Kill Two Birds with One Stone: Dual‐Metal MOF‐Nanozyme‐Decorated Hydrogels with ROS‐Scavenging, Oxygen‐Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing

Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS ac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Small (Weinheim an der Bergstrasse, Germany) Ročník 20; číslo 48; s. e2403679 - n/a
Hlavní autoři: Wei, Yun‐Jie, Chen, Heng, Zhou, Zi‐Wen, Liu, Chun‐Xiu, Cai, Chun‐Xian, Li, Jing, Yu, Xiao‐Qi, Zhang, Ji, Liu, Yan‐Hong, Wang, Na
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.11.2024
Témata:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. The metal‐organic framework (MOF)‐nanozyme‐decorated hydrogel with injectable, adhesive, and self‐healing properties, named MOF/CGA@GP‐CS (MCGC), is constructed. The antibacterial hydrogel exhibits nanozyme‐mediated catalase (CAT)‐like performance, simultaneously facilitating reactive oxygen species (ROS)‐scavenging and oxygen‐generation in infected diabetic wounds. Promisingly, the MCGC hydrogel significantly promotes wound closure, improves collagen deposition, and alleviates inflammation for accelerating infected diabetic wound healing in vivo.
AbstractList Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H 2 O 2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H O into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)‐crosslinked chitosan (CS)‐based hydrogels decorated with the biomimetic metal–organic framework (MOF)‐nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP‐CS (MCGC), are prepared. With catalase (CAT)‐like activity, these dual‐metal MOF‐nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management. The metal‐organic framework (MOF)‐nanozyme‐decorated hydrogel with injectable, adhesive, and self‐healing properties, named MOF/CGA@GP‐CS (MCGC), is constructed. The antibacterial hydrogel exhibits nanozyme‐mediated catalase (CAT)‐like performance, simultaneously facilitating reactive oxygen species (ROS)‐scavenging and oxygen‐generation in infected diabetic wounds. Promisingly, the MCGC hydrogel significantly promotes wound closure, improves collagen deposition, and alleviates inflammation for accelerating infected diabetic wound healing in vivo.
Author Zhou, Zi‐Wen
Zhang, Ji
Liu, Yan‐Hong
Cai, Chun‐Xian
Yu, Xiao‐Qi
Liu, Chun‐Xiu
Li, Jing
Wei, Yun‐Jie
Chen, Heng
Wang, Na
Author_xml – sequence: 1
  givenname: Yun‐Jie
  surname: Wei
  fullname: Wei, Yun‐Jie
  organization: Sichuan University
– sequence: 2
  givenname: Heng
  surname: Chen
  fullname: Chen, Heng
  organization: Sichuan University
– sequence: 3
  givenname: Zi‐Wen
  surname: Zhou
  fullname: Zhou, Zi‐Wen
  organization: Sichuan University
– sequence: 4
  givenname: Chun‐Xiu
  surname: Liu
  fullname: Liu, Chun‐Xiu
  organization: Sichuan University
– sequence: 5
  givenname: Chun‐Xian
  surname: Cai
  fullname: Cai, Chun‐Xian
  organization: Sichuan University
– sequence: 6
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Sichuan University
– sequence: 7
  givenname: Xiao‐Qi
  surname: Yu
  fullname: Yu, Xiao‐Qi
  organization: Sichuan University
– sequence: 8
  givenname: Ji
  surname: Zhang
  fullname: Zhang, Ji
  organization: Sichuan University
– sequence: 9
  givenname: Yan‐Hong
  surname: Liu
  fullname: Liu, Yan‐Hong
  email: yanhongliu@scu.edu.cn
  organization: Sichuan University
– sequence: 10
  givenname: Na
  orcidid: 0000-0002-1703-1124
  surname: Wang
  fullname: Wang, Na
  email: wnchem@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39240068$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxi1URP_AlSOyxIUDCfZ6s7vmFhraVCSsRIo4rrzr2eDKa7e2l7CceARei9fgSXBIWqRKiJNHM7_vm5FnjtGBsQYQekrJmBKSvPKd1uOEJClhWc4foCOaUTbKioQf3MWUHKJj768IYTRJ80fokPEoIFlxhH6-U1rjy43Fb5STHm9U-IxLA3gVYqPXeNYL_ev7jyUEofGyPIvxe2Hst6GDGM6gsU4EkHg-SGfXoPcOH8pVLK8a8QXMWpn1S1x-HdZgYvIcDETNn6QwEk9NULVoAjgVW0xrpVVQ4HFrHZ42Deg9jS9MC82210yJGoJq8CfbR4M5CB3rj9HDVmgPT_bvCfp49vbydD5alOcXp9PFqGE54yPBOEiYSCpbwtlkUtdpOiEyEy3JEs4lEMESVjAu65xLBkK0Sd4WuchzoJLk7AS92PleO3vTgw9Vp3wcUwsDtvcVo4QmcRnFFn1-D72yvTNxukgxxtKEp1mknu2pvu5AVtdOdcIN1e2SIpDugMZZ7x20VaNC_BNrghNKV5RU21uotrdQ3d1ClI3vyW6d_yngO8FGaRj-Q1er5WLxV_sbxHvOMg
CitedBy_id crossref_primary_10_1016_j_cej_2025_165454
crossref_primary_10_1093_burnst_tkaf025
crossref_primary_10_1021_acs_analchem_5c01270
crossref_primary_10_2147_IJN_S548746
crossref_primary_10_1002_adhm_202404776
crossref_primary_10_1016_j_cej_2024_157299
crossref_primary_10_1016_j_ijpharm_2025_125727
crossref_primary_10_1021_acsbiomaterials_4c02455
crossref_primary_10_1016_j_cej_2025_168020
crossref_primary_10_1016_j_ijbiomac_2025_143695
crossref_primary_10_1016_j_cej_2025_164163
crossref_primary_10_1016_j_actbio_2025_07_065
crossref_primary_10_1039_D5NA00343A
crossref_primary_10_1016_j_mtbio_2025_101553
crossref_primary_10_1002_adhm_202502110
crossref_primary_10_1016_j_cej_2025_166630
crossref_primary_10_1002_advs_202512127
crossref_primary_10_1016_j_biomaterials_2025_123352
crossref_primary_10_1016_j_biomaterials_2025_123134
crossref_primary_10_1063_5_0274646
crossref_primary_10_1016_j_nxnano_2025_100177
crossref_primary_10_1016_j_jfca_2025_107734
crossref_primary_10_1186_s40779_025_00611_5
crossref_primary_10_1039_D5DT01578B
crossref_primary_10_3390_pharmaceutics17080976
crossref_primary_10_1016_j_cej_2024_156850
crossref_primary_10_1016_j_colsurfb_2025_114703
crossref_primary_10_1016_j_matdes_2025_114252
crossref_primary_10_1016_j_colsurfb_2025_114804
crossref_primary_10_1016_j_pmatsci_2025_101532
crossref_primary_10_2147_IJN_S514000
crossref_primary_10_1002_bmm2_12135
crossref_primary_10_1002_zaac_202400157
crossref_primary_10_1016_j_carbpol_2024_123071
crossref_primary_10_1016_j_cej_2025_160179
crossref_primary_10_1016_j_addr_2025_115684
crossref_primary_10_1016_j_microc_2025_113860
crossref_primary_10_1016_j_celbio_2025_100049
crossref_primary_10_1002_smtd_202500015
crossref_primary_10_1002_adfm_202505669
crossref_primary_10_1016_j_bioadv_2025_214307
Cites_doi 10.1021/ja408084j
10.1002/smll.202206707
10.1016/j.carbpol.2022.119467
10.1016/j.matdes.2022.111557
10.1038/s41467-023-37580-z
10.1002/pola.20669
10.1016/j.biomaterials.2020.120286
10.1016/j.compositesb.2022.110098
10.1002/adfm.202305154
10.3390/mi14051017
10.1016/j.bios.2022.114446
10.1002/pola.10960
10.1016/j.nantod.2021.101290
10.1016/j.cej.2023.143362
10.1016/j.jconrel.2023.12.015
10.1016/j.mtbio.2024.100945
10.1021/acsabm.3c00205
10.1002/adfm.202212798
10.1002/dmrr.3244
10.1002/adfm.202214454
10.1016/j.biomaterials.2022.121597
10.1016/j.cej.2023.144649
10.1002/slct.202204705
10.1039/D3TB00681F
10.1021/acsnano.3c04134
10.1021/acsomega.2c00472
10.1002/adhm.202201524
10.1039/D2NR04171E
10.1039/D3TB00803G
10.1002/anie.202010714
10.1002/adma.202304638
10.1021/acsami.2c21786
10.1002/adhm.202301885
10.1080/21691401.2023.2207606
10.1021/acsami.2c03001
10.1039/D2TB00343K
10.1021/acsnano.1c08411
10.1039/C9MH00339H
10.1021/jacs.2c09663
10.1002/smll.202305076
10.1016/j.bioactmat.2021.10.023
10.1016/j.micpath.2022.105748
10.1021/acs.chemrev.8b00672
10.1007/s00217-013-2140-5
10.1016/j.colsurfa.2023.131575
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202403679
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39240068
10_1002_smll_202403679
SMLL202403679
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Foundation from the Science and Technology Department of Sichuan Province
  funderid: 2022ZYD0031
– fundername: Foundation from the Science and Technology Department of Sichuan Province
  grantid: 2022ZYD0031
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
LH4
SV3
AAHHS
AAYOK
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-a39ede5d1df09355bb4450d6af06299de0a323839db79d3eaaf27f87a77e1d073
IEDL.DBID DRFUL
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001306323000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 09:54:05 EDT 2025
Tue Jul 29 07:10:39 EDT 2025
Sat Apr 05 01:27:48 EDT 2025
Sat Nov 29 07:37:52 EST 2025
Tue Nov 18 22:08:14 EST 2025
Sun Jul 06 04:45:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords nanozymes
antibacterial
hydrogels
diabetic wound healing
reactive oxygen species
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-a39ede5d1df09355bb4450d6af06299de0a323839db79d3eaaf27f87a77e1d073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1703-1124
PMID 39240068
PQID 3133342946
PQPubID 1046358
PageCount 17
ParticipantIDs proquest_miscellaneous_3101236787
proquest_journals_3133342946
pubmed_primary_39240068
crossref_citationtrail_10_1002_smll_202403679
crossref_primary_10_1002_smll_202403679
wiley_primary_10_1002_smll_202403679_SMLL202403679
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 51
2014; 238
2023; 35
2022; 173
2023; 14
2023; 33
2023; 11
2019; 6
2023; 17
2023; 6
2023; 8
2023; 19
2023; 468
2023; 225
2020; 36
2005; 43
2024; 365
2024; 13
2022; 213
2022; 144
2022; 286
2022; 242
2023
2023; 670
2022
2023; 471
2022; 7
2022; 12
2020; 258
2022; 14
2024; 20
2013; 135
2019; 119
2022; 10
2022; 11
2024; 24
2021; 60
2021; 41
2003; 41
2022; 16
2022; 289
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Ghomi E. R. (e_1_2_8_7_1) 2022
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 14
  year: 2022
  publication-title: Nanoscale
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 14
  start-page: 1017
  year: 2023
  publication-title: Micromachines
– volume: 173
  year: 2022
  publication-title: Microb. Pathog.
– volume: 286
  year: 2022
  publication-title: Biomaterials
– volume: 242
  year: 2022
  publication-title: Composites Part B
– volume: 8
  year: 2023
  publication-title: ChemistrySelect
– volume: 468
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 238
  start-page: 589
  year: 2014
  publication-title: Eur. Food Res. Technol.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– start-page: 520
  year: 2022
  publication-title: Polym. Adv. Technol.
– volume: 36
  year: 2020
  publication-title: Diabetes‐Metab. Res. Rev.
– volume: 225
  year: 2023
  publication-title: Mater. Des.
– volume: 51
  start-page: 255
  year: 2023
  publication-title: Artif. Cell Nanomed. B.
– volume: 258
  year: 2020
  publication-title: Biomaterials
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 13
  year: 2024
  publication-title: Adv. Healthcare Mater.
– volume: 41
  year: 2021
  publication-title: Nano Today
– volume: 24
  year: 2024
  publication-title: Mater. Today Bio
– volume: 471
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 365
  start-page: 905
  year: 2024
  publication-title: J. Controlled Release
– volume: 11
  start-page: 6581
  year: 2023
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 1682
  year: 2019
  publication-title: Mater. Horiz.
– volume: 43
  start-page: 1985
  year: 2005
  publication-title: J. Polym. Sci. Pol. Chem.
– volume: 16
  start-page: 1708
  year: 2022
  publication-title: ACS Nano
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4083
  year: 2022
  publication-title: J. Mater. Chem. B
– volume: 670
  year: 2023
  publication-title: Colloids Surf., A
– volume: 119
  start-page: 4357
  year: 2019
  publication-title: Chem. Rev.
– start-page: 9110
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 213
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 1992
  year: 2023
  publication-title: ACS Appl. Bio Mater.
– volume: 289
  year: 2022
  publication-title: Carbohydr. Polym.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 20
  year: 2024
  publication-title: Small
– volume: 14
  start-page: 1974
  year: 2023
  publication-title: Nat. Commun.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 12
  start-page: 246
  year: 2022
  publication-title: Bioact. Mater.
– volume: 41
  start-page: 3941
  year: 2003
  publication-title: J. Polym. Sci. Pol. Chem.
– volume: 11
  start-page: 6746
  year: 2023
  publication-title: J. Mater. Chem. B
– volume: 60
  start-page: 1227
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_28_1
  doi: 10.1021/ja408084j
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.202206707
– ident: e_1_2_8_43_1
  doi: 10.1016/j.carbpol.2022.119467
– start-page: 520
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: Polym. Adv. Technol.
– ident: e_1_2_8_5_1
  doi: 10.1016/j.matdes.2022.111557
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-023-37580-z
– ident: e_1_2_8_37_1
  doi: 10.1002/pola.20669
– ident: e_1_2_8_42_1
  doi: 10.1016/j.biomaterials.2020.120286
– ident: e_1_2_8_18_1
  doi: 10.1016/j.compositesb.2022.110098
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.202305154
– ident: e_1_2_8_21_1
  doi: 10.3390/mi14051017
– ident: e_1_2_8_36_1
  doi: 10.1016/j.bios.2022.114446
– ident: e_1_2_8_38_1
  doi: 10.1002/pola.10960
– ident: e_1_2_8_9_1
  doi: 10.1016/j.nantod.2021.101290
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cej.2023.143362
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jconrel.2023.12.015
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mtbio.2024.100945
– ident: e_1_2_8_11_1
  doi: 10.1021/acsabm.3c00205
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202212798
– ident: e_1_2_8_6_1
  doi: 10.1002/dmrr.3244
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202214454
– ident: e_1_2_8_2_1
  doi: 10.1016/j.biomaterials.2022.121597
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2023.144649
– ident: e_1_2_8_39_1
  doi: 10.1002/slct.202204705
– ident: e_1_2_8_29_1
  doi: 10.1039/D3TB00681F
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.3c04134
– ident: e_1_2_8_40_1
  doi: 10.1021/acsomega.2c00472
– ident: e_1_2_8_4_1
  doi: 10.1002/adhm.202201524
– ident: e_1_2_8_14_1
  doi: 10.1039/D2NR04171E
– ident: e_1_2_8_20_1
  doi: 10.1039/D3TB00803G
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202010714
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202304638
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.2c21786
– ident: e_1_2_8_10_1
  doi: 10.1002/adhm.202301885
– ident: e_1_2_8_34_1
  doi: 10.1080/21691401.2023.2207606
– ident: e_1_2_8_41_1
  doi: 10.1021/acsami.2c03001
– ident: e_1_2_8_12_1
  doi: 10.1039/D2TB00343K
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.1c08411
– ident: e_1_2_8_23_1
  doi: 10.1039/C9MH00339H
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.2c09663
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.202305076
– ident: e_1_2_8_32_1
  doi: 10.1016/j.bioactmat.2021.10.023
– ident: e_1_2_8_35_1
  doi: 10.1016/j.micpath.2022.105748
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.chemrev.8b00672
– ident: e_1_2_8_33_1
  doi: 10.1007/s00217-013-2140-5
– ident: e_1_2_8_46_1
  doi: 10.1016/j.colsurfa.2023.131575
SSID ssj0031247
Score 2.6159294
Snippet Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2403679
SubjectTerms Accumulation
Animals
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial
Antiinfectives and antibacterials
Bacterial infections
Bioreactors
Blood circulation
Blood vessels
Catalase
Chitosan
Chitosan - chemistry
Chlorogenic acid
Diabetes
diabetic wound healing
Dissolved oxygen
Genipin
Hydrogels
Hydrogels - chemistry
Hydrogen peroxide
Hypoxia
Infections
Iridoids - chemistry
Iridoids - pharmacology
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Metal-Organic Frameworks - pharmacology
Mice
nanozymes
Oxidation resistance
Oxygen - chemistry
Oxygenation
reactive oxygen species
Reactive Oxygen Species - metabolism
Scavenging
Wound healing
Wound Healing - drug effects
Title Kill Two Birds with One Stone: Dual‐Metal MOF‐Nanozyme‐Decorated Hydrogels with ROS‐Scavenging, Oxygen‐Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202403679
https://www.ncbi.nlm.nih.gov/pubmed/39240068
https://www.proquest.com/docview/3133342946
https://www.proquest.com/docview/3101236787
Volume 20
WOSCitedRecordID wos001306323000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6xXQ5w4H8hsKyMhMSFaJM4iR1uhVItot2i7S70Fjm2gyJlU9S0QDnxCLwWr8GTMI7TsBVCSHBz7ElsxfPnn_kG4HGEtYp53I1jrt0wibWbKU-50hMsElLSqImFeTtix8d8NkveXIjit_gQ3YabkYxGXxsBF1l9-As0tD4vzdGBwZOLWbIDuwEyb9SD3cHJ8Gy00cYU7VeTYAXNlmuwtzbAjV5wuP2FbcP0m7e57bw21md4_f_HfQOutZ4n6VtWuQmXdHULrl7AI7wN318XZUlOP83J82KhamI2acmk0qSB7H5GBitR_vj6bazRYyfjyRDLqJ3nX9bnGosDs5JF11WRo7VazN-j1bVfOJlMsXkqTeZ6kxPpKZl8XiPjYqVFvV42laJSpF8ti8wCSJuxNjd3cS1P0LUmfSnRRlpq8qq5RIZ92Ss9hSTvTIIoYsKqsP0OnA1fnr44cttcD66kjCauoIlWOlK-yhvI9ywLw8hTsci9GC2m0p6g6F3QRGUsUVQLkQcs50wwpn2FemoPehX-intAEiV9qn2heCjDhIc8llpSnuuIeh6O1AF3M9GpbIHQTT6OMrUQzkFqpijtpsiBJx39BwsB8kfK_Q3fpK0qqFPqU0rR6oexA4-6ZhRiczIjKj1fGRoLpceZA3ctv3VdoQMbmkAeB4KGrf4yhnQ6Ho26p_v_8tIDuGLKNuJyH3rLxUo_hMvy47KoFweww2b8oBWzn206L3M
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFwk48GYJLGAkJC5Em9RJnHArlKqrTVu07cLeIsd2VpGyKeoDKCd-An-Lv8EvYcZOAxVCSIhbYk9sK56XH_MNIU9DKFXci90oirUbJJF2c-UpV3qCh0JKFppYmLcpH43i09PkTXObEGNhLD5Eu-GGkmH0NQo4bkgf_EQNXZxXeHaAgHIRTy6S3QB4CZh8t3fcP0k36piBATMZVsBuuQi-tUFu9DoH2y1sW6bf3M1t79WYn_71_zDwG-Ra43vSrmWWm-SCrm-Rq78gEt4m347KqqLTjzP6spyrBcVtWjquNTWg3S9obyWq71--DjX47HQ47sMz6OfZ5_W5hscermXBeVV0sFbz2RnYXdvC8XgC1ROJuesxK9JzOv60BtaFQot7vTSFola0Wy_L3EJI41jN3V1YzVNwrmlXSrCSlpoemmtk0Je91FNK-g5TRFEMrIL6O-Sk_3r6auA22R5cyThLXMESrXSofFUY0Pc8D4LQU5EovAhsptKeYOBfsETlPFFMC1F0eBFzwbn2FWiqu2Snhl9xj9BESZ9pX6g4kEESB3EktWRxoUPmeTBSh7ibmc5kA4WOGTmqzII4dzKcoqydIoc8a-nfWxCQP1Lubxgna5TBImM-YwzsfhA55ElbDWKMZzOi1rMV0lgwvZg7ZM8yXNsVuLABhvI4pGP46i9jyCbDNG3f7v_LR4_J5cF0mGbp4ejoAbmC5Tb-cp_sLOcr_ZBckh-W5WL-qJG2H1U9Mns
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiE48KYEChgJiQtRk3USJ9wWlqhV91F1W-gtcmynipRmq30Ay4mfwN_ib_BLGNvZwAohJMQtsSe2Fc_Lj_kG4HmIpZJ5sRtFsXKDJFJuLj3pCo-zkAtBQxML827ARqP49DQ5bG4T6lgYiw_RbrhpyTD6Wgu4upDF7k_U0Pl5pc8ONKBcxJLLsBXoTDId2OofpSeDtTqmaMBMhhW0W64G31ojN3rd3c0WNi3Tb-7mpvdqzE968z8M_BbcaHxP0rPMchsuqfoOXP8FkfAufDsoq4ocf5yS1-VMzonepiXjWhED2v2K9Je8-v7l61Chz06G4xSfUT9PP6_OFT729VoWnVdJ9lZyNj1Du2tbOBpPsHoidO56nRXpJRl_WiHrYqHFvV6YQl5L0qsXZW4hpPVYzd1dXM0TdK5JTwi0kpaa7JtrZNiXvdRTCvJep4giOrAK6-_BSfr2-M2e22R7cAVlNHE5TZRUofRlYUDf8zwIQk9GvPAitJlSeZyif0ETmbNEUsV50WVFzDhjypeoqe5Dp8Zf8QBIIoVPlc9lHIggiYM4EkrQuFAh9TwcqQPueqYz0UCh64wcVWZBnLuZnqKsnSIHXrT0FxYE5I-UO2vGyRplMM-oTylFux9EDjxrq1GM9dkMr9V0qWksmF7MHNi2DNd2hS5soEN5HOgavvrLGLLJcDBo3x7-y0dP4ephP80G-6ODR3BNF9vwyx3oLGZL9RiuiA-Lcj570gjbD5igMfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kill+Two+Birds+with+One+Stone%3A+Dual%E2%80%90Metal+MOF%E2%80%90Nanozyme%E2%80%90Decorated+Hydrogels+with+ROS%E2%80%90Scavenging%2C+Oxygen%E2%80%90Generating%2C+and+Antibacterial+Abilities+for+Accelerating+Infected+Diabetic+Wound+Healing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wei%2C+Yun%E2%80%90Jie&rft.au=Chen%2C+Heng&rft.au=Zhou%2C+Zi%E2%80%90Wen&rft.au=Liu%2C+Chun%E2%80%90Xiu&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202403679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon