aenm_202401293 crossref_primary_10_1016_j_jcis_2025_137537 crossref_primary_10_1007_s12209_023_00381_y crossref_primary_10_1007_s10854_025_14238_8 crossref_primary_10_1021_acsami_4c15006 crossref_primary_10_1002_adma_202501538 crossref_primary_10_1007_s11426_023_1918_0 crossref_primary_10_1002_adfm_202417890 crossref_primary_10_1002_smll_202312116 crossref_primary_10_1016_j_ensm_2025_104373 crossref_primary_10_1016_j_jpowsour_2024_234823 crossref_primary_10_3390_batteries10060200 crossref_primary_10_1002_adfm_202400839 crossref_primary_10_1002_aenm_202503226 crossref_primary_10_1021_acs_chemrev_5c00159 crossref_primary_10_1002_adfm_202314864 crossref_primary_10_1016_j_jcis_2025_137989 crossref_primary_10_1016_j_cej_2025_162994 crossref_primary_10_1039_D4EE02772H crossref_primary_10_3390_sci6030050 crossref_primary_10_1016_j_cej_2025_164691 crossref_primary_10_26599_NR_2025_94907536 crossref_primary_10_3390_pr12122650 |
| Cites_doi | 10.1021/acsenergylett.8b01552 10.1002/adma.202105416 10.1002/adfm.200305197 10.1021/acsami.1c05941 10.1039/D2SC06035C 10.1126/sciadv.1700015 10.1002/adfm.201801834 10.1002/adfm.202003430 10.1007/s40820-022-00939-w 10.1002/advs.202004689 10.1002/anie.202302583 10.1021/acsenergylett.0c02684 10.1002/smll.202107163 10.1002/adma.202104006 10.1002/aenm.202001599 10.1007/s11581-019-03386-7 10.1016/j.mtphys.2021.100458 10.1039/D2EE02416K 10.1002/adma.202207118 10.1002/adfm.202207732 10.1039/c3ta10639j 10.1002/aenm.202002898 10.1002/adfm.202209028 10.1002/adfm.202009438 10.1016/S0142-9612(99)00036-8 10.1016/j.carbpol.2018.01.060 10.1021/acsnano.2c02996 10.1002/aenm.202202219 10.1021/acsnano.9b07042 10.1021/acsnano.7b09003 10.1021/acsenergylett.0c01235 10.1002/anie.202007274 10.1002/adhm.201700889 10.1016/j.jece.2020.104702 10.1002/aenm.201802288 10.1038/s41578-022-00441-0 10.1002/adfm.202107584 10.1038/s41578-018-0018-7 10.1039/D0TA01553A 10.1007/s40820-019-0328-3 10.1038/s41467-021-27755-x 10.1016/j.ensm.2022.04.010 10.1002/adfm.202209466 10.1039/C8EE02892C 10.1016/j.ensm.2021.11.004 10.1016/j.nanoen.2021.106893 10.1002/adma.202211673 10.1038/nmat3713 10.1039/D2EE03793A 10.1039/D1NR06058A 10.3390/polym14112184 10.1295/polymj.PJ2006239 10.1002/adfm.202001317 10.1016/j.ensm.2022.06.034 10.1002/aenm.201803046 10.1016/j.bioactmat.2020.09.004 10.1039/D1TA08023G 10.1038/nenergy.2016.39 10.1002/adfm.202009209 10.1021/acs.nanolett.1c04216 10.1016/j.cej.2022.140311 10.1002/aenm.202001424 10.1002/adfm.201703852 10.1002/anie.202012030 10.1002/adfm.202213510 10.1002/advs.202104832 10.1021/acs.nanolett.2c02558 10.1002/anie.202105756 10.1021/acsnano.2c09317 10.1007/s12274-022-4370-y 10.1016/j.mtener.2023.101276 10.1002/adfm.201704195 10.1002/adma.202110140 10.1002/adma.202106409 10.1021/acsnano.2c11516 10.1002/adma.201908121 10.1002/adma.201908127 10.1016/j.cej.2022.137056 10.1002/chem.201704440 10.1002/advs.202201433 10.1016/j.ensm.2022.12.023 10.1016/j.est.2021.103858 10.1002/adma.201903675 10.1039/D2TA07410A 10.1002/anie.202218454 10.1021/acsami.0c20388 10.1002/aenm.201902446 10.1002/adfm.201901693 10.1002/adfm.202100251 10.1002/anie.201708614 10.1080/21663831.2022.2059412 10.1016/j.cej.2022.137021 10.1002/adfm.202112540 10.1016/j.cej.2023.142607 10.1016/j.jiec.2018.10.004 10.1126/sciadv.abl3742 10.1016/j.msec.2016.09.081 10.1021/acsami.7b19726 10.1002/smm2.1007 10.1016/j.cej.2023.142535 10.1016/j.ensm.2022.04.018 10.1002/aenm.202101749 10.1039/D1TA10079C 10.1063/1.4898189 10.1021/acsami.7b07445 10.1016/j.jcis.2021.10.121 10.1021/acsami.2c13641 10.1007/s40820-021-00782-5 10.1002/adma.202202382 10.1016/j.ensm.2019.03.007 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T 10.1002/wcms.1477 10.1002/adma.200304907 10.1002/adma.201300817 10.1002/adma.202200860 10.1016/j.nanoen.2022.106991 10.1021/acs.macromol.2c01425 10.1002/anie.201805618 10.1021/acsami.7b15934 10.1002/anie.201705212 10.1021/acsami.8b18003 10.1002/adma.202007559 10.1016/j.jechem.2022.02.040 10.1002/aenm.202102055 10.1126/science.1252389 10.1002/anie.202016531 10.1002/aenm.202003902 10.1016/S0167-2738(97)00074-X 10.1021/acsaem.8b01851 10.1016/j.ensm.2022.09.027 10.1038/nature11409 10.1002/eom2.12008 10.1002/anie.202217833 10.3390/polym14061259 10.1039/D0TA07086F 10.1016/j.polymer.2012.03.013 10.1002/adma.201400910 10.1016/j.cej.2022.135051 10.1021/acsnano.1c01751 10.1002/advs.202201039 10.1002/adfm.201804560 10.1002/adfm.202206653 10.1002/adma.202004579 10.1038/s41467-023-36198-5 10.1016/j.nanoen.2019.104132 10.1039/b924290b 10.1021/ar500105t 10.1039/C9TA10944G 10.1002/aenm.201902473 10.1016/j.ensm.2022.06.056 10.1038/s41928-022-00843-6 10.1002/adfm.201705069 10.1002/anie.202218452 10.1039/D1EE01134K 10.1002/aenm.201903977 10.1021/mz200195n 10.1021/acsenergylett.3c00650 10.1002/aenm.202003065 10.1002/adma.202100187 10.1002/cssc.201801657 10.1002/anie.202210979 10.1021/acsnano.2c07468 10.1002/anie.202215060 10.1016/j.ensm.2022.02.012 10.1002/adfm.202110859 10.1021/acsaem.2c01520 10.1016/j.matt.2022.07.015 10.1016/j.jmrt.2020.12.012 10.1002/adma.202203905 10.1016/j.carbon.2018.04.065 10.3390/gels8050280 10.1002/aenm.202003994 10.1002/aenm.202100982 10.1039/C9EE00596J 10.1002/adsu.202100191 10.1002/smtd.202201683 10.1016/j.scib.2018.06.019 10.1002/advs.202100072 10.1016/j.cbpa.2006.09.020 10.1021/acsami.7b09614 10.1002/adma.202007829 10.1002/advs.202000587 10.1016/j.nanoen.2018.11.057 10.1002/adma.201601613 10.1002/aenm.202300250 10.1016/j.ijbiomac.2023.123450 10.1021/acsami.1c15784 10.1002/adma.202007416 10.1021/acsaem.1c02433 10.1002/anie.201814653 10.1002/chem.201902660 10.1002/anie.201903941 10.1073/pnas.1903019116 10.1021/cr500392w 10.1002/pen.24855 10.1002/anie.202111398 10.1016/j.nanoen.2018.11.038 10.1002/adma.202300073 10.1002/adma.202206793 10.1002/adma.202207587 10.1021/acsnano.7b03322 10.1002/adma.201503724 10.1126/sciadv.aau8528 10.1002/anie.201804400 10.1038/s41545-018-0016-8 10.1021/acsami.8b10064 10.1002/aenm.202000035 10.1021/acsami.2c10517 10.1016/j.ensm.2020.11.041 10.1002/aenm.202101299 10.1016/j.matt.2020.01.022 10.1021/acsnano.1c08193 10.1038/s41467-018-04060-8 10.1002/adfm.202204823 10.1007/s40820-022-00793-w 10.1039/c2jm31778h 10.3390/ijms23031415 10.1038/s41586-021-03212-z 10.1002/adma.201602239 10.1126/science.abg6320 10.1002/smll.201803978 10.1007/s40820-022-00835-3 10.1002/adma.202007548 10.1016/j.ensm.2023.01.034 10.1016/j.pmatsci.2023.101156 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202303949 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 37530198 10_1002_smll_202303949 SMLL202303949 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210719 – fundername: National Natural Science Foundation of China funderid: 52103306 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210719 – fundername: National Natural Science Foundation of China grantid: 52103306 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3739-cbaeb5b205b993b57456ef46c44f3d9e0d5af7e1bbdaa5840191a082c944c5503 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 12:30:44 EDT 2025 Fri Jul 25 12:05:42 EDT 2025 Thu Apr 03 07:00:53 EDT 2025 Sat Nov 29 04:11:05 EST 2025 Tue Nov 18 22:04:13 EST 2025 Sun Jul 06 04:46:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | electrode stabilization versatility hydrogel electrolytes flexible energy storage wearable electronics zinc ion energy storage systems |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3739-cbaeb5b205b993b57456ef46c44f3d9e0d5af7e1bbdaa5840191a082c944c5503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1678-3500 |
| PMID | 37530198 |
| PQID | 2894351422 |
| PQPubID | 1046358 |
| PageCount | 45 |
| ParticipantIDs | proquest_miscellaneous_2845106521 proquest_journals_2894351422 pubmed_primary_37530198 crossref_citationtrail_10_1002_smll_202303949 crossref_primary_10_1002_smll_202303949 wiley_primary_10_1002_smll_202303949_SMLL202303949 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 1 2019; 11 2019; 13 2019; 12 2023; 464 2023; 463 2022; 23 2014; 26 2020; 10 2022; 22 2012; 489 2018; 7 2023; 62 2018; 9 2018; 8 2018; 3 2017; 70 2018; 1 2023; 454 2019; 23 2019; 25 2022; 34 2022; 608 2022; 32 2022; 33 2012; 22 2010; 6 2022; 446 2019; 7 2018; 28 2018; 187 2019; 9 2023; 55 2023; 56 2019; 5 2019; 31 2022; 93 2019; 2 2022; 95 2019; 1 2014; 47 1999; 20 2020; 32 1937; 22 2018; 24 2016; 1 2015; 115 2020; 30 2022; 5 2022; 6 2022; 7 2022; 8 2022; 9 2017; 56 2022; 12 2022; 13 2022; 14 2020; 26 2022; 15 2022; 10 2021; 374 2018; 12 2021; 60 2018; 11 2016; 28 2018; 10 2022; 16 2022; 18 2018; 14 2007; 39 2023; 35 2013; 25 2021; 20 2017; 3 2023; 33 2022; 71 2023; 8 2019; 56 2019; 58 2003; 15 2020; 59 2017; 9 2012; 53 2020; 8 2021; 35 2020; 7 2020; 5 2021; 31 2020; 2 2020; 1 2021; 33 2019; 66 1997; 97 2013; 12 2018; 136 2019; 69 2023; 138 2019; 116 2021; 590 2001; 13 2021; 9 2021; 8 2021; 7 2021; 6 2023; 13 2021; 4 2023; 14 2023; 17 2006; 10 2017; 27 2023; 16 2022; 51 2023; 19 2022; 46 2022; 47 2018; 63 2022; 44 2022; 49 2022; 435 2021; 14 2021; 13 2014; 105 2021; 15 2021; 10 2015; 27 2021; 11 2012; 1 2023 2022; 61 2004; 14 2017; 11 2023; 232 2022; 53 2022; 55 2018; 58 2014; 344 2018; 57 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 Cao G. H. (e_1_2_10_78_1) 2023; 19 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_212_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 Zhao Y. Q. (e_1_2_10_206_1) 2023; 35 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_224_1 Donnay J. D. H. (e_1_2_10_154_1) 1937; 22 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_215_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_216_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_221_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 Qin T. F. (e_1_2_10_178_1) 2023; 13 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 8953 year: 2017 publication-title: ACS Nano – volume: 18 year: 2022 publication-title: Small – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 14 year: 2018 publication-title: Small – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 280 year: 2022 publication-title: Gels – volume: 15 start-page: 7190 year: 2022 publication-title: Nano Res. – volume: 14 start-page: 601 year: 2023 publication-title: Nat. Commun. – volume: 49 start-page: 463 year: 2022 publication-title: Energy Storage Mater. – volume: 136 start-page: 63 year: 2018 publication-title: Carbon – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 60 start-page: 990 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 53 start-page: 774 year: 2022 publication-title: Energy Storage Mater. – volume: 24 start-page: 1667 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 70 start-page: 842 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 60 start-page: 7366 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 15 start-page: 1155 year: 2003 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1260 year: 2020 publication-title: Matter – volume: 51 start-page: 286 year: 2022 publication-title: Energy Storage Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 579 year: 2021 publication-title: Bioact. Mater. – volume: 71 start-page: 192 year: 2022 publication-title: J Energy Chem – volume: 2 start-page: 1288 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 57 start-page: 9810 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 4451 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 13 start-page: 485 year: 2001 publication-title: Adv. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 27 start-page: 6899 year: 2015 publication-title: Adv. Mater. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1124 year: 2004 publication-title: Adv. Funct. Mater. – volume: 93 year: 2022 publication-title: Nano Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 69 start-page: 422 year: 2019 publication-title: J. Ind. Eng. Chem. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 26 start-page: 1923 year: 2020 publication-title: Ionics – volume: 8 start-page: 2086 year: 2023 publication-title: ACS Energy Lett. – volume: 3 start-page: 2620 year: 2018 publication-title: ACS Energy Lett. – volume: 12 start-page: 706 year: 2019 publication-title: Energy Environ. Sci. – volume: 15 start-page: 5017 year: 2022 publication-title: Energy Environ. Sci. – volume: 12 start-page: 932 year: 2013 publication-title: Nat. Mater. – volume: 1 start-page: 17 year: 2018 publication-title: npj Clean Water – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 56 start-page: 92 year: 2019 publication-title: Nano Energy – volume: 11 start-page: 3996 year: 2018 publication-title: ChemSusChem – volume: 11 start-page: 94 year: 2019 publication-title: Nano‐Micro Lett. – volume: 344 start-page: 161 year: 2014 publication-title: Science – volume: 1 start-page: 7433 year: 2013 publication-title: J. Mater. Chem. A – volume: 14 start-page: 42 year: 2022 publication-title: Nano‐Micro Lett. – volume: 35 start-page: 586 year: 2021 publication-title: Energy Storage Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 6828 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 start-page: 935 year: 2021 publication-title: J. Mater. Res. Technol. – volume: 1 start-page: 275 year: 2012 publication-title: ACS Macro Lett. – volume: 56 start-page: 351 year: 2023 publication-title: Energy Storage Mater. – volume: 4 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 590 start-page: 594 year: 2021 publication-title: Nature – volume: 20 start-page: 1339 year: 1999 publication-title: Biomaterials – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 3122 year: 2022 publication-title: J. Mater. Chem. A – volume: 17 start-page: 3765 year: 2023 publication-title: ACS Nano – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 25 start-page: 4171 year: 2013 publication-title: Adv. Mater. – volume: 47 start-page: 2106 year: 2014 publication-title: Acc. Chem. Res. – volume: 1 year: 2019 publication-title: EcoMat – volume: 14 start-page: 64 year: 2022 publication-title: Nano‐Micro Lett. – volume: 11 start-page: 49 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 7794 year: 2015 publication-title: Chem. Rev. – volume: 95 year: 2022 publication-title: Nano Energy – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 464 year: 2023 publication-title: Chem. Eng. J. – volume: 14 start-page: 93 year: 2022 publication-title: Nano‐Micro Lett. – volume: 26 start-page: 4763 year: 2014 publication-title: Adv. Mater. – volume: 5 start-page: 3402 year: 2022 publication-title: Matter – volume: 14 start-page: 331 year: 2023 publication-title: Chem. Sci. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 20 year: 2021 publication-title: Mater. Today Phys. – volume: 46 year: 2022 publication-title: J. Energy Storage – volume: 10 year: 2020 publication-title: WIREs Comput. Mol. Sci. – volume: 22 start-page: 8152 year: 2022 publication-title: Nano Lett. – volume: 232 year: 2023 publication-title: Int. J. Biol. Macromol. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 5 start-page: 2466 year: 2020 publication-title: ACS Energy Lett. – volume: 10 start-page: 501 year: 2022 publication-title: Mater. Res. Lett. – volume: 16 start-page: 9667 year: 2022 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2022 publication-title: Adv. Sustainable Syst. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 138 year: 2023 publication-title: Prog. Mater. Sci. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 3 start-page: 125 year: 2018 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 870 year: 2022 publication-title: Nat. Rev. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 55 start-page: 597 year: 2023 publication-title: Energy Storage Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 97 start-page: 105 year: 1997 publication-title: Solid State Ion. – volume: 10 start-page: 658 year: 2006 publication-title: Curr. Opin. Chem. Biol. – volume: 19 year: 2023 publication-title: Small – volume: 10 start-page: 7171 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: Nanoscale – volume: 8 year: 2021 publication-title: Adv. Sci. – year: 2023 publication-title: Small Methods – volume: 57 start-page: 9008 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 2119 year: 2018 publication-title: Polym. Eng. Sci. – volume: 13 start-page: 132 year: 2022 publication-title: Nat. Commun. – volume: 47 start-page: 187 year: 2022 publication-title: Energy Storage Mater. – volume: 16 start-page: 1291 year: 2023 publication-title: Energy Environ. Sci. – volume: 63 start-page: 1077 year: 2018 publication-title: Sci. Bull. – volume: 463 year: 2023 publication-title: Chem. Eng. J. – volume: 10 start-page: 5845 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 517 year: 2022 publication-title: Energy Storage Mater. – volume: 14 start-page: 1259 year: 2022 publication-title: Polymers – volume: 58 start-page: 4313 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 694 year: 2022 publication-title: Nat. Electron. – volume: 25 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 22 start-page: 446 year: 1937 publication-title: Am. Mineral. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 28 start-page: 9060 year: 2016 publication-title: Adv. Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 6 start-page: 1015 year: 2021 publication-title: ACS Energy Lett. – volume: 39 start-page: 489 year: 2007 publication-title: Polym. J. – volume: 1 year: 2020 publication-title: SmartMat – volume: 14 start-page: 2184 year: 2022 publication-title: Polymers – volume: 13 start-page: 745 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 636 year: 2019 publication-title: Energy Storage Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 66 year: 2019 publication-title: Nano Energy – volume: 28 start-page: 7921 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 7765 year: 2021 publication-title: ACS Nano – volume: 12 start-page: 3140 year: 2018 publication-title: ACS Nano – volume: 608 start-page: 1619 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 start-page: 552 year: 2023 publication-title: ACS Nano – volume: 187 start-page: 66 year: 2018 publication-title: Carbohydr. Polym. – volume: 51 start-page: 588 year: 2022 publication-title: Energy Storage Mater. – volume: 55 start-page: 9547 year: 2022 publication-title: Macromolecules – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 374 start-page: 212 year: 2021 publication-title: Science – volume: 49 start-page: 172 year: 2022 publication-title: Energy Storage Mater. – volume: 53 start-page: 1805 year: 2012 publication-title: Polymer – volume: 14 start-page: 205 year: 2022 publication-title: Nano‐Micro Lett. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 6 start-page: 2583 year: 2010 publication-title: Soft Matter – volume: 56 start-page: 9141 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 1415 year: 2022 publication-title: Int. J. Mol. Sci. – volume: 56 start-page: 454 year: 2019 publication-title: Nano Energy – volume: 22 start-page: 1100 year: 2022 publication-title: Nano Lett. – volume: 33 year: 2023 publication-title: Mater. Today Energy – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_10_169_1 doi: 10.1021/acsenergylett.8b01552 – ident: e_1_2_10_11_1 doi: 10.1002/adma.202105416 – ident: e_1_2_10_71_1 doi: 10.1002/adfm.200305197 – ident: e_1_2_10_52_1 doi: 10.1021/acsami.1c05941 – ident: e_1_2_10_110_1 doi: 10.1039/D2SC06035C – ident: e_1_2_10_17_1 doi: 10.1126/sciadv.1700015 – ident: e_1_2_10_2_1 doi: 10.1002/adfm.201801834 – ident: e_1_2_10_73_1 doi: 10.1002/adfm.202003430 – ident: e_1_2_10_159_1 doi: 10.1007/s40820-022-00939-w – ident: e_1_2_10_210_1 doi: 10.1002/advs.202004689 – ident: e_1_2_10_162_1 doi: 10.1002/anie.202302583 – ident: e_1_2_10_171_1 doi: 10.1021/acsenergylett.0c02684 – ident: e_1_2_10_116_1 doi: 10.1002/smll.202107163 – ident: e_1_2_10_225_1 doi: 10.1002/adma.202104006 – ident: e_1_2_10_132_1 doi: 10.1002/aenm.202001599 – ident: e_1_2_10_109_1 doi: 10.1007/s11581-019-03386-7 – ident: e_1_2_10_191_1 doi: 10.1016/j.mtphys.2021.100458 – ident: e_1_2_10_135_1 doi: 10.1039/D2EE02416K – ident: e_1_2_10_26_1 doi: 10.1002/adma.202207118 – ident: e_1_2_10_151_1 doi: 10.1002/adfm.202207732 – ident: e_1_2_10_90_1 doi: 10.1039/c3ta10639j – ident: e_1_2_10_31_1 doi: 10.1002/aenm.202002898 – ident: e_1_2_10_140_1 doi: 10.1002/adfm.202209028 – ident: e_1_2_10_182_1 doi: 10.1002/adfm.202009438 – ident: e_1_2_10_105_1 doi: 10.1016/S0142-9612(99)00036-8 – ident: e_1_2_10_39_1 doi: 10.1016/j.carbpol.2018.01.060 – ident: e_1_2_10_21_1 doi: 10.1021/acsnano.2c02996 – ident: e_1_2_10_119_1 doi: 10.1002/aenm.202202219 – ident: e_1_2_10_167_1 doi: 10.1021/acsnano.9b07042 – ident: e_1_2_10_204_1 doi: 10.1021/acsnano.7b09003 – ident: e_1_2_10_88_1 doi: 10.1021/acsenergylett.0c01235 – ident: e_1_2_10_186_1 doi: 10.1002/anie.202007274 – ident: e_1_2_10_3_1 doi: 10.1002/adhm.201700889 – ident: e_1_2_10_45_1 doi: 10.1016/j.jece.2020.104702 – ident: e_1_2_10_157_1 doi: 10.1002/aenm.201802288 – ident: e_1_2_10_1_1 doi: 10.1038/s41578-022-00441-0 – ident: e_1_2_10_138_1 doi: 10.1002/adfm.202107584 – ident: e_1_2_10_114_1 doi: 10.1038/s41578-018-0018-7 – ident: e_1_2_10_82_1 doi: 10.1039/D0TA01553A – ident: e_1_2_10_58_1 doi: 10.1007/s40820-019-0328-3 – ident: e_1_2_10_226_1 doi: 10.1038/s41467-021-27755-x – ident: e_1_2_10_108_1 doi: 10.1016/j.ensm.2022.04.010 – ident: e_1_2_10_14_1 doi: 10.1002/adfm.202209466 – ident: e_1_2_10_49_1 doi: 10.1039/C8EE02892C – ident: e_1_2_10_30_1 doi: 10.1016/j.ensm.2021.11.004 – ident: e_1_2_10_213_1 doi: 10.1016/j.nanoen.2021.106893 – ident: e_1_2_10_104_1 doi: 10.1002/adma.202211673 – ident: e_1_2_10_95_1 doi: 10.1038/nmat3713 – ident: e_1_2_10_33_1 doi: 10.1039/D2EE03793A – ident: e_1_2_10_6_1 doi: 10.1039/D1NR06058A – ident: e_1_2_10_198_1 doi: 10.3390/polym14112184 – ident: e_1_2_10_80_1 doi: 10.1295/polymj.PJ2006239 – ident: e_1_2_10_51_1 doi: 10.1002/adfm.202001317 – ident: e_1_2_10_117_1 doi: 10.1016/j.ensm.2022.06.034 – ident: e_1_2_10_62_1 doi: 10.1002/aenm.201803046 – ident: e_1_2_10_40_1 doi: 10.1016/j.bioactmat.2020.09.004 – ident: e_1_2_10_152_1 doi: 10.1039/D1TA08023G – ident: e_1_2_10_174_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_10_207_1 doi: 10.1002/adfm.202009209 – ident: e_1_2_10_190_1 doi: 10.1021/acs.nanolett.1c04216 – ident: e_1_2_10_209_1 doi: 10.1016/j.cej.2022.140311 – ident: e_1_2_10_216_1 doi: 10.1002/aenm.202001424 – ident: e_1_2_10_18_1 doi: 10.1002/adfm.201703852 – volume: 35 year: 2023 ident: e_1_2_10_206_1 publication-title: Adv. Mater. – ident: e_1_2_10_179_1 doi: 10.1002/anie.202012030 – ident: e_1_2_10_136_1 doi: 10.1002/adfm.202213510 – ident: e_1_2_10_27_1 doi: 10.1002/advs.202104832 – ident: e_1_2_10_111_1 doi: 10.1021/acs.nanolett.2c02558 – ident: e_1_2_10_7_1 doi: 10.1002/anie.202105756 – ident: e_1_2_10_158_1 doi: 10.1021/acsnano.2c09317 – ident: e_1_2_10_102_1 doi: 10.1007/s12274-022-4370-y – ident: e_1_2_10_222_1 doi: 10.1016/j.mtener.2023.101276 – ident: e_1_2_10_124_1 doi: 10.1002/adfm.201704195 – ident: e_1_2_10_180_1 doi: 10.1002/adma.202110140 – ident: e_1_2_10_173_1 doi: 10.1002/adma.202106409 – ident: e_1_2_10_155_1 doi: 10.1021/acsnano.2c11516 – ident: e_1_2_10_113_1 doi: 10.1002/adma.201908121 – ident: e_1_2_10_76_1 doi: 10.1002/adma.201908127 – ident: e_1_2_10_99_1 doi: 10.1016/j.cej.2022.137056 – ident: e_1_2_10_149_1 doi: 10.1002/chem.201704440 – ident: e_1_2_10_163_1 doi: 10.1002/advs.202201433 – ident: e_1_2_10_121_1 doi: 10.1016/j.ensm.2022.12.023 – ident: e_1_2_10_193_1 doi: 10.1016/j.est.2021.103858 – ident: e_1_2_10_128_1 doi: 10.1002/adma.201903675 – ident: e_1_2_10_141_1 doi: 10.1039/D2TA07410A – ident: e_1_2_10_22_1 doi: 10.1002/anie.202218454 – ident: e_1_2_10_29_1 doi: 10.1021/acsami.0c20388 – ident: e_1_2_10_55_1 doi: 10.1002/aenm.201902446 – ident: e_1_2_10_126_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_10_25_1 doi: 10.1002/adfm.202100251 – ident: e_1_2_10_181_1 doi: 10.1002/anie.201708614 – ident: e_1_2_10_46_1 doi: 10.1080/21663831.2022.2059412 – ident: e_1_2_10_143_1 doi: 10.1016/j.cej.2022.137021 – ident: e_1_2_10_164_1 doi: 10.1002/adfm.202112540 – ident: e_1_2_10_63_1 doi: 10.1016/j.cej.2023.142607 – ident: e_1_2_10_106_1 doi: 10.1016/j.jiec.2018.10.004 – ident: e_1_2_10_203_1 doi: 10.1126/sciadv.abl3742 – ident: e_1_2_10_38_1 doi: 10.1016/j.msec.2016.09.081 – ident: e_1_2_10_188_1 doi: 10.1021/acsami.7b19726 – ident: e_1_2_10_5_1 doi: 10.1002/smm2.1007 – ident: e_1_2_10_122_1 doi: 10.1016/j.cej.2023.142535 – ident: e_1_2_10_146_1 doi: 10.1016/j.ensm.2022.04.018 – ident: e_1_2_10_44_1 doi: 10.1002/aenm.202101749 – ident: e_1_2_10_137_1 doi: 10.1039/D1TA10079C – ident: e_1_2_10_185_1 doi: 10.1063/1.4898189 – ident: e_1_2_10_66_1 doi: 10.1021/acsami.7b07445 – ident: e_1_2_10_86_1 doi: 10.1016/j.jcis.2021.10.121 – ident: e_1_2_10_12_1 doi: 10.1021/acsami.2c13641 – ident: e_1_2_10_131_1 doi: 10.1007/s40820-021-00782-5 – volume: 19 year: 2023 ident: e_1_2_10_78_1 publication-title: Small – ident: e_1_2_10_125_1 doi: 10.1002/adma.202202382 – ident: e_1_2_10_24_1 doi: 10.1016/j.ensm.2019.03.007 – ident: e_1_2_10_79_1 doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T – volume: 13 year: 2023 ident: e_1_2_10_178_1 publication-title: Adv. Energy Mater. – ident: e_1_2_10_197_1 doi: 10.1002/wcms.1477 – ident: e_1_2_10_89_1 doi: 10.1002/adma.200304907 – ident: e_1_2_10_70_1 doi: 10.1002/adma.201300817 – ident: e_1_2_10_127_1 doi: 10.1002/adma.202200860 – ident: e_1_2_10_16_1 doi: 10.1016/j.nanoen.2022.106991 – ident: e_1_2_10_69_1 doi: 10.1021/acs.macromol.2c01425 – ident: e_1_2_10_192_1 doi: 10.1002/anie.201805618 – ident: e_1_2_10_103_1 doi: 10.1021/acsami.7b15934 – ident: e_1_2_10_75_1 doi: 10.1002/anie.201705212 – ident: e_1_2_10_183_1 doi: 10.1021/acsami.8b18003 – ident: e_1_2_10_32_1 doi: 10.1002/adma.202007559 – ident: e_1_2_10_217_1 doi: 10.1016/j.jechem.2022.02.040 – ident: e_1_2_10_224_1 doi: 10.1002/aenm.202102055 – ident: e_1_2_10_61_1 doi: 10.1126/science.1252389 – ident: e_1_2_10_153_1 doi: 10.1002/anie.202016531 – ident: e_1_2_10_227_1 doi: 10.1002/aenm.202003902 – ident: e_1_2_10_112_1 doi: 10.1016/S0167-2738(97)00074-X – ident: e_1_2_10_170_1 doi: 10.1021/acsaem.8b01851 – ident: e_1_2_10_165_1 doi: 10.1016/j.ensm.2022.09.027 – ident: e_1_2_10_72_1 doi: 10.1038/nature11409 – ident: e_1_2_10_50_1 doi: 10.1002/eom2.12008 – ident: e_1_2_10_81_1 doi: 10.1002/anie.202217833 – ident: e_1_2_10_36_1 doi: 10.3390/polym14061259 – ident: e_1_2_10_223_1 doi: 10.1039/D0TA07086F – ident: e_1_2_10_67_1 doi: 10.1016/j.polymer.2012.03.013 – ident: e_1_2_10_4_1 doi: 10.1002/adma.201400910 – ident: e_1_2_10_211_1 doi: 10.1016/j.cej.2022.135051 – ident: e_1_2_10_19_1 doi: 10.1021/acsnano.1c01751 – ident: e_1_2_10_195_1 doi: 10.1002/advs.202201039 – ident: e_1_2_10_10_1 doi: 10.1002/adfm.201804560 – ident: e_1_2_10_184_1 doi: 10.1002/adfm.202206653 – ident: e_1_2_10_205_1 doi: 10.1002/adma.202004579 – ident: e_1_2_10_220_1 doi: 10.1038/s41467-023-36198-5 – ident: e_1_2_10_57_1 doi: 10.1016/j.nanoen.2019.104132 – ident: e_1_2_10_68_1 doi: 10.1039/b924290b – ident: e_1_2_10_199_1 doi: 10.1021/ar500105t – ident: e_1_2_10_91_1 doi: 10.1039/C9TA10944G – ident: e_1_2_10_218_1 doi: 10.1002/aenm.201902473 – ident: e_1_2_10_212_1 doi: 10.1016/j.ensm.2022.06.056 – ident: e_1_2_10_219_1 doi: 10.1038/s41928-022-00843-6 – ident: e_1_2_10_87_1 doi: 10.1002/adfm.201705069 – ident: e_1_2_10_147_1 doi: 10.1002/anie.202218452 – ident: e_1_2_10_53_1 doi: 10.1039/D1EE01134K – ident: e_1_2_10_166_1 doi: 10.1002/aenm.201903977 – ident: e_1_2_10_202_1 doi: 10.1021/mz200195n – ident: e_1_2_10_160_1 doi: 10.1021/acsenergylett.3c00650 – ident: e_1_2_10_133_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_10_150_1 doi: 10.1002/adma.202100187 – ident: e_1_2_10_130_1 doi: 10.1002/cssc.201801657 – ident: e_1_2_10_118_1 doi: 10.1002/anie.202210979 – ident: e_1_2_10_8_1 doi: 10.1021/acsnano.2c07468 – ident: e_1_2_10_92_1 doi: 10.1002/anie.202215060 – ident: e_1_2_10_208_1 doi: 10.1016/j.ensm.2022.02.012 – ident: e_1_2_10_100_1 doi: 10.1002/adfm.202110859 – ident: e_1_2_10_144_1 doi: 10.1021/acsaem.2c01520 – ident: e_1_2_10_54_1 doi: 10.1016/j.matt.2022.07.015 – ident: e_1_2_10_41_1 doi: 10.1016/j.jmrt.2020.12.012 – ident: e_1_2_10_221_1 doi: 10.1002/adma.202203905 – ident: e_1_2_10_37_1 doi: 10.1016/j.carbon.2018.04.065 – ident: e_1_2_10_189_1 doi: 10.3390/gels8050280 – ident: e_1_2_10_60_1 doi: 10.1002/aenm.202003994 – ident: e_1_2_10_139_1 doi: 10.1002/aenm.202100982 – ident: e_1_2_10_142_1 doi: 10.1039/C9EE00596J – ident: e_1_2_10_145_1 doi: 10.1002/adsu.202100191 – ident: e_1_2_10_172_1 doi: 10.1002/smtd.202201683 – ident: e_1_2_10_47_1 doi: 10.1016/j.scib.2018.06.019 – ident: e_1_2_10_194_1 doi: 10.1002/advs.202100072 – ident: e_1_2_10_77_1 doi: 10.1016/j.cbpa.2006.09.020 – ident: e_1_2_10_64_1 doi: 10.1021/acsami.7b09614 – ident: e_1_2_10_65_1 doi: 10.1002/adma.202007829 – ident: e_1_2_10_85_1 doi: 10.1002/advs.202000587 – ident: e_1_2_10_74_1 doi: 10.1016/j.nanoen.2018.11.057 – ident: e_1_2_10_196_1 doi: 10.1002/adma.201601613 – ident: e_1_2_10_215_1 doi: 10.1002/aenm.202300250 – ident: e_1_2_10_42_1 doi: 10.1016/j.ijbiomac.2023.123450 – ident: e_1_2_10_229_1 doi: 10.1021/acsami.1c15784 – ident: e_1_2_10_161_1 doi: 10.1002/adma.202007416 – ident: e_1_2_10_101_1 doi: 10.1021/acsaem.1c02433 – ident: e_1_2_10_48_1 doi: 10.1002/anie.201814653 – ident: e_1_2_10_134_1 doi: 10.1002/chem.201902660 – ident: e_1_2_10_168_1 doi: 10.1002/anie.201903941 – ident: e_1_2_10_98_1 doi: 10.1073/pnas.1903019116 – ident: e_1_2_10_200_1 doi: 10.1021/cr500392w – ident: e_1_2_10_35_1 doi: 10.1002/pen.24855 – ident: e_1_2_10_56_1 doi: 10.1002/anie.202111398 – ident: e_1_2_10_129_1 doi: 10.1016/j.nanoen.2018.11.038 – ident: e_1_2_10_156_1 doi: 10.1002/adma.202300073 – ident: e_1_2_10_228_1 doi: 10.1002/adma.202206793 – ident: e_1_2_10_13_1 doi: 10.1002/adma.202207587 – ident: e_1_2_10_214_1 doi: 10.1021/acsnano.7b03322 – ident: e_1_2_10_94_1 doi: 10.1002/adma.201503724 – ident: e_1_2_10_96_1 doi: 10.1126/sciadv.aau8528 – ident: e_1_2_10_201_1 doi: 10.1002/anie.201804400 – ident: e_1_2_10_34_1 doi: 10.1038/s41545-018-0016-8 – ident: e_1_2_10_15_1 doi: 10.1021/acsami.8b10064 – ident: e_1_2_10_83_1 doi: 10.1002/aenm.202000035 – ident: e_1_2_10_115_1 doi: 10.1021/acsami.2c10517 – ident: e_1_2_10_28_1 doi: 10.1016/j.ensm.2020.11.041 – ident: e_1_2_10_148_1 doi: 10.1002/aenm.202101299 – ident: e_1_2_10_177_1 doi: 10.1016/j.matt.2020.01.022 – ident: e_1_2_10_175_1 doi: 10.1021/acsnano.1c08193 – ident: e_1_2_10_176_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_10_84_1 doi: 10.1002/adfm.202204823 – volume: 22 start-page: 446 year: 1937 ident: e_1_2_10_154_1 publication-title: Am. Mineral. – ident: e_1_2_10_59_1 doi: 10.1007/s40820-022-00793-w – ident: e_1_2_10_107_1 doi: 10.1039/c2jm31778h – ident: e_1_2_10_43_1 doi: 10.3390/ijms23031415 – ident: e_1_2_10_97_1 doi: 10.1038/s41586-021-03212-z – ident: e_1_2_10_187_1 doi: 10.1002/adma.201602239 – ident: e_1_2_10_93_1 doi: 10.1126/science.abg6320 – ident: e_1_2_10_123_1 doi: 10.1002/smll.201803978 – ident: e_1_2_10_120_1 doi: 10.1007/s40820-022-00835-3 – ident: e_1_2_10_9_1 doi: 10.1002/adma.202007548 – ident: e_1_2_10_23_1 doi: 10.1016/j.ensm.2023.01.034 – ident: e_1_2_10_20_1 doi: 10.1016/j.pmatsci.2023.101156 |
| SSID | ssj0031247 |
| Score | 2.6178608 |
| SecondaryResourceType | review_article |
| Snippet | To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2303949 |
| SubjectTerms | electrode stabilization Electrolytes Electronics Energy storage flexible energy storage hydrogel electrolytes Hydrogels Nanotechnology Storage systems versatility wearable electronics Wearable technology Zinc zinc ion energy storage systems |
| Title | Hydrogel Electrolyte Enabled High‐Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303949 https://www.ncbi.nlm.nih.gov/pubmed/37530198 https://www.proquest.com/docview/2894351422 https://www.proquest.com/docview/2845106521 |
| Volume | 19 |
| WOSCitedRecordID | wos001039148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD60aR_Wh66XbfWWFRUKfTJ1JDmOH8OWkEFaSi809MXo5hHInBInhUAf-hP6G_dLduRbEsootC_GRrItS-fyydL5DsCxpFQ3A6NQxfHAmSdd6UvPjX2UHy-mupEHCveD8_PWYBBeLEXx5_wQ1Q83qxmZvbYKLmR6uiANTf-M7NIBQmgW8nAdNigKr1-DjZ-X3Zt-aY0Z-q8swQq6Lddyb5XEjR49XX3CqmN6gTZXwWvmfbof39_uHdgukCdp56KyC2sm2YOtJT7CfXjszfVk_NuMSCfPjjOaTw3pZOFVmtgtIX-fni8WoQaka-k0sZC08TPGs5TcDRNFfo0TvMnGFJIrnNKjxSIFMTqZZrt0yS3ql31o-Z5kqNJPcNPtXP_ouUV6BlexgIWuksLguFLPlwhypB8gFjMxbyrOY6ZD42lfxIFpSKmFQJyDYLIhEHGokHOFEyP2GWrJODEHQBj3lELL0tJUcMG80CbCVryJk6FYMO074JZjE6mCu9ym0BhFOesyjWyvRlWvOnBS1b_PWTv-W7NeDnVUaG8aUUtK79u_Yw4cVcWod3YxRSS2P7EOR3PWRPTjwJdcRKpXMZwD4te2HKCZJLzShujqrN-vrr6-5aZv8MGe50GSdahNJzPzHTbVw3SYTg5hPRi0DgvN-Ac_SQ9P |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVqg-aK1VY2s7QsGn0OzMZLN5LO0uW0yX0gsWX8LcIgtrVjZbYcEHf4K_0V_iObm1i4hQfAkkmUkyM-fyzWTOdwD2Nee2FzmDKo4HKQLt61AHfhai_AQZt90qUDiJxuP-9XV8Vu8mpFiYih-iXXAjzSjtNSk4LUgf3LKGFl-m9O8AMbSIZfwQ1iTKEgr52vH58CppzLFAB1ZmWEG_5RP5VsPcGPCD1SeseqY_4OYqei3dz_DZf_jwDXhaY092WAnLc3jg8k14coeR8AV8Hy3tfPbZTdmgyo8zXS4cG5QBVpbRppBfP36e3QYbsCERauJNdojtmN0U7NMkN-xklmMliipkFzipR5vFamp0tij36bKPqGH00OY9-cQUW3A1HFwejfw6QYNvRCRi32jlcGR5EGqEOTqMEI25TPaMlJmwsQtsqLLIdbW2SiHSQTjZVYg5TCylwamReAmdfJa718CEDIxB29K3XEklgphSYRvZw-lQpoQNPfCbwUlNzV5OSTSmacW7zFPq1bTtVQ_et-W_Vrwdfy2504x1WutvkXKipQ9pfcyDd-1t1Dz6naJy6k8sI9Gg9RD_ePCqkpH2VQJngdjavge8FIV_fEN6cZok7dmb-1Tag_XR5WmSJifjD9vwmK5XIZM70FnMb9xbeGS-LSbFfLdWkN8XBRJX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7UrUh9sF56iVYdQfApNDsz2Wwei93QYlwWa7H4EuaWsrDNls1WKPShP8Hf6C_xnNzqIiKIL4FkZjLXc-aby_kOwFvNuR1EzqCI40OKQPs61IGfhzh-gpzbfm0onEbj8fDsLJ40twnJFqbmh-g23EgyKn1NAu4ubb5_xxpaXszo7AAxtIhlfA_WJXmS6cH64afkNG3VscAJrPKwgvOWT-RbLXNjwPdX_7A6M_0GN1fRazX9JJv_oeCP4VGDPdlBPViewJornsLDXxgJn8HN0bVdzM_djI1q_ziz66Vjo8rAyjK6FPLj9vvkztiAJUSoiYHsAOsxvyrZ12lh2PG8wERkVchOcFGPOos11OhsWd3TZV9QwuinbT7F1JRbcJqMPr8_8hsHDb4RkYh9o5XDnuVBqBHm6DBCNOZyOTBS5sLGLrChyiPX19oqhUgH4WRfIeYwsZQGl0ZiG3rFvHC7wIQMjEHdMrRcSSWCmFxhGznA5VCuhA098NvOyUzDXk5ONGZZzbvMM2rVrGtVD9518S9r3o4_xtxr-zpr5LfMONHSh7Q_5sGbLhglj45TVEHtiXEkKrQB4h8Pduox0mUlcBWItR16wKuh8JcyZCcf07R7e_4viV7Dg8lhkqXH4w8vYIM-1xaTe9BbLq7cS7hvvi2n5eJVIx8_AYbgEdI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogel+Electrolyte+Enabled+High-Performance+Flexible+Aqueous+Zinc+Ion+Energy+Storage+Systems+toward+Wearable+Electronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Weng%2C+Gao&rft.au=Yang%2C+Xianzhong&rft.au=Wang%2C+Zhiqi&rft.au=Xu%2C+Yan&rft.date=2023-11-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=48&rft.spage=e2303949&rft_id=info:doi/10.1002%2Fsmll.202303949&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |