Kill Two Birds with One Stone: Dual‐Metal MOF‐Nanozyme‐Decorated Hydrogels with ROS‐Scavenging, Oxygen‐Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS ac...
Gespeichert in:
| Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Jg. 20; H. 48; S. e2403679 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.11.2024
|
| Schlagworte: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
The metal‐organic framework (MOF)‐nanozyme‐decorated hydrogel with injectable, adhesive, and self‐healing properties, named MOF/CGA@GP‐CS (MCGC), is constructed. The antibacterial hydrogel exhibits nanozyme‐mediated catalase (CAT)‐like performance, simultaneously facilitating reactive oxygen species (ROS)‐scavenging and oxygen‐generation in infected diabetic wounds. Promisingly, the MCGC hydrogel significantly promotes wound closure, improves collagen deposition, and alleviates inflammation for accelerating infected diabetic wound healing in vivo. |
|---|---|
| AbstractList | Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H 2 O 2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H O into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. The metal‐organic framework (MOF)‐nanozyme‐decorated hydrogel with injectable, adhesive, and self‐healing properties, named MOF/CGA@GP‐CS (MCGC), is constructed. The antibacterial hydrogel exhibits nanozyme‐mediated catalase (CAT)‐like performance, simultaneously facilitating reactive oxygen species (ROS)‐scavenging and oxygen‐generation in infected diabetic wounds. Promisingly, the MCGC hydrogel significantly promotes wound closure, improves collagen deposition, and alleviates inflammation for accelerating infected diabetic wound healing in vivo. |
| Author | Zhou, Zi‐Wen Zhang, Ji Liu, Yan‐Hong Cai, Chun‐Xian Yu, Xiao‐Qi Liu, Chun‐Xiu Li, Jing Wei, Yun‐Jie Chen, Heng Wang, Na |
| Author_xml | – sequence: 1 givenname: Yun‐Jie surname: Wei fullname: Wei, Yun‐Jie organization: Sichuan University – sequence: 2 givenname: Heng surname: Chen fullname: Chen, Heng organization: Sichuan University – sequence: 3 givenname: Zi‐Wen surname: Zhou fullname: Zhou, Zi‐Wen organization: Sichuan University – sequence: 4 givenname: Chun‐Xiu surname: Liu fullname: Liu, Chun‐Xiu organization: Sichuan University – sequence: 5 givenname: Chun‐Xian surname: Cai fullname: Cai, Chun‐Xian organization: Sichuan University – sequence: 6 givenname: Jing surname: Li fullname: Li, Jing organization: Sichuan University – sequence: 7 givenname: Xiao‐Qi surname: Yu fullname: Yu, Xiao‐Qi organization: Sichuan University – sequence: 8 givenname: Ji surname: Zhang fullname: Zhang, Ji organization: Sichuan University – sequence: 9 givenname: Yan‐Hong surname: Liu fullname: Liu, Yan‐Hong email: yanhongliu@scu.edu.cn organization: Sichuan University – sequence: 10 givenname: Na orcidid: 0000-0002-1703-1124 surname: Wang fullname: Wang, Na email: wnchem@scu.edu.cn organization: Sichuan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39240068$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9uEzEQxi1URP_AlSOyxIUDCfZ6s7vmFhraVCSsRIo4rrzr2eDKa7e2l7CceARei9fgSXBIWqRKiJNHM7_vm5FnjtGBsQYQekrJmBKSvPKd1uOEJClhWc4foCOaUTbKioQf3MWUHKJj768IYTRJ80fokPEoIFlxhH6-U1rjy43Fb5STHm9U-IxLA3gVYqPXeNYL_ev7jyUEofGyPIvxe2Hst6GDGM6gsU4EkHg-SGfXoPcOH8pVLK8a8QXMWpn1S1x-HdZgYvIcDETNn6QwEk9NULVoAjgVW0xrpVVQ4HFrHZ42Deg9jS9MC82210yJGoJq8CfbR4M5CB3rj9HDVmgPT_bvCfp49vbydD5alOcXp9PFqGE54yPBOEiYSCpbwtlkUtdpOiEyEy3JEs4lEMESVjAu65xLBkK0Sd4WuchzoJLk7AS92PleO3vTgw9Vp3wcUwsDtvcVo4QmcRnFFn1-D72yvTNxukgxxtKEp1mknu2pvu5AVtdOdcIN1e2SIpDugMZZ7x20VaNC_BNrghNKV5RU21uotrdQ3d1ClI3vyW6d_yngO8FGaRj-Q1er5WLxV_sbxHvOMg |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_165454 crossref_primary_10_1093_burnst_tkaf025 crossref_primary_10_1021_acs_analchem_5c01270 crossref_primary_10_2147_IJN_S548746 crossref_primary_10_1002_adhm_202404776 crossref_primary_10_1016_j_cej_2024_157299 crossref_primary_10_1016_j_ijpharm_2025_125727 crossref_primary_10_1021_acsbiomaterials_4c02455 crossref_primary_10_1016_j_cej_2025_168020 crossref_primary_10_1016_j_ijbiomac_2025_143695 crossref_primary_10_1016_j_cej_2025_164163 crossref_primary_10_1016_j_actbio_2025_07_065 crossref_primary_10_1039_D5NA00343A crossref_primary_10_1016_j_mtbio_2025_101553 crossref_primary_10_1002_adhm_202502110 crossref_primary_10_1016_j_cej_2025_166630 crossref_primary_10_1002_advs_202512127 crossref_primary_10_1016_j_biomaterials_2025_123352 crossref_primary_10_1016_j_biomaterials_2025_123134 crossref_primary_10_1063_5_0274646 crossref_primary_10_1016_j_nxnano_2025_100177 crossref_primary_10_1016_j_jfca_2025_107734 crossref_primary_10_1186_s40779_025_00611_5 crossref_primary_10_1039_D5DT01578B crossref_primary_10_3390_pharmaceutics17080976 crossref_primary_10_1016_j_cej_2024_156850 crossref_primary_10_1016_j_colsurfb_2025_114703 crossref_primary_10_1016_j_matdes_2025_114252 crossref_primary_10_1016_j_colsurfb_2025_114804 crossref_primary_10_1016_j_pmatsci_2025_101532 crossref_primary_10_2147_IJN_S514000 crossref_primary_10_1002_bmm2_12135 crossref_primary_10_1002_zaac_202400157 crossref_primary_10_1016_j_carbpol_2024_123071 crossref_primary_10_1016_j_cej_2025_160179 crossref_primary_10_1016_j_addr_2025_115684 crossref_primary_10_1016_j_microc_2025_113860 crossref_primary_10_1016_j_celbio_2025_100049 crossref_primary_10_1002_smtd_202500015 crossref_primary_10_1002_adfm_202505669 crossref_primary_10_1016_j_bioadv_2025_214307 |
| Cites_doi | 10.1021/ja408084j 10.1002/smll.202206707 10.1016/j.carbpol.2022.119467 10.1016/j.matdes.2022.111557 10.1038/s41467-023-37580-z 10.1002/pola.20669 10.1016/j.biomaterials.2020.120286 10.1016/j.compositesb.2022.110098 10.1002/adfm.202305154 10.3390/mi14051017 10.1016/j.bios.2022.114446 10.1002/pola.10960 10.1016/j.nantod.2021.101290 10.1016/j.cej.2023.143362 10.1016/j.jconrel.2023.12.015 10.1016/j.mtbio.2024.100945 10.1021/acsabm.3c00205 10.1002/adfm.202212798 10.1002/dmrr.3244 10.1002/adfm.202214454 10.1016/j.biomaterials.2022.121597 10.1016/j.cej.2023.144649 10.1002/slct.202204705 10.1039/D3TB00681F 10.1021/acsnano.3c04134 10.1021/acsomega.2c00472 10.1002/adhm.202201524 10.1039/D2NR04171E 10.1039/D3TB00803G 10.1002/anie.202010714 10.1002/adma.202304638 10.1021/acsami.2c21786 10.1002/adhm.202301885 10.1080/21691401.2023.2207606 10.1021/acsami.2c03001 10.1039/D2TB00343K 10.1021/acsnano.1c08411 10.1039/C9MH00339H 10.1021/jacs.2c09663 10.1002/smll.202305076 10.1016/j.bioactmat.2021.10.023 10.1016/j.micpath.2022.105748 10.1021/acs.chemrev.8b00672 10.1007/s00217-013-2140-5 10.1016/j.colsurfa.2023.131575 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202403679 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 39240068 10_1002_smll_202403679 SMLL202403679 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Foundation from the Science and Technology Department of Sichuan Province funderid: 2022ZYD0031 – fundername: Foundation from the Science and Technology Department of Sichuan Province grantid: 2022ZYD0031 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF LH4 SV3 AAHHS AAYOK ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3739-a39ede5d1df09355bb4450d6af06299de0a323839db79d3eaaf27f87a77e1d073 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001306323000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 09:54:05 EDT 2025 Tue Jul 29 07:10:39 EDT 2025 Sat Apr 05 01:27:48 EDT 2025 Sat Nov 29 07:37:52 EST 2025 Tue Nov 18 22:08:14 EST 2025 Sun Jul 06 04:45:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | nanozymes antibacterial hydrogels diabetic wound healing reactive oxygen species |
| Language | English |
| License | 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3739-a39ede5d1df09355bb4450d6af06299de0a323839db79d3eaaf27f87a77e1d073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1703-1124 |
| PMID | 39240068 |
| PQID | 3133342946 |
| PQPubID | 1046358 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3101236787 proquest_journals_3133342946 pubmed_primary_39240068 crossref_citationtrail_10_1002_smll_202403679 crossref_primary_10_1002_smll_202403679 wiley_primary_10_1002_smll_202403679_SMLL202403679 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 51 2014; 238 2023; 35 2022; 173 2023; 14 2023; 33 2023; 11 2019; 6 2023; 17 2023; 6 2023; 8 2023; 19 2023; 468 2023; 225 2020; 36 2005; 43 2024; 365 2024; 13 2022; 213 2022; 144 2022; 286 2022; 242 2023 2023; 670 2022 2023; 471 2022; 7 2022; 12 2020; 258 2022; 14 2024; 20 2013; 135 2019; 119 2022; 10 2022; 11 2024; 24 2021; 60 2021; 41 2003; 41 2022; 16 2022; 289 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 Ghomi E. R. (e_1_2_8_7_1) 2022 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 14 year: 2022 publication-title: Nanoscale – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 17 year: 2023 publication-title: ACS Nano – volume: 14 start-page: 1017 year: 2023 publication-title: Micromachines – volume: 173 year: 2022 publication-title: Microb. Pathog. – volume: 286 year: 2022 publication-title: Biomaterials – volume: 242 year: 2022 publication-title: Composites Part B – volume: 8 year: 2023 publication-title: ChemistrySelect – volume: 468 year: 2023 publication-title: Chem. Eng. J. – volume: 238 start-page: 589 year: 2014 publication-title: Eur. Food Res. Technol. – volume: 35 year: 2023 publication-title: Adv. Mater. – start-page: 520 year: 2022 publication-title: Polym. Adv. Technol. – volume: 36 year: 2020 publication-title: Diabetes‐Metab. Res. Rev. – volume: 225 year: 2023 publication-title: Mater. Des. – volume: 51 start-page: 255 year: 2023 publication-title: Artif. Cell Nanomed. B. – volume: 258 year: 2020 publication-title: Biomaterials – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 13 year: 2024 publication-title: Adv. Healthcare Mater. – volume: 41 year: 2021 publication-title: Nano Today – volume: 24 year: 2024 publication-title: Mater. Today Bio – volume: 471 year: 2023 publication-title: Chem. Eng. J. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 365 start-page: 905 year: 2024 publication-title: J. Controlled Release – volume: 11 start-page: 6581 year: 2023 publication-title: J. Mater. Chem. B – volume: 6 start-page: 1682 year: 2019 publication-title: Mater. Horiz. – volume: 43 start-page: 1985 year: 2005 publication-title: J. Polym. Sci. Pol. Chem. – volume: 16 start-page: 1708 year: 2022 publication-title: ACS Nano – volume: 7 year: 2022 publication-title: ACS Omega – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4083 year: 2022 publication-title: J. Mater. Chem. B – volume: 670 year: 2023 publication-title: Colloids Surf., A – volume: 119 start-page: 4357 year: 2019 publication-title: Chem. Rev. – start-page: 9110 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 213 year: 2022 publication-title: Biosens. Bioelectron. – volume: 6 start-page: 1992 year: 2023 publication-title: ACS Appl. Bio Mater. – volume: 289 year: 2022 publication-title: Carbohydr. Polym. – volume: 19 year: 2023 publication-title: Small – volume: 20 year: 2024 publication-title: Small – volume: 14 start-page: 1974 year: 2023 publication-title: Nat. Commun. – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 12 start-page: 246 year: 2022 publication-title: Bioact. Mater. – volume: 41 start-page: 3941 year: 2003 publication-title: J. Polym. Sci. Pol. Chem. – volume: 11 start-page: 6746 year: 2023 publication-title: J. Mater. Chem. B – volume: 60 start-page: 1227 year: 2021 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_28_1 doi: 10.1021/ja408084j – ident: e_1_2_8_13_1 doi: 10.1002/smll.202206707 – ident: e_1_2_8_43_1 doi: 10.1016/j.carbpol.2022.119467 – start-page: 520 year: 2022 ident: e_1_2_8_7_1 publication-title: Polym. Adv. Technol. – ident: e_1_2_8_5_1 doi: 10.1016/j.matdes.2022.111557 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-023-37580-z – ident: e_1_2_8_37_1 doi: 10.1002/pola.20669 – ident: e_1_2_8_42_1 doi: 10.1016/j.biomaterials.2020.120286 – ident: e_1_2_8_18_1 doi: 10.1016/j.compositesb.2022.110098 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.202305154 – ident: e_1_2_8_21_1 doi: 10.3390/mi14051017 – ident: e_1_2_8_36_1 doi: 10.1016/j.bios.2022.114446 – ident: e_1_2_8_38_1 doi: 10.1002/pola.10960 – ident: e_1_2_8_9_1 doi: 10.1016/j.nantod.2021.101290 – ident: e_1_2_8_45_1 doi: 10.1016/j.cej.2023.143362 – ident: e_1_2_8_15_1 doi: 10.1016/j.jconrel.2023.12.015 – ident: e_1_2_8_19_1 doi: 10.1016/j.mtbio.2024.100945 – ident: e_1_2_8_11_1 doi: 10.1021/acsabm.3c00205 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202212798 – ident: e_1_2_8_6_1 doi: 10.1002/dmrr.3244 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202214454 – ident: e_1_2_8_2_1 doi: 10.1016/j.biomaterials.2022.121597 – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2023.144649 – ident: e_1_2_8_39_1 doi: 10.1002/slct.202204705 – ident: e_1_2_8_29_1 doi: 10.1039/D3TB00681F – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.3c04134 – ident: e_1_2_8_40_1 doi: 10.1021/acsomega.2c00472 – ident: e_1_2_8_4_1 doi: 10.1002/adhm.202201524 – ident: e_1_2_8_14_1 doi: 10.1039/D2NR04171E – ident: e_1_2_8_20_1 doi: 10.1039/D3TB00803G – ident: e_1_2_8_16_1 doi: 10.1002/anie.202010714 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202304638 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.2c21786 – ident: e_1_2_8_10_1 doi: 10.1002/adhm.202301885 – ident: e_1_2_8_34_1 doi: 10.1080/21691401.2023.2207606 – ident: e_1_2_8_41_1 doi: 10.1021/acsami.2c03001 – ident: e_1_2_8_12_1 doi: 10.1039/D2TB00343K – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.1c08411 – ident: e_1_2_8_23_1 doi: 10.1039/C9MH00339H – ident: e_1_2_8_24_1 doi: 10.1021/jacs.2c09663 – ident: e_1_2_8_26_1 doi: 10.1002/smll.202305076 – ident: e_1_2_8_32_1 doi: 10.1016/j.bioactmat.2021.10.023 – ident: e_1_2_8_35_1 doi: 10.1016/j.micpath.2022.105748 – ident: e_1_2_8_22_1 doi: 10.1021/acs.chemrev.8b00672 – ident: e_1_2_8_33_1 doi: 10.1007/s00217-013-2140-5 – ident: e_1_2_8_46_1 doi: 10.1016/j.colsurfa.2023.131575 |
| SSID | ssj0031247 |
| Score | 2.6159294 |
| Snippet | Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection,... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2403679 |
| SubjectTerms | Accumulation Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antibacterial Antiinfectives and antibacterials Bacterial infections Bioreactors Blood circulation Blood vessels Catalase Chitosan Chitosan - chemistry Chlorogenic acid Diabetes diabetic wound healing Dissolved oxygen Genipin Hydrogels Hydrogels - chemistry Hydrogen peroxide Hypoxia Infections Iridoids - chemistry Iridoids - pharmacology Metal-organic frameworks Metal-Organic Frameworks - chemistry Metal-Organic Frameworks - pharmacology Mice nanozymes Oxidation resistance Oxygen - chemistry Oxygenation reactive oxygen species Reactive Oxygen Species - metabolism Scavenging Wound healing Wound Healing - drug effects |
| Title | Kill Two Birds with One Stone: Dual‐Metal MOF‐Nanozyme‐Decorated Hydrogels with ROS‐Scavenging, Oxygen‐Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202403679 https://www.ncbi.nlm.nih.gov/pubmed/39240068 https://www.proquest.com/docview/3133342946 https://www.proquest.com/docview/3101236787 |
| Volume | 20 |
| WOSCitedRecordID | wos001306323000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD5iHRdwwT8sMCYjIXFDtDRO44S7QqmGaFe0bqJ3kf-CImXp1LRAueIReC1egyfh2E7DKoSQ4CZybMe24uNzPv99B-BpHuapDrXwY6p6fsSD3BcKHxHvBiJPQpaH0jqbYMfHyWyWvrt0i9_xQ7QLbmZkWH1tBjgX9eEv0tD6vDRbB4ZPLmbpDuyGKLy9DuwOToZno402pmi_rIMVNFu-4d7aEDcG4eF2CduG6Te0uQ1erfUZ3vz_dt-CGw3yJH0nKrfhiq7uwPVLfIR34fvboizJ6ac5eVksVE3MIi2ZVJpYyu4XZLDi5Y-v38YaETsZT4YYRu08_7I-1xgcmJksQldFjtZqMf-AVteVcDKZYvJUGs_1xifSczL5vEbBxUjHer20kbxSpF8tC-EIpE1b7cldnMsThNakLyXaSJebvLGHyLAud6SnkOS9cRBFzLUqTL8HZ8PXp6-O_MbXgy8po6nPaaqV7qmuyi3luxBR1AtUzPMgRoupdMApoguaKsFSRTXnOcpRwjhjuqtQT92HToW_Yg8IIlIZa0Q-iMijIJEiSqnSLMh7jOtACw_8TUdnsiFCN_44ysxROIeZ6aKs7SIPnrX5LxwFyB9z7m_kJmtUQZ3RLqUUrX4Ue_CkTcZBbHZmeKXnK5PHUeklzIMHTt7aqhDARuYijwehFau_tCGbjkej9u3hv3z0CK6ZsLtxuQ-d5WKlH8NV-XFZ1IsD2GGz5KAZZj8BKrYvZw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLZgQwIu-B0jMMBISNwQLY3TOOGuW6k6LW3R2ondRY7tTJGyFPWHrVzxCLwWr8GTcI6dBiqEkBA3kWM7thUfn_P57zuEvMr9PNa-ztyQqbYbCC93MwWPQLS8LI98nvvSOJvgw2F0dha_r08T4l0Yyw_RLLjhyDD6Ggc4Lkjv_2QNnV-UuHeAhHIhj6-T7QBkCYR8u3vSO03W6piBATMeVsBuuUi-tWZu9Pz9zRI2LdNvcHMTvRrz07v7Hxp-j9ypsSftWGG5T67p6gG5_Qsj4UPy7bgoSzq5nNKDYqbmFJdp6ajS1JB2v6XdpSi_f_k60IDZ6WDUgzDo5-nn1YWGYBfnsgBeFe2v1Gx6DnbXlnAyGkPyWKLvevSK9IaOrlYguhBpea8XJlJUinaqRZFZCmlsqzm7C7N5CuCadqQEK2lz0yNzjAzqsod6Ckk_oIsoiherIH2HnPbeTQ77bu3twZWMs9gVLNZKt1VL5Yb0PcuCoO2pUOReCDZTaU8wwBcsVhmPFdNC5CBJERec65YCTfWIbFXwKx4TCphUhhqwD2DywItkFsRMae7lbS60pzOHuOueTmVNhY4eOcrUkjj7KXZR2nSRQ143-T9aEpA_5txbC05aK4N5ylqMMbD7QeiQl00yDGPcmxGVni4xjyXTi7hDdq3ANVUBhA3wKo9DfCNXf2lDOh4kSfP25F8-ekFu9ieDJE2OhsdPyS2Mt_cv98jWYrbUz8gN-WlRzGfP69H2AxMbMm8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagQwgeuI5RGGAkJF6IlsZpnPBWKNGm9TKtm9hb5PgyRcrSqRegPPET-Fv8DX4J59hpoEIICfESObZjW_HxOZ9v3yHkhQlMogOdexFTXS8UvvFyBY9QdPzcxAE3gbTOJvhoFJ-dJUf1aUK8C-P4IZoFNxwZVl_jANeXyuz9ZA2dX5S4d4CEchFPrpKtED3JtMhW_zg9HazVMQMDZj2sgN3ykHxrzdzoB3ubJWxapt_g5iZ6teYnvf0fGn6H3KqxJ-05YblLrujqHrn5CyPhffLtsChLevJxSt8UMzWnuExLx5WmlrT7Ne0vRfn9y9ehBsxOh-MUwqCfp59XFxqCfZzLAnhVdH-lZtNzsLuuhOPxBJInEn3Xo1ekV3T8aQWiC5GO93phI0WlaK9aFLmjkMa22rO7MJunAK5pT0qwki43PbDHyKAud6inkPQ9uoiieLEK0rfJafru5O2-V3t78CTjLPEES7TSXdVRxpK-53kYdn0VCeNHYDOV9gUDfMESlfNEMS2EAUmKueBcdxRoqgekVcGveEgoYFIZacA-gMlDP5Z5mDCluW-6XGhf523irXs6kzUVOnrkKDNH4hxk2EVZ00Vt8rLJf-lIQP6Yc3ctOFmtDOYZ6zDGwO6HUZs8b5JhGOPejKj0dIl5HJlezNtkxwlcUxVA2BCv8rRJYOXqL23IJsPBoHl79C8fPSPXj_ppNjgYHT4mNzDaXb_cJa3FbKmfkGvyw6KYz57Wg-0HVoox6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kill+Two+Birds+with+One+Stone%3A+Dual%E2%80%90Metal+MOF%E2%80%90Nanozyme%E2%80%90Decorated+Hydrogels+with+ROS%E2%80%90Scavenging%2C+Oxygen%E2%80%90Generating%2C+and+Antibacterial+Abilities+for+Accelerating+Infected+Diabetic+Wound+Healing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wei%2C+Yun%E2%80%90Jie&rft.au=Chen%2C+Heng&rft.au=Zhou%2C+Zi%E2%80%90Wen&rft.au=Liu%2C+Chun%E2%80%90Xiu&rft.date=2024-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202403679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202403679 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |