Rational Design of Polymethine Dyes with NIR‐II Emission and High Photothermal Conversion Efficiency for Multimodal‐Imaging‐Guided Photo‐Immunotherapy
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging a...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 35; H. 12; S. e2210179 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.03.2023
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Polymethine dyes with second near‐infrared emission and photoacoustic imaging capability are synthesized by the electronic‐donor group regulation strategy, which demonstrates high photothermal conversion efficiency (PCE = 81.1%) as an antitumor stategy in vivo and in vitro under the multimodal imaging guidance; theoretical calculation reveals the structure regulation mechanism for the polymethine‐based phototheranostic agent to achieve an excellent PCE. |
|---|---|
| AbstractList | Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. Polymethine dyes with second near‐infrared emission and photoacoustic imaging capability are synthesized by the electronic‐donor group regulation strategy, which demonstrates high photothermal conversion efficiency (PCE = 81.1%) as an antitumor stategy in vivo and in vitro under the multimodal imaging guidance; theoretical calculation reveals the structure regulation mechanism for the polymethine‐based phototheranostic agent to achieve an excellent PCE. Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near‐infrared window (NIR‐II, 1000–1700 nm) and high PCE, which are related to the strong donor–acceptor (D–A) interaction and high reorganization energy Noteworthily, ICR‐Qu with stronger D–A interaction and a large‐sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR‐QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep‐tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α‐PD‐1, ICR‐QuNPs show huge potential to be a facile and efficient tool for photo‐immunotherapy. More importantly, this study not only reports an “all‐in‐one” polymethine‐based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications. |
| Author | Li, Kun Ran, Xiao‐Yun Chen, Ping Zhang, Li‐Na Liu, Yan‐Hong Yu, Xiao‐Qi Zhang, Hong Liu, Yan‐Zhao Shi, Lei Chen, Xue |
| Author_xml | – sequence: 1 givenname: Xiao‐Yun surname: Ran fullname: Ran, Xiao‐Yun organization: Sichuan University – sequence: 2 givenname: Ping surname: Chen fullname: Chen, Ping organization: Sichuan University – sequence: 3 givenname: Yan‐Zhao surname: Liu fullname: Liu, Yan‐Zhao organization: Sichuan University – sequence: 4 givenname: Lei surname: Shi fullname: Shi, Lei organization: Sichuan University – sequence: 5 givenname: Xue surname: Chen fullname: Chen, Xue organization: Sichuan University – sequence: 6 givenname: Yan‐Hong surname: Liu fullname: Liu, Yan‐Hong organization: Sichuan University – sequence: 7 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: Sichuan University – sequence: 8 givenname: Li‐Na surname: Zhang fullname: Zhang, Li‐Na organization: Sichuan University – sequence: 9 givenname: Kun orcidid: 0000-0002-8788-1036 surname: Li fullname: Li, Kun email: kli@scu.edu.cn organization: Sichuan University – sequence: 10 givenname: Xiao‐Qi surname: Yu fullname: Yu, Xiao‐Qi organization: Xihua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36630669$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkdFq2zAUhsVoWdN2t7scgt3sxumRbMvWZUiyNtBupWzXQpHkWMWWMsle8d0eYU-wh9uTzEnaDQqjVzqg7_vhnP8UHTnvDEJvCUwJAL2QupVTCpQSIAV_hSYkpyTJgOdHaAI8zRPOsvIEncZ4DwCcAXuNTlLGUmCMT9CvO9lZ72SDFybajcO-wre-GVrT1dYZvBhMxA-2q_Gn1d3vHz9XK7xsbYyjg6XT-Mpuanxb-853tQntmDP37rsJe2BZVVZZ49SAKx_wTd90tvVaNrugVm6s24zTZW-10YeQ_Ufbu32a3A7n6LiSTTRvHt8z9PXj8sv8Krn-fLmaz64TlRYpTyjVOYe0UtoUNIU1zTMoGCclJ1wrWmWllBllak2VzCvNqOScaQZFZkgJRKZn6MMhdxv8t97EToxLKtM00hnfR0ELlkORZnk5ou-fofe-D-MFd1TJGckLlo3Uu0eqX7dGi22wrQyDeLr8CGQHQAUfYzCVULbbd9EFaRtBQOwKFruCxd-CR236THtK_q_AD8KDbczwAi1mi5vZP_cPRSi9LQ |
| CitedBy_id | crossref_primary_10_1002_adfm_202423165 crossref_primary_10_1016_j_ccr_2024_215986 crossref_primary_10_1002_adfm_202407317 crossref_primary_10_1016_j_snb_2023_135089 crossref_primary_10_1039_D5MH01254F crossref_primary_10_1002_anie_202503036 crossref_primary_10_1055_a_2201_3612 crossref_primary_10_1002_adma_202304848 crossref_primary_10_1021_acsnano_5c08980 crossref_primary_10_1002_smll_202409722 crossref_primary_10_1016_j_cej_2025_163858 crossref_primary_10_1002_ange_202418081 crossref_primary_10_1002_adhm_202303631 crossref_primary_10_1007_s12274_024_6854_4 crossref_primary_10_1186_s12951_023_01901_7 crossref_primary_10_1002_anie_202419785 crossref_primary_10_1002_adma_202510386 crossref_primary_10_1186_s12951_024_02343_5 crossref_primary_10_1002_adfm_202311365 crossref_primary_10_1002_adma_202416590 crossref_primary_10_1002_advs_202301177 crossref_primary_10_1016_j_biomaterials_2024_122847 crossref_primary_10_1002_smll_202503632 crossref_primary_10_1016_j_cej_2024_159140 crossref_primary_10_1002_smll_202508447 crossref_primary_10_1186_s12951_024_02424_5 crossref_primary_10_1002_ange_202503036 crossref_primary_10_1002_smll_202308013 crossref_primary_10_1016_j_jallcom_2025_179390 crossref_primary_10_1016_j_snb_2023_135091 crossref_primary_10_1039_D4TB02480J crossref_primary_10_1016_j_ccr_2024_216422 crossref_primary_10_1016_j_biomaterials_2023_122380 crossref_primary_10_1002_adhm_202402295 crossref_primary_10_1016_j_saa_2023_123668 crossref_primary_10_1021_jacs_4c11549 crossref_primary_10_3389_fmats_2025_1550323 crossref_primary_10_1186_s12951_024_02984_6 crossref_primary_10_1002_agt2_630 crossref_primary_10_1002_chem_202403398 crossref_primary_10_1002_smll_202502354 crossref_primary_10_1002_wnan_1960 crossref_primary_10_1002_adfm_202421765 crossref_primary_10_1016_j_jcis_2025_137280 crossref_primary_10_1016_j_chemphys_2025_112641 crossref_primary_10_1038_s41467_024_55429_x crossref_primary_10_1016_j_dyepig_2025_112918 crossref_primary_10_1002_adma_202405966 crossref_primary_10_1021_jacsau_5c00624 crossref_primary_10_1002_adhm_202304506 crossref_primary_10_1186_s12951_024_02741_9 crossref_primary_10_1016_j_jcis_2025_137652 crossref_primary_10_1002_adhm_202400962 crossref_primary_10_1016_j_ccr_2024_215677 crossref_primary_10_1002_ajoc_202500109 crossref_primary_10_1002_agt2_723 crossref_primary_10_1016_j_ccr_2025_216549 crossref_primary_10_3390_bios14100501 crossref_primary_10_1016_j_ccr_2024_216122 crossref_primary_10_1002_smll_202406879 crossref_primary_10_1016_j_ccr_2025_216587 crossref_primary_10_1021_acs_analchem_4c05333 crossref_primary_10_1002_adhm_202301091 crossref_primary_10_1002_chem_202302548 crossref_primary_10_1016_j_biomaterials_2025_123490 crossref_primary_10_1002_anie_202418081 crossref_primary_10_1002_smll_202307829 crossref_primary_10_1016_j_cej_2024_152054 crossref_primary_10_1002_adfm_202412595 crossref_primary_10_1002_adfm_202413847 crossref_primary_10_1002_adma_202306773 crossref_primary_10_1002_adma_202311515 crossref_primary_10_1016_j_ccr_2024_215907 crossref_primary_10_1016_j_csbj_2023_04_024 crossref_primary_10_1016_j_talanta_2024_125991 crossref_primary_10_1002_adma_202415891 crossref_primary_10_1039_D4MH01167H crossref_primary_10_1002_ange_202419785 crossref_primary_10_1016_j_jconrel_2024_03_020 |
| Cites_doi | 10.1021/acs.chemrev.1c00875 10.1126/science.1216210 10.1002/adma.202109111 10.1002/adma.201904914 10.1002/jcc.22885 10.1039/C8CS00001H 10.1039/D2CS00131D 10.1002/adma.201907855 10.1021/acsami.1c22444 10.1002/adfm.202001059 10.1002/adhm.202102352 10.1021/jacs.2c07443 10.1038/s41592-020-0909-6 10.1002/anie.202202614 10.1021/acsnano.0c09993 10.1021/j100096a001 10.1021/jacs.2c05826 10.1016/j.ejmech.2022.114500 10.1021/acs.joc.7b00422 10.1016/j.ccr.2022.214507 10.1039/D1CS01138C 10.1039/C8CS00618K 10.1038/nmat4476 10.1002/adfm.202113098 10.1016/j.nantod.2022.101481 10.1002/anie.202007040 10.1021/jacs.1c07377 10.31635/ccschem.021.202101539 10.1002/anie.202116439 10.1039/D1NR03288G 10.1021/jp5021017 10.1038/s41571-020-0410-2 10.1038/s41565-022-01132-1 10.1038/s41557-020-00554-5 10.1021/acs.chemrev.1c00381 10.1002/anie.201706974 10.1002/chem.201405902 10.1039/C5SC01733E 10.1039/C8CS00234G 10.1002/adma.201704408 10.1016/j.cclet.2019.05.022 10.1002/agt2.59 10.1039/C5TC03933A 10.1038/nrc.2016.108 10.3892/or.2017.5718 10.1002/adfm.202104650 10.1039/D0CS00671H 10.7150/thno.22641 10.1016/j.ccr.2020.213556 10.1021/jacs.2c10076 10.1039/C9CS00129H 10.1021/jacs.0c07022 10.1021/acs.chemrev.1c00553 10.1073/pnas.2123111119 10.1002/adma.201700996 10.1080/00268977400100171 10.1038/natrevmats.2017.14 10.1021/cm402428a 10.1021/acs.accounts.9b00273 10.1002/anie.202117433 10.1038/s41571-022-00631-3 10.1002/anie.202212673 10.1038/nnano.2009.326 10.1007/s11426-022-1271-0 10.1016/j.biomaterials.2021.120926 10.1002/anie.202204604 10.1021/jacs.0c11599 10.1002/anie.202114722 10.1002/adfm.202110526 10.7150/thno.22872 10.1038/s41578-021-00328-6 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202210179 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 36630669 10_1002_adma_202210179 ADMA202210179 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Foundation from Science and Technology Department of Sichuan Province funderid: 2020JDJQ0017; 2021YFH0132 – fundername: National Natural Science Foundation of China funderid: U21A20308; 22077088; 21877082 – fundername: National Natural Science Foundation of China grantid: 21877082 – fundername: Foundation from Science and Technology Department of Sichuan Province grantid: 2020JDJQ0017 – fundername: Foundation from Science and Technology Department of Sichuan Province grantid: 2021YFH0132 – fundername: National Natural Science Foundation of China grantid: U21A20308 – fundername: National Natural Science Foundation of China grantid: 22077088 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3739-22d5903fcde7230b254076918919dc2f48aa426cb2ca5fd62a996d6074e1801a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929472300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 08:13:02 EDT 2025 Sun Jul 13 04:58:49 EDT 2025 Wed Feb 19 02:24:43 EST 2025 Tue Nov 18 21:48:59 EST 2025 Sat Nov 29 07:21:55 EST 2025 Wed Jan 22 16:28:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | polymethine dyes second near-infrared emission photoacoustic imaging photodynamic therapy immunotherapy photothermal therapy |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3739-22d5903fcde7230b254076918919dc2f48aa426cb2ca5fd62a996d6074e1801a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8788-1036 |
| PMID | 36630669 |
| PQID | 2789615764 |
| PQPubID | 2045203 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2765073458 proquest_journals_2789615764 pubmed_primary_36630669 crossref_citationtrail_10_1002_adma_202210179 crossref_primary_10_1002_adma_202210179 wiley_primary_10_1002_adma_202210179_ADMA202210179 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 2 2013; 25 2017; 82 2019; 52 2020; 17 2020; 12 2022; 65 2021; 121 2018; 47 2022; 122 2018; 8 2021; 31 2017; 38 2022; 34 2020; 49 2018; 30 2022; 32 2021; 275 2012; 335 2014; 118 2021; 6 2015; 6 2021; 4 2015; 5 2021; 2 2019; 31 2019; 30 2020; 142 2022; 51 2021; 427 2017; 29 2021; 143 2022; 44 2020; 32 2022; 119 2022; 238 2016; 15 2012; 33 2022; 144 2016; 4 1974; 27 2021; 13 2022; 145 2022; 461 2021; 15 2020; 30 2017; 17 2022; 61 2019; 48 2017; 56 2015; 21 2022; 14 2009; 4 2022; 11 2021; 60 2022; 17 1994; 98 2022; 19 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 Li C. B. (e_1_2_8_25_1) 2022; 34 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Ishizawa T. (e_1_2_8_35_1) 2015; 5 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Chen S. Y. (e_1_2_8_73_1) 2022; 61 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 566 year: 2022 publication-title: Nat. Nanotechnol. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1095 year: 2021 publication-title: Nat. Rev. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 209 year: 2022 publication-title: Chem. Rev. – volume: 49 start-page: 1041 year: 2020 publication-title: Chem. Soc. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 238 year: 2022 publication-title: Eur. J. Med. Chem. – volume: 48 start-page: 38 year: 2019 publication-title: Chem. Soc. Rev. – volume: 335 start-page: 1458 year: 2012 publication-title: Science – volume: 2 year: 2021 publication-title: Aggregate – volume: 143 start-page: 6836 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 5 start-page: 322 year: 2015 publication-title: Nutrition – volume: 4 start-page: 2731 year: 2016 publication-title: J. Mater. Chem. C – volume: 12 start-page: 1123 year: 2020 publication-title: Nat. Chem. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 3766 year: 2013 publication-title: Chem. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 461 year: 2022 publication-title: Coord. Chem. Rev. – volume: 47 start-page: 4258 year: 2018 publication-title: Chem. Soc. Rev. – volume: 82 start-page: 5597 year: 2017 publication-title: J. Org. Chem. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 7692 year: 2022 publication-title: Chem. Soc. Rev. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 6 start-page: 5824 year: 2015 publication-title: Chem. Sci. – volume: 4 start-page: 710 year: 2009 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 1731 year: 2019 publication-title: Chin. Chem. Lett. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 17 start-page: 657 year: 2020 publication-title: Nat. Rev. Clin. Oncol. – volume: 118 start-page: 9094 year: 2014 publication-title: J. Phys. Chem. A – volume: 17 start-page: 815 year: 2020 publication-title: Nat. Methods – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 51 start-page: 1983 year: 2022 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 20 year: 2017 publication-title: Nat. Rev. Cancer – volume: 21 start-page: 4440 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2134 year: 2018 publication-title: Theranostics – volume: 8 start-page: 1227 year: 2018 publication-title: Theranostics – volume: 49 start-page: 8179 year: 2020 publication-title: Chem. Soc. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 44 year: 2022 publication-title: Nano Today – volume: 38 start-page: 611 year: 2017 publication-title: Oncol. Rep. – volume: 65 start-page: 1498 year: 2022 publication-title: Sci. China: Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 52 start-page: 2332 year: 2019 publication-title: Acc. Chem. Res. – volume: 15 start-page: 235 year: 2016 publication-title: Nat. Mater. – volume: 275 year: 2021 publication-title: Biomaterials – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 145 start-page: 334 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3002 year: 2021 publication-title: CCS Chem. – volume: 19 start-page: 458 year: 2022 publication-title: Nat. Rev. Clin. Oncol. – volume: 27 start-page: 209 year: 1974 publication-title: Mol. Phys. – volume: 48 start-page: 2053 year: 2019 publication-title: Chem. Soc. Rev. – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 122 start-page: 6850 year: 2022 publication-title: Chem. Rev. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 5032 year: 2021 publication-title: ACS Nano – volume: 98 year: 1994 publication-title: J. Phys. Chem. – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemrev.1c00875 – ident: e_1_2_8_23_1 doi: 10.1126/science.1216210 – ident: e_1_2_8_65_1 doi: 10.1002/adma.202109111 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201904914 – ident: e_1_2_8_71_1 doi: 10.1002/jcc.22885 – ident: e_1_2_8_39_1 doi: 10.1039/C8CS00001H – ident: e_1_2_8_52_1 doi: 10.1039/D2CS00131D – ident: e_1_2_8_59_1 doi: 10.1002/adma.201907855 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.1c22444 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202001059 – ident: e_1_2_8_55_1 doi: 10.1002/adhm.202102352 – ident: e_1_2_8_18_1 doi: 10.1021/jacs.2c07443 – ident: e_1_2_8_42_1 doi: 10.1038/s41592-020-0909-6 – ident: e_1_2_8_12_1 doi: 10.1002/anie.202202614 – volume: 34 year: 2022 ident: e_1_2_8_25_1 publication-title: Adv. Mater. – ident: e_1_2_8_67_1 doi: 10.1021/acsnano.0c09993 – ident: e_1_2_8_70_1 doi: 10.1021/j100096a001 – ident: e_1_2_8_41_1 doi: 10.1021/jacs.2c05826 – ident: e_1_2_8_4_1 doi: 10.1016/j.ejmech.2022.114500 – ident: e_1_2_8_54_1 doi: 10.1021/acs.joc.7b00422 – ident: e_1_2_8_43_1 doi: 10.1016/j.ccr.2022.214507 – volume: 61 year: 2022 ident: e_1_2_8_73_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_17_1 doi: 10.1039/D1CS01138C – ident: e_1_2_8_7_1 doi: 10.1039/C8CS00618K – ident: e_1_2_8_49_1 doi: 10.1038/nmat4476 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.202113098 – ident: e_1_2_8_28_1 doi: 10.1016/j.nantod.2022.101481 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202007040 – ident: e_1_2_8_15_1 doi: 10.1021/jacs.1c07377 – ident: e_1_2_8_20_1 doi: 10.31635/ccschem.021.202101539 – ident: e_1_2_8_44_1 doi: 10.1002/anie.202116439 – ident: e_1_2_8_66_1 doi: 10.1039/D1NR03288G – ident: e_1_2_8_60_1 doi: 10.1021/jp5021017 – ident: e_1_2_8_19_1 doi: 10.1038/s41571-020-0410-2 – ident: e_1_2_8_48_1 doi: 10.1038/s41565-022-01132-1 – ident: e_1_2_8_57_1 doi: 10.1038/s41557-020-00554-5 – ident: e_1_2_8_34_1 doi: 10.1021/acs.chemrev.1c00381 – ident: e_1_2_8_58_1 doi: 10.1002/anie.201706974 – ident: e_1_2_8_61_1 doi: 10.1002/chem.201405902 – ident: e_1_2_8_47_1 doi: 10.1039/C5SC01733E – volume: 5 start-page: 322 year: 2015 ident: e_1_2_8_35_1 publication-title: Nutrition – ident: e_1_2_8_9_1 doi: 10.1039/C8CS00234G – ident: e_1_2_8_30_1 doi: 10.1002/adma.201704408 – ident: e_1_2_8_32_1 doi: 10.1016/j.cclet.2019.05.022 – ident: e_1_2_8_24_1 doi: 10.1002/agt2.59 – ident: e_1_2_8_45_1 doi: 10.1039/C5TC03933A – ident: e_1_2_8_5_1 doi: 10.1038/nrc.2016.108 – ident: e_1_2_8_1_1 doi: 10.3892/or.2017.5718 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.202104650 – ident: e_1_2_8_38_1 doi: 10.1039/D0CS00671H – ident: e_1_2_8_27_1 doi: 10.7150/thno.22641 – ident: e_1_2_8_8_1 doi: 10.1016/j.ccr.2020.213556 – ident: e_1_2_8_72_1 doi: 10.1021/jacs.2c10076 – ident: e_1_2_8_29_1 doi: 10.1039/C9CS00129H – ident: e_1_2_8_36_1 doi: 10.1021/jacs.0c07022 – ident: e_1_2_8_40_1 doi: 10.1021/acs.chemrev.1c00553 – ident: e_1_2_8_51_1 doi: 10.1073/pnas.2123111119 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201700996 – ident: e_1_2_8_69_1 doi: 10.1080/00268977400100171 – ident: e_1_2_8_13_1 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_8_46_1 doi: 10.1021/cm402428a – ident: e_1_2_8_64_1 doi: 10.1021/acs.accounts.9b00273 – ident: e_1_2_8_74_1 doi: 10.1002/anie.202117433 – ident: e_1_2_8_2_1 doi: 10.1038/s41571-022-00631-3 – ident: e_1_2_8_26_1 doi: 10.1002/anie.202212673 – ident: e_1_2_8_50_1 doi: 10.1038/nnano.2009.326 – ident: e_1_2_8_14_1 doi: 10.1007/s11426-022-1271-0 – ident: e_1_2_8_63_1 doi: 10.1016/j.biomaterials.2021.120926 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202204604 – ident: e_1_2_8_56_1 doi: 10.1021/jacs.0c11599 – ident: e_1_2_8_37_1 doi: 10.1002/anie.202114722 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202110526 – ident: e_1_2_8_33_1 doi: 10.7150/thno.22872 – ident: e_1_2_8_6_1 doi: 10.1038/s41578-021-00328-6 |
| SSID | ssj0009606 |
| Score | 2.6457677 |
| Snippet | Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2210179 |
| SubjectTerms | Breast Neoplasms Coloring Agents Diagnosis Emission Female Fluorescence Humans Hyperthermia Immunotherapy Infrared windows Materials science Medical imaging Nanoparticles Nanoparticles - therapeutic use Near infrared radiation Neoplasms - diagnostic imaging Neoplasms - therapy Organic chemistry photoacoustic imaging Photoacoustic Techniques - methods photodynamic therapy Phototherapy - methods Photothermal conversion photothermal therapy polymethine dyes second near‐infrared emission Theranostic Nanomedicine - methods |
| Title | Rational Design of Polymethine Dyes with NIR‐II Emission and High Photothermal Conversion Efficiency for Multimodal‐Imaging‐Guided Photo‐Immunotherapy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210179 https://www.ncbi.nlm.nih.gov/pubmed/36630669 https://www.proquest.com/docview/2789615764 https://www.proquest.com/docview/2765073458 |
| Volume | 35 |
| WOSCitedRecordID | wos000929472300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED_WdA_bQ_d_zdYVDQZ7MrUlWZYfQ5NsgS6EsELejCzJtJDYo0kKedtH2Cfoh-sn6Ul23IYxBtubbMlnId9ZP510vwP4lDtSNBvbQLIwD3hh0KRwGRIUqdJCs1DF1gcKnyXjsZzN0smDKP6aH6J1uDnL8P9rZ-AqX57ck4Yq43mDKPVKtQf7FJU37sB-fzo8P7sn3hU-v6bb7wtSweWWuDGkJ7sSdiem39DmLnj1s8_w2f_3-zkcNMiT9GpVeQGPbPkSnj7gI3wFN9PGNUj6_mAHqQoyqeYbl2YaW5H-xi6J89yS8Wh6-_PXaEQGqCfO4UZUaYg7NEImF9XKh3UtUM6pO9TuPXJk4MkqXKQnQaBMfOTvojJq7gQtfLIkLH1ZXxpraiG-YrEumyCxzWs4Hw6-n34NmgQOgWYJSwNKTZyGrNDGJrjUyalj-xNpJNMoNZoWXCqFCEHnVKu4MIIqXH0ZgajGRjhzKvYGOmVV2kMgeCMWqpBcR5pzK2SoIiaY0ElsGE90F4Lt18t0w27ukmzMs5qXmWZu3LN23LvwuW3_o-b1-GPLo60yZI19LzMXP4xYMBG8Cx_bahxxt92iSlutXRtEvwnjsezC21qJ2lcxBHoI9lA49brylz5kvf63Xnv17l8eeg9PsMzq43NH0Fldre0HeKyvV5fLq2PYS2byuLGdO-uVHNg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED_BhgQ88J9RGGAkJJ6iJbbjJI_V2rKKrqqqTdpb5NqOmNQm09oi9Y2PwCfgw_FJuHPSjAohJMRb4jgXy7mLf77c_Q7g_YxI0VzsglSEs0AWFk0KtyFBkWmjjAh17Hyi8CgZj9OLi2zSRBNSLkzND9E63Mgy_PeaDJwc0kc3rKHaeuIgzr1W3YZ9ibqESr7fmw7ORzfMu8oX2KQffkGmZLplbgz50a6E3ZXpN7i5i1798jN4-B8G_ggeNNiTdWtleQy3XPkE7v_CSPgUvk8b5yDr-dAOVhVsUs03VGgae7Hexi0Z-W7ZeDj98fXbcMj6qCnkcmO6tIzCRtjkc7XyiV0LlHNMYe3eJ8f6nq6Ccj0ZQmXmc38XldVzErTw5ZLw6OP60jpbC_EXFuuySRPbPIPzQf_s-CRoSjgERiQiCzi3cRaKwliX4GZnxonvT2VRmkWZNbyQqdaIEcyMGx0XVnGN-y-rENe4CNdOLZ7DXlmV7gUwbIiVLlJpIiOlU2moI6GEMklshUxMB4Lt68tNw29OZTbmec3MzHOa97yd9w58aPtf1cwef-x5uNWGvLHwZU4ZxIgGEyU78K69jDNOP1x06ao19UH8mwgZpx04qLWofZRAqIdwD4Vzryx_GUPe7Z1227OX_3LTW7h7cnY6ykfD8adXcA_bRR1Mdwh7q-u1ew13zJfV5fL6TWNCPwE3dB_g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFyE48M9SWMBISJyiTWzHSY7VtoWKUlUVK-0tcm1HrNQmq227Um88Ak_Aw_EkzDhplgohJMQtcZyJ5czEnycz3wC8nRMpmotdkIpwHsjCoknhNiQoMm2UEaGOnU8UHieTSXp2lk2baELKhan5IVqHG1mG_16TgbsLWxxfs4Zq64mDOPdadRMOJFWS6cBBfzY8HV8z7ypfYJN--AWZkumOuTHkx_sS9lem3-DmPnr1y8_w_n8Y-AO412BP1quV5SHccOUjuPsLI-Fj-D5rnIOs70M7WFWwabXYUqFp7MX6W7di5Ltlk9Hsx9dvoxEboKaQy43p0jIKG2HTL9XaJ3YtUc4JhbV7nxwbeLoKyvVkCJWZz_1dVlYvSNDSl0vCo_ebc-tsLcRfWG7KJk1s-wROh4PPJx-CpoRDYEQisoBzG2ehKIx1CW525pz4_lQWpVmUWcMLmWqNGMHMudFxYRXXuP-yCnGNi3Dt1OIpdMqqdM-AYUOsdJFKExkpnUpDHQkllEliK2RiuhDsXl9uGn5zKrOxyGtmZp7TvOftvHfhXdv_omb2-GPPo5025I2Fr3LKIEY0mCjZhTftZZxx-uGiS1dtqA_i30TIOO3CYa1F7aMEQj2Eeyice2X5yxjyXv9Trz17_i83vYbb0_4wH48mH1_AHWwWdSzdEXTWlxv3Em6Zq_X56vJVY0E_AZRVH1s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Polymethine+Dyes+with+NIR-II+Emission+and+High+Photothermal+Conversion+Efficiency+for+Multimodal-Imaging-Guided+Photo-Immunotherapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ran%2C+Xiao-Yun&rft.au=Chen%2C+Ping&rft.au=Liu%2C+Yan-Zhao&rft.au=Shi%2C+Lei&rft.date=2023-03-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=12&rft.spage=e2210179&rft_id=info:doi/10.1002%2Fadma.202210179&rft_id=info%3Apmid%2F36630669&rft.externalDocID=36630669 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |