Rational Design of Polymethine Dyes with NIR‐II Emission and High Photothermal Conversion Efficiency for Multimodal‐Imaging‐Guided Photo‐Immunotherapy

Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 35; H. 12; S. e2210179 - n/a
Hauptverfasser: Ran, Xiao‐Yun, Chen, Ping, Liu, Yan‐Zhao, Shi, Lei, Chen, Xue, Liu, Yan‐Hong, Zhang, Hong, Zhang, Li‐Na, Li, Kun, Yu, Xiao‐Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.03.2023
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility  are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. Polymethine dyes with second near‐infrared emission and photoacoustic imaging capability are synthesized by the electronic‐donor group regulation strategy, which demonstrates high photothermal conversion efficiency (PCE = 81.1%) as an antitumor stategy in vivo and in vitro under the multimodal imaging guidance; theoretical calculation reveals the structure regulation mechanism for the polymethine‐based phototheranostic agent to achieve an excellent PCE.
AbstractList Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility  are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility  are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. Polymethine dyes with second near‐infrared emission and photoacoustic imaging capability are synthesized by the electronic‐donor group regulation strategy, which demonstrates high photothermal conversion efficiency (PCE = 81.1%) as an antitumor stategy in vivo and in vitro under the multimodal imaging guidance; theoretical calculation reveals the structure regulation mechanism for the polymethine‐based phototheranostic agent to achieve an excellent PCE.
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Author Li, Kun
Ran, Xiao‐Yun
Chen, Ping
Zhang, Li‐Na
Liu, Yan‐Hong
Yu, Xiao‐Qi
Zhang, Hong
Liu, Yan‐Zhao
Shi, Lei
Chen, Xue
Author_xml – sequence: 1
  givenname: Xiao‐Yun
  surname: Ran
  fullname: Ran, Xiao‐Yun
  organization: Sichuan University
– sequence: 2
  givenname: Ping
  surname: Chen
  fullname: Chen, Ping
  organization: Sichuan University
– sequence: 3
  givenname: Yan‐Zhao
  surname: Liu
  fullname: Liu, Yan‐Zhao
  organization: Sichuan University
– sequence: 4
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
  organization: Sichuan University
– sequence: 5
  givenname: Xue
  surname: Chen
  fullname: Chen, Xue
  organization: Sichuan University
– sequence: 6
  givenname: Yan‐Hong
  surname: Liu
  fullname: Liu, Yan‐Hong
  organization: Sichuan University
– sequence: 7
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Sichuan University
– sequence: 8
  givenname: Li‐Na
  surname: Zhang
  fullname: Zhang, Li‐Na
  organization: Sichuan University
– sequence: 9
  givenname: Kun
  orcidid: 0000-0002-8788-1036
  surname: Li
  fullname: Li, Kun
  email: kli@scu.edu.cn
  organization: Sichuan University
– sequence: 10
  givenname: Xiao‐Qi
  surname: Yu
  fullname: Yu, Xiao‐Qi
  organization: Xihua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36630669$$D View this record in MEDLINE/PubMed
BookMark eNqFkdFq2zAUhsVoWdN2t7scgt3sxumRbMvWZUiyNtBupWzXQpHkWMWWMsle8d0eYU-wh9uTzEnaDQqjVzqg7_vhnP8UHTnvDEJvCUwJAL2QupVTCpQSIAV_hSYkpyTJgOdHaAI8zRPOsvIEncZ4DwCcAXuNTlLGUmCMT9CvO9lZ72SDFybajcO-wre-GVrT1dYZvBhMxA-2q_Gn1d3vHz9XK7xsbYyjg6XT-Mpuanxb-853tQntmDP37rsJe2BZVVZZ49SAKx_wTd90tvVaNrugVm6s24zTZW-10YeQ_Ufbu32a3A7n6LiSTTRvHt8z9PXj8sv8Krn-fLmaz64TlRYpTyjVOYe0UtoUNIU1zTMoGCclJ1wrWmWllBllak2VzCvNqOScaQZFZkgJRKZn6MMhdxv8t97EToxLKtM00hnfR0ELlkORZnk5ou-fofe-D-MFd1TJGckLlo3Uu0eqX7dGi22wrQyDeLr8CGQHQAUfYzCVULbbd9EFaRtBQOwKFruCxd-CR236THtK_q_AD8KDbczwAi1mi5vZP_cPRSi9LQ
CitedBy_id crossref_primary_10_1002_adfm_202423165
crossref_primary_10_1016_j_ccr_2024_215986
crossref_primary_10_1002_adfm_202407317
crossref_primary_10_1016_j_snb_2023_135089
crossref_primary_10_1039_D5MH01254F
crossref_primary_10_1002_anie_202503036
crossref_primary_10_1055_a_2201_3612
crossref_primary_10_1002_adma_202304848
crossref_primary_10_1021_acsnano_5c08980
crossref_primary_10_1002_smll_202409722
crossref_primary_10_1016_j_cej_2025_163858
crossref_primary_10_1002_ange_202418081
crossref_primary_10_1002_adhm_202303631
crossref_primary_10_1007_s12274_024_6854_4
crossref_primary_10_1186_s12951_023_01901_7
crossref_primary_10_1002_anie_202419785
crossref_primary_10_1002_adma_202510386
crossref_primary_10_1186_s12951_024_02343_5
crossref_primary_10_1002_adfm_202311365
crossref_primary_10_1002_adma_202416590
crossref_primary_10_1002_advs_202301177
crossref_primary_10_1016_j_biomaterials_2024_122847
crossref_primary_10_1002_smll_202503632
crossref_primary_10_1016_j_cej_2024_159140
crossref_primary_10_1002_smll_202508447
crossref_primary_10_1186_s12951_024_02424_5
crossref_primary_10_1002_ange_202503036
crossref_primary_10_1002_smll_202308013
crossref_primary_10_1016_j_jallcom_2025_179390
crossref_primary_10_1016_j_snb_2023_135091
crossref_primary_10_1039_D4TB02480J
crossref_primary_10_1016_j_ccr_2024_216422
crossref_primary_10_1016_j_biomaterials_2023_122380
crossref_primary_10_1002_adhm_202402295
crossref_primary_10_1016_j_saa_2023_123668
crossref_primary_10_1021_jacs_4c11549
crossref_primary_10_3389_fmats_2025_1550323
crossref_primary_10_1186_s12951_024_02984_6
crossref_primary_10_1002_agt2_630
crossref_primary_10_1002_chem_202403398
crossref_primary_10_1002_smll_202502354
crossref_primary_10_1002_wnan_1960
crossref_primary_10_1002_adfm_202421765
crossref_primary_10_1016_j_jcis_2025_137280
crossref_primary_10_1016_j_chemphys_2025_112641
crossref_primary_10_1038_s41467_024_55429_x
crossref_primary_10_1016_j_dyepig_2025_112918
crossref_primary_10_1002_adma_202405966
crossref_primary_10_1021_jacsau_5c00624
crossref_primary_10_1002_adhm_202304506
crossref_primary_10_1186_s12951_024_02741_9
crossref_primary_10_1016_j_jcis_2025_137652
crossref_primary_10_1002_adhm_202400962
crossref_primary_10_1016_j_ccr_2024_215677
crossref_primary_10_1002_ajoc_202500109
crossref_primary_10_1002_agt2_723
crossref_primary_10_1016_j_ccr_2025_216549
crossref_primary_10_3390_bios14100501
crossref_primary_10_1016_j_ccr_2024_216122
crossref_primary_10_1002_smll_202406879
crossref_primary_10_1016_j_ccr_2025_216587
crossref_primary_10_1021_acs_analchem_4c05333
crossref_primary_10_1002_adhm_202301091
crossref_primary_10_1002_chem_202302548
crossref_primary_10_1016_j_biomaterials_2025_123490
crossref_primary_10_1002_anie_202418081
crossref_primary_10_1002_smll_202307829
crossref_primary_10_1016_j_cej_2024_152054
crossref_primary_10_1002_adfm_202412595
crossref_primary_10_1002_adfm_202413847
crossref_primary_10_1002_adma_202306773
crossref_primary_10_1002_adma_202311515
crossref_primary_10_1016_j_ccr_2024_215907
crossref_primary_10_1016_j_csbj_2023_04_024
crossref_primary_10_1016_j_talanta_2024_125991
crossref_primary_10_1002_adma_202415891
crossref_primary_10_1039_D4MH01167H
crossref_primary_10_1002_ange_202419785
crossref_primary_10_1016_j_jconrel_2024_03_020
Cites_doi 10.1021/acs.chemrev.1c00875
10.1126/science.1216210
10.1002/adma.202109111
10.1002/adma.201904914
10.1002/jcc.22885
10.1039/C8CS00001H
10.1039/D2CS00131D
10.1002/adma.201907855
10.1021/acsami.1c22444
10.1002/adfm.202001059
10.1002/adhm.202102352
10.1021/jacs.2c07443
10.1038/s41592-020-0909-6
10.1002/anie.202202614
10.1021/acsnano.0c09993
10.1021/j100096a001
10.1021/jacs.2c05826
10.1016/j.ejmech.2022.114500
10.1021/acs.joc.7b00422
10.1016/j.ccr.2022.214507
10.1039/D1CS01138C
10.1039/C8CS00618K
10.1038/nmat4476
10.1002/adfm.202113098
10.1016/j.nantod.2022.101481
10.1002/anie.202007040
10.1021/jacs.1c07377
10.31635/ccschem.021.202101539
10.1002/anie.202116439
10.1039/D1NR03288G
10.1021/jp5021017
10.1038/s41571-020-0410-2
10.1038/s41565-022-01132-1
10.1038/s41557-020-00554-5
10.1021/acs.chemrev.1c00381
10.1002/anie.201706974
10.1002/chem.201405902
10.1039/C5SC01733E
10.1039/C8CS00234G
10.1002/adma.201704408
10.1016/j.cclet.2019.05.022
10.1002/agt2.59
10.1039/C5TC03933A
10.1038/nrc.2016.108
10.3892/or.2017.5718
10.1002/adfm.202104650
10.1039/D0CS00671H
10.7150/thno.22641
10.1016/j.ccr.2020.213556
10.1021/jacs.2c10076
10.1039/C9CS00129H
10.1021/jacs.0c07022
10.1021/acs.chemrev.1c00553
10.1073/pnas.2123111119
10.1002/adma.201700996
10.1080/00268977400100171
10.1038/natrevmats.2017.14
10.1021/cm402428a
10.1021/acs.accounts.9b00273
10.1002/anie.202117433
10.1038/s41571-022-00631-3
10.1002/anie.202212673
10.1038/nnano.2009.326
10.1007/s11426-022-1271-0
10.1016/j.biomaterials.2021.120926
10.1002/anie.202204604
10.1021/jacs.0c11599
10.1002/anie.202114722
10.1002/adfm.202110526
10.7150/thno.22872
10.1038/s41578-021-00328-6
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202210179
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36630669
10_1002_adma_202210179
ADMA202210179
Genre article
Journal Article
GrantInformation_xml – fundername: Foundation from Science and Technology Department of Sichuan Province
  funderid: 2020JDJQ0017; 2021YFH0132
– fundername: National Natural Science Foundation of China
  funderid: U21A20308; 22077088; 21877082
– fundername: National Natural Science Foundation of China
  grantid: 21877082
– fundername: Foundation from Science and Technology Department of Sichuan Province
  grantid: 2020JDJQ0017
– fundername: Foundation from Science and Technology Department of Sichuan Province
  grantid: 2021YFH0132
– fundername: National Natural Science Foundation of China
  grantid: U21A20308
– fundername: National Natural Science Foundation of China
  grantid: 22077088
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3739-22d5903fcde7230b254076918919dc2f48aa426cb2ca5fd62a996d6074e1801a3
IEDL.DBID DRFUL
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929472300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:13:02 EDT 2025
Sun Jul 13 04:58:49 EDT 2025
Wed Feb 19 02:24:43 EST 2025
Tue Nov 18 21:48:59 EST 2025
Sat Nov 29 07:21:55 EST 2025
Wed Jan 22 16:28:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords polymethine dyes
second near-infrared emission
photoacoustic imaging
photodynamic therapy
immunotherapy
photothermal therapy
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-22d5903fcde7230b254076918919dc2f48aa426cb2ca5fd62a996d6074e1801a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8788-1036
PMID 36630669
PQID 2789615764
PQPubID 2045203
PageCount 14
ParticipantIDs proquest_miscellaneous_2765073458
proquest_journals_2789615764
pubmed_primary_36630669
crossref_citationtrail_10_1002_adma_202210179
crossref_primary_10_1002_adma_202210179
wiley_primary_10_1002_adma_202210179_ADMA202210179
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 2
2013; 25
2017; 82
2019; 52
2020; 17
2020; 12
2022; 65
2021; 121
2018; 47
2022; 122
2018; 8
2021; 31
2017; 38
2022; 34
2020; 49
2018; 30
2022; 32
2021; 275
2012; 335
2014; 118
2021; 6
2015; 6
2021; 4
2015; 5
2021; 2
2019; 31
2019; 30
2020; 142
2022; 51
2021; 427
2017; 29
2021; 143
2022; 44
2020; 32
2022; 119
2022; 238
2016; 15
2012; 33
2022; 144
2016; 4
1974; 27
2021; 13
2022; 145
2022; 461
2021; 15
2020; 30
2017; 17
2022; 61
2019; 48
2017; 56
2015; 21
2022; 14
2009; 4
2022; 11
2021; 60
2022; 17
1994; 98
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
Li C. B. (e_1_2_8_25_1) 2022; 34
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Ishizawa T. (e_1_2_8_35_1) 2015; 5
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Chen S. Y. (e_1_2_8_73_1) 2022; 61
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 566
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1095
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 209
  year: 2022
  publication-title: Chem. Rev.
– volume: 49
  start-page: 1041
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 238
  year: 2022
  publication-title: Eur. J. Med. Chem.
– volume: 48
  start-page: 38
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 335
  start-page: 1458
  year: 2012
  publication-title: Science
– volume: 2
  year: 2021
  publication-title: Aggregate
– volume: 143
  start-page: 6836
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 322
  year: 2015
  publication-title: Nutrition
– volume: 4
  start-page: 2731
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 12
  start-page: 1123
  year: 2020
  publication-title: Nat. Chem.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3766
  year: 2013
  publication-title: Chem. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 461
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 47
  start-page: 4258
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 82
  start-page: 5597
  year: 2017
  publication-title: J. Org. Chem.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 7692
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 6
  start-page: 5824
  year: 2015
  publication-title: Chem. Sci.
– volume: 4
  start-page: 710
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 1731
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 17
  start-page: 657
  year: 2020
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 118
  start-page: 9094
  year: 2014
  publication-title: J. Phys. Chem. A
– volume: 17
  start-page: 815
  year: 2020
  publication-title: Nat. Methods
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 51
  start-page: 1983
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 20
  year: 2017
  publication-title: Nat. Rev. Cancer
– volume: 21
  start-page: 4440
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2134
  year: 2018
  publication-title: Theranostics
– volume: 8
  start-page: 1227
  year: 2018
  publication-title: Theranostics
– volume: 49
  start-page: 8179
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 44
  year: 2022
  publication-title: Nano Today
– volume: 38
  start-page: 611
  year: 2017
  publication-title: Oncol. Rep.
– volume: 65
  start-page: 1498
  year: 2022
  publication-title: Sci. China: Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 52
  start-page: 2332
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 235
  year: 2016
  publication-title: Nat. Mater.
– volume: 275
  year: 2021
  publication-title: Biomaterials
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 145
  start-page: 334
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3002
  year: 2021
  publication-title: CCS Chem.
– volume: 19
  start-page: 458
  year: 2022
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 27
  start-page: 209
  year: 1974
  publication-title: Mol. Phys.
– volume: 48
  start-page: 2053
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 122
  start-page: 6850
  year: 2022
  publication-title: Chem. Rev.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 5032
  year: 2021
  publication-title: ACS Nano
– volume: 98
  year: 1994
  publication-title: J. Phys. Chem.
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemrev.1c00875
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1216210
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.202109111
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201904914
– ident: e_1_2_8_71_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_39_1
  doi: 10.1039/C8CS00001H
– ident: e_1_2_8_52_1
  doi: 10.1039/D2CS00131D
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.201907855
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.1c22444
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202001059
– ident: e_1_2_8_55_1
  doi: 10.1002/adhm.202102352
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.2c07443
– ident: e_1_2_8_42_1
  doi: 10.1038/s41592-020-0909-6
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202202614
– volume: 34
  year: 2022
  ident: e_1_2_8_25_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_67_1
  doi: 10.1021/acsnano.0c09993
– ident: e_1_2_8_70_1
  doi: 10.1021/j100096a001
– ident: e_1_2_8_41_1
  doi: 10.1021/jacs.2c05826
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ejmech.2022.114500
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.joc.7b00422
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ccr.2022.214507
– volume: 61
  year: 2022
  ident: e_1_2_8_73_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_17_1
  doi: 10.1039/D1CS01138C
– ident: e_1_2_8_7_1
  doi: 10.1039/C8CS00618K
– ident: e_1_2_8_49_1
  doi: 10.1038/nmat4476
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.202113098
– ident: e_1_2_8_28_1
  doi: 10.1016/j.nantod.2022.101481
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202007040
– ident: e_1_2_8_15_1
  doi: 10.1021/jacs.1c07377
– ident: e_1_2_8_20_1
  doi: 10.31635/ccschem.021.202101539
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.202116439
– ident: e_1_2_8_66_1
  doi: 10.1039/D1NR03288G
– ident: e_1_2_8_60_1
  doi: 10.1021/jp5021017
– ident: e_1_2_8_19_1
  doi: 10.1038/s41571-020-0410-2
– ident: e_1_2_8_48_1
  doi: 10.1038/s41565-022-01132-1
– ident: e_1_2_8_57_1
  doi: 10.1038/s41557-020-00554-5
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.chemrev.1c00381
– ident: e_1_2_8_58_1
  doi: 10.1002/anie.201706974
– ident: e_1_2_8_61_1
  doi: 10.1002/chem.201405902
– ident: e_1_2_8_47_1
  doi: 10.1039/C5SC01733E
– volume: 5
  start-page: 322
  year: 2015
  ident: e_1_2_8_35_1
  publication-title: Nutrition
– ident: e_1_2_8_9_1
  doi: 10.1039/C8CS00234G
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201704408
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cclet.2019.05.022
– ident: e_1_2_8_24_1
  doi: 10.1002/agt2.59
– ident: e_1_2_8_45_1
  doi: 10.1039/C5TC03933A
– ident: e_1_2_8_5_1
  doi: 10.1038/nrc.2016.108
– ident: e_1_2_8_1_1
  doi: 10.3892/or.2017.5718
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.202104650
– ident: e_1_2_8_38_1
  doi: 10.1039/D0CS00671H
– ident: e_1_2_8_27_1
  doi: 10.7150/thno.22641
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ccr.2020.213556
– ident: e_1_2_8_72_1
  doi: 10.1021/jacs.2c10076
– ident: e_1_2_8_29_1
  doi: 10.1039/C9CS00129H
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.0c07022
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.chemrev.1c00553
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.2123111119
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201700996
– ident: e_1_2_8_69_1
  doi: 10.1080/00268977400100171
– ident: e_1_2_8_13_1
  doi: 10.1038/natrevmats.2017.14
– ident: e_1_2_8_46_1
  doi: 10.1021/cm402428a
– ident: e_1_2_8_64_1
  doi: 10.1021/acs.accounts.9b00273
– ident: e_1_2_8_74_1
  doi: 10.1002/anie.202117433
– ident: e_1_2_8_2_1
  doi: 10.1038/s41571-022-00631-3
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202212673
– ident: e_1_2_8_50_1
  doi: 10.1038/nnano.2009.326
– ident: e_1_2_8_14_1
  doi: 10.1007/s11426-022-1271-0
– ident: e_1_2_8_63_1
  doi: 10.1016/j.biomaterials.2021.120926
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202204604
– ident: e_1_2_8_56_1
  doi: 10.1021/jacs.0c11599
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.202114722
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202110526
– ident: e_1_2_8_33_1
  doi: 10.7150/thno.22872
– ident: e_1_2_8_6_1
  doi: 10.1038/s41578-021-00328-6
SSID ssj0009606
Score 2.6457677
Snippet Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2210179
SubjectTerms Breast Neoplasms
Coloring Agents
Diagnosis
Emission
Female
Fluorescence
Humans
Hyperthermia
Immunotherapy
Infrared windows
Materials science
Medical imaging
Nanoparticles
Nanoparticles - therapeutic use
Near infrared radiation
Neoplasms - diagnostic imaging
Neoplasms - therapy
Organic chemistry
photoacoustic imaging
Photoacoustic Techniques - methods
photodynamic therapy
Phototherapy - methods
Photothermal conversion
photothermal therapy
polymethine dyes
second near‐infrared emission
Theranostic Nanomedicine - methods
Title Rational Design of Polymethine Dyes with NIR‐II Emission and High Photothermal Conversion Efficiency for Multimodal‐Imaging‐Guided Photo‐Immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210179
https://www.ncbi.nlm.nih.gov/pubmed/36630669
https://www.proquest.com/docview/2789615764
https://www.proquest.com/docview/2765073458
Volume 35
WOSCitedRecordID wos000929472300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED_WdA_bQ_d_zdYVDQZ7MrUlWZYfQ5NsgS6EsELejCzJtJDYo0kKedtH2Cfoh-sn6Ul23IYxBtubbMlnId9ZP510vwP4lDtSNBvbQLIwD3hh0KRwGRIUqdJCs1DF1gcKnyXjsZzN0smDKP6aH6J1uDnL8P9rZ-AqX57ck4Yq43mDKPVKtQf7FJU37sB-fzo8P7sn3hU-v6bb7wtSweWWuDGkJ7sSdiem39DmLnj1s8_w2f_3-zkcNMiT9GpVeQGPbPkSnj7gI3wFN9PGNUj6_mAHqQoyqeYbl2YaW5H-xi6J89yS8Wh6-_PXaEQGqCfO4UZUaYg7NEImF9XKh3UtUM6pO9TuPXJk4MkqXKQnQaBMfOTvojJq7gQtfLIkLH1ZXxpraiG-YrEumyCxzWs4Hw6-n34NmgQOgWYJSwNKTZyGrNDGJrjUyalj-xNpJNMoNZoWXCqFCEHnVKu4MIIqXH0ZgajGRjhzKvYGOmVV2kMgeCMWqpBcR5pzK2SoIiaY0ElsGE90F4Lt18t0w27ukmzMs5qXmWZu3LN23LvwuW3_o-b1-GPLo60yZI19LzMXP4xYMBG8Cx_bahxxt92iSlutXRtEvwnjsezC21qJ2lcxBHoI9lA49brylz5kvf63Xnv17l8eeg9PsMzq43NH0Fldre0HeKyvV5fLq2PYS2byuLGdO-uVHNg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED_BhgQ88J9RGGAkJJ6iJbbjJI_V2rKKrqqqTdpb5NqOmNQm09oi9Y2PwCfgw_FJuHPSjAohJMRb4jgXy7mLf77c_Q7g_YxI0VzsglSEs0AWFk0KtyFBkWmjjAh17Hyi8CgZj9OLi2zSRBNSLkzND9E63Mgy_PeaDJwc0kc3rKHaeuIgzr1W3YZ9ibqESr7fmw7ORzfMu8oX2KQffkGmZLplbgz50a6E3ZXpN7i5i1798jN4-B8G_ggeNNiTdWtleQy3XPkE7v_CSPgUvk8b5yDr-dAOVhVsUs03VGgae7Hexi0Z-W7ZeDj98fXbcMj6qCnkcmO6tIzCRtjkc7XyiV0LlHNMYe3eJ8f6nq6Ccj0ZQmXmc38XldVzErTw5ZLw6OP60jpbC_EXFuuySRPbPIPzQf_s-CRoSjgERiQiCzi3cRaKwliX4GZnxonvT2VRmkWZNbyQqdaIEcyMGx0XVnGN-y-rENe4CNdOLZ7DXlmV7gUwbIiVLlJpIiOlU2moI6GEMklshUxMB4Lt68tNw29OZTbmec3MzHOa97yd9w58aPtf1cwef-x5uNWGvLHwZU4ZxIgGEyU78K69jDNOP1x06ao19UH8mwgZpx04qLWofZRAqIdwD4Vzryx_GUPe7Z1227OX_3LTW7h7cnY6ykfD8adXcA_bRR1Mdwh7q-u1ew13zJfV5fL6TWNCPwE3dB_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFyE48M9SWMBISJyiTWzHSY7VtoWKUlUVK-0tcm1HrNQmq227Um88Ak_Aw_EkzDhplgohJMQtcZyJ5czEnycz3wC8nRMpmotdkIpwHsjCoknhNiQoMm2UEaGOnU8UHieTSXp2lk2baELKhan5IVqHG1mG_16TgbsLWxxfs4Zq64mDOPdadRMOJFWS6cBBfzY8HV8z7ypfYJN--AWZkumOuTHkx_sS9lem3-DmPnr1y8_w_n8Y-AO412BP1quV5SHccOUjuPsLI-Fj-D5rnIOs70M7WFWwabXYUqFp7MX6W7di5Ltlk9Hsx9dvoxEboKaQy43p0jIKG2HTL9XaJ3YtUc4JhbV7nxwbeLoKyvVkCJWZz_1dVlYvSNDSl0vCo_ebc-tsLcRfWG7KJk1s-wROh4PPJx-CpoRDYEQisoBzG2ehKIx1CW525pz4_lQWpVmUWcMLmWqNGMHMudFxYRXXuP-yCnGNi3Dt1OIpdMqqdM-AYUOsdJFKExkpnUpDHQkllEliK2RiuhDsXl9uGn5zKrOxyGtmZp7TvOftvHfhXdv_omb2-GPPo5025I2Fr3LKIEY0mCjZhTftZZxx-uGiS1dtqA_i30TIOO3CYa1F7aMEQj2Eeyice2X5yxjyXv9Trz17_i83vYbb0_4wH48mH1_AHWwWdSzdEXTWlxv3Em6Zq_X56vJVY0E_AZRVH1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Polymethine+Dyes+with+NIR-II+Emission+and+High+Photothermal+Conversion+Efficiency+for+Multimodal-Imaging-Guided+Photo-Immunotherapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ran%2C+Xiao-Yun&rft.au=Chen%2C+Ping&rft.au=Liu%2C+Yan-Zhao&rft.au=Shi%2C+Lei&rft.date=2023-03-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=12&rft.spage=e2210179&rft_id=info:doi/10.1002%2Fadma.202210179&rft_id=info%3Apmid%2F36630669&rft.externalDocID=36630669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon