Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via e...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 34; číslo 17; s. e2107938 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Electrospinning has been used for several applications over the last 20 years. Multifunctional protective membranes in terms of novel material design, novel structure construction, and various applications via electrospinning are reviewed. Diverse protective membranes are investigated, existing problems are discussed, and solutions for future technology development are proposed. This is of significance for the sustainable development of intelligent protection systems. |
|---|---|
| AbstractList | Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection. Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection. Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection. Electrospinning has been used for several applications over the last 20 years. Multifunctional protective membranes in terms of novel material design, novel structure construction, and various applications via electrospinning are reviewed. Diverse protective membranes are investigated, existing problems are discussed, and solutions for future technology development are proposed. This is of significance for the sustainable development of intelligent protection systems. |
| Author | Han, Yanting Li, Robert K. Y. Si, Yifan Fei, Bin Qu, Jinping Iqbal, Mohammad Irfan Hu, Jinlian Shi, Shuo Wu, Ting |
| Author_xml | – sequence: 1 givenname: Shuo surname: Shi fullname: Shi, Shuo organization: City University of Hong Kong – sequence: 2 givenname: Yifan surname: Si fullname: Si, Yifan organization: City University of Hong Kong – sequence: 3 givenname: Yanting surname: Han fullname: Han, Yanting organization: Sichuan University – sequence: 4 givenname: Ting surname: Wu fullname: Wu, Ting organization: Huazhong University of Science & Technology – sequence: 5 givenname: Mohammad Irfan surname: Iqbal fullname: Iqbal, Mohammad Irfan organization: City University of Hong Kong – sequence: 6 givenname: Bin surname: Fei fullname: Fei, Bin organization: The Hong Kong Polytechnic University – sequence: 7 givenname: Robert K. Y. surname: Li fullname: Li, Robert K. Y. organization: City University of Hong Kong – sequence: 8 givenname: Jinlian orcidid: 0000-0001-8914-5473 surname: Hu fullname: Hu, Jinlian email: jinliahu@cityu.edu.hk organization: City University of Hong Kong – sequence: 9 givenname: Jinping surname: Qu fullname: Qu, Jinping email: jpqu@hust.edu.cn organization: Huazhong University of Science & Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34969155$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9v1DAQxS1URLeFK0dkiQuHZvGf2Im5paULSF2BoHfLcWYrV4kTbGdRvwSfGYdtQaqEONkj_94bz7wTdORHDwi9pGRNCWFvTTeYNSOMkkrx-glaUcFoURIljtCKKC4KJcv6GJ3EeEsIUZLIZ-iYl0oqKsQK_fwKFnzCX8J4EyBG7PxyT2CT2wPewtAG4yHijWmDsyZBh_fO4Ms-E2GMk_Pe-Zt3uOn2xtv8us1McKaPZ_jcjYMbIDmLv6Uw2zTnFmfY-A5vZp87jN70uJmmfnHOVXyOnu6yFF7cn6foenN5ffGxuPr84dNFc1VYXvG6oIR30lJpDaEVoaxuGZHAlDTdjlXWMsI5mMrsQAKXtmK5Yp3oJKlawww_RW8OtlMYv88Qkx5ctND3edRxjppJKhStBasz-voRejvOIf97oYQoVU2JyNSre2puB-j0FNxgwp1-WHQGygNg89JigJ22Lv2eOQXjek2JXvLUS576T55Ztn4ke3D-p0AdBD9cD3f_oXXzftv81f4Cr220Zw |
| CitedBy_id | crossref_primary_10_1002_sstr_202400666 crossref_primary_10_1016_j_mser_2024_100915 crossref_primary_10_1016_j_polymer_2023_126249 crossref_primary_10_1016_j_apmt_2023_101792 crossref_primary_10_1016_j_cej_2025_166527 crossref_primary_10_1016_j_cej_2023_144854 crossref_primary_10_3390_molecules28124857 crossref_primary_10_3390_polym15132813 crossref_primary_10_1016_j_polymer_2023_126481 crossref_primary_10_1016_j_seppur_2025_132938 crossref_primary_10_3390_ma16155339 crossref_primary_10_1002_adfm_202415258 crossref_primary_10_1002_smll_202307810 crossref_primary_10_1039_D5TA01990G crossref_primary_10_1007_s10965_023_03827_y crossref_primary_10_1016_j_ijbiomac_2023_127862 crossref_primary_10_1063_5_0231856 crossref_primary_10_3390_polym15071686 crossref_primary_10_1038_s41467_024_53137_0 crossref_primary_10_1016_j_pmatsci_2024_101376 crossref_primary_10_3390_s24113602 crossref_primary_10_1016_j_jmbbm_2023_106214 crossref_primary_10_1007_s10853_024_09416_8 crossref_primary_10_3390_biomimetics9090523 crossref_primary_10_1051_bioconf_202414701024 crossref_primary_10_3390_membranes14110244 crossref_primary_10_1007_s42765_022_00200_4 crossref_primary_10_1016_j_carbpol_2023_121050 crossref_primary_10_1016_j_nwnano_2025_100119 crossref_primary_10_1016_j_mtcomm_2023_107705 crossref_primary_10_3390_ma16103677 crossref_primary_10_1016_j_memsci_2024_122795 crossref_primary_10_1177_15589250251359274 crossref_primary_10_1007_s42765_023_00364_7 crossref_primary_10_1016_j_ijbiomac_2025_140127 crossref_primary_10_1002_adma_202409606 crossref_primary_10_1016_j_mtcomm_2024_110840 crossref_primary_10_1016_j_bioactmat_2024_09_003 crossref_primary_10_1016_j_jallcom_2024_174433 crossref_primary_10_1002_adma_202306880 crossref_primary_10_1016_j_seppur_2022_122175 crossref_primary_10_1039_D3SC05283D crossref_primary_10_1016_j_cej_2023_144705 crossref_primary_10_3390_polym14122489 crossref_primary_10_1002_adma_202208852 crossref_primary_10_1186_s12951_022_01685_2 crossref_primary_10_1002_admt_202500314 crossref_primary_10_1002_adma_202507498 crossref_primary_10_1007_s40820_025_01716_1 crossref_primary_10_1039_D5NR01228G crossref_primary_10_1002_marc_202401144 crossref_primary_10_1002_advs_202207192 crossref_primary_10_1002_admt_202200834 crossref_primary_10_3390_electronics12040885 crossref_primary_10_3390_ma16165720 crossref_primary_10_1016_j_cej_2025_163367 crossref_primary_10_1007_s42765_025_00541_w crossref_primary_10_1016_j_cej_2025_163450 crossref_primary_10_3390_pharmaceutics15051347 crossref_primary_10_1002_idm2_12215 crossref_primary_10_1002_smll_202301071 crossref_primary_10_3390_ijms241311037 crossref_primary_10_3390_polym16162352 crossref_primary_10_1007_s40820_024_01359_8 crossref_primary_10_3390_polym15071654 crossref_primary_10_1002_adfm_202416428 crossref_primary_10_1016_j_matdes_2024_113153 crossref_primary_10_1016_j_jhazmat_2024_134740 crossref_primary_10_1016_j_solmat_2024_113253 crossref_primary_10_1002_adma_202306435 crossref_primary_10_1016_j_compositesb_2022_110312 crossref_primary_10_1016_j_seppur_2025_135275 crossref_primary_10_1016_j_cej_2024_158133 crossref_primary_10_1016_j_porgcoat_2024_108744 crossref_primary_10_1016_j_compositesa_2025_109281 crossref_primary_10_1016_j_jallcom_2023_172445 crossref_primary_10_1002_smll_202411838 crossref_primary_10_1088_2631_7990_ade9fe crossref_primary_10_1016_j_colsurfa_2025_136319 crossref_primary_10_1016_j_apmt_2025_102676 crossref_primary_10_1002_adfm_202209029 crossref_primary_10_1002_marc_202500329 crossref_primary_10_3390_ijms25052507 crossref_primary_10_1039_D3MH00340J crossref_primary_10_1002_adfm_202309270 crossref_primary_10_1002_smll_202309572 crossref_primary_10_1002_smll_202505941 crossref_primary_10_1002_admt_202201161 crossref_primary_10_1016_j_cej_2024_150873 crossref_primary_10_1016_j_jcis_2024_05_105 crossref_primary_10_1016_j_compag_2025_110988 crossref_primary_10_1021_acs_langmuir_4c03882 crossref_primary_10_1186_s12951_023_01987_z crossref_primary_10_3390_coatings13101686 crossref_primary_10_1007_s12274_022_4733_4 crossref_primary_10_1016_j_nantod_2022_101723 crossref_primary_10_1038_s43246_024_00597_y crossref_primary_10_1016_j_mtnano_2025_100642 crossref_primary_10_1088_2631_7990_ada7aa crossref_primary_10_1007_s42235_022_00199_9 crossref_primary_10_1002_app_57548 crossref_primary_10_1016_j_nanoen_2024_110407 crossref_primary_10_1016_j_cej_2025_166383 crossref_primary_10_1002_admi_202300507 crossref_primary_10_1016_j_desal_2024_117742 crossref_primary_10_3390_technologies12100173 crossref_primary_10_1016_j_ceramint_2023_11_040 crossref_primary_10_1108_PRT_11_2023_0101 crossref_primary_10_1016_j_coco_2023_101500 crossref_primary_10_1007_s42765_022_00233_9 crossref_primary_10_1021_acsaem_5c01303 crossref_primary_10_1016_j_cej_2023_142847 crossref_primary_10_1038_s41467_025_62146_6 crossref_primary_10_1002_adfm_202418066 crossref_primary_10_1007_s42765_024_00379_8 crossref_primary_10_1039_D3MH00768E crossref_primary_10_1002_adhm_202304114 crossref_primary_10_1016_j_fbio_2025_107531 crossref_primary_10_1149_1945_7111_ad2643 crossref_primary_10_1016_j_talanta_2024_127335 crossref_primary_10_1007_s11426_024_2412_y crossref_primary_10_1002_marc_202200740 crossref_primary_10_1007_s40820_025_01771_8 crossref_primary_10_1016_j_cej_2025_166151 crossref_primary_10_3390_nano13132000 crossref_primary_10_1016_j_apcatb_2023_123300 crossref_primary_10_1016_j_cej_2024_149749 crossref_primary_10_1002_mabi_202300283 crossref_primary_10_1002_smll_202205067 crossref_primary_10_1016_j_jhazmat_2025_139676 crossref_primary_10_1016_j_seppur_2025_133984 crossref_primary_10_3390_polym16040514 crossref_primary_10_1016_j_ijbiomac_2024_135477 crossref_primary_10_3390_catal15010074 crossref_primary_10_1002_smll_202304705 crossref_primary_10_3390_nano15060461 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1002_adfm_202408696 crossref_primary_10_1007_s42765_025_00606_w crossref_primary_10_1016_j_cis_2024_103236 crossref_primary_10_1016_j_memsci_2023_122090 crossref_primary_10_1016_j_polymdegradstab_2025_111381 crossref_primary_10_3390_nano15080623 crossref_primary_10_1002_mabi_202300274 crossref_primary_10_1088_3050_287X_adfaf7 crossref_primary_10_1016_j_matt_2024_01_009 crossref_primary_10_1016_j_memsci_2025_123750 crossref_primary_10_1016_j_seppur_2025_132402 crossref_primary_10_1038_s41598_024_81778_0 crossref_primary_10_1039_D5CS00093A crossref_primary_10_1007_s42765_025_00545_6 crossref_primary_10_1007_s10854_025_15394_7 crossref_primary_10_1039_D4RA04231J crossref_primary_10_1016_j_cej_2022_139281 crossref_primary_10_1002_adma_202305711 crossref_primary_10_1016_j_watres_2023_119830 crossref_primary_10_1016_j_jcis_2023_12_014 crossref_primary_10_1016_j_memsci_2022_120962 crossref_primary_10_1016_j_jcis_2023_04_140 crossref_primary_10_1039_D4MH01618A crossref_primary_10_1007_s10853_025_10794_w crossref_primary_10_1016_j_seppur_2024_131378 crossref_primary_10_1111_php_13924 crossref_primary_10_1007_s12274_022_4987_x crossref_primary_10_1002_app_54631 crossref_primary_10_1016_j_ijbiomac_2023_127000 crossref_primary_10_1016_j_jece_2024_113034 crossref_primary_10_1002_adma_202305606 crossref_primary_10_1002_adfm_202406950 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_1016_j_ijbiomac_2024_136780 crossref_primary_10_1016_j_susmat_2025_e01598 crossref_primary_10_1002_adfm_202305411 crossref_primary_10_1002_advs_202400626 crossref_primary_10_3390_membranes13050488 crossref_primary_10_1002_adfm_202423284 crossref_primary_10_3390_ma18071479 crossref_primary_10_1016_j_cej_2025_168746 crossref_primary_10_1002_adma_202401264 crossref_primary_10_3390_polym17081118 crossref_primary_10_1002_adhm_202401786 crossref_primary_10_1016_j_cej_2024_153770 crossref_primary_10_1016_j_carbpol_2023_120868 crossref_primary_10_1016_j_pmatsci_2025_101504 crossref_primary_10_1016_j_memsci_2024_123385 crossref_primary_10_3390_ddc4010008 crossref_primary_10_3390_polym14235073 crossref_primary_10_1177_00405175241247340 crossref_primary_10_1016_j_apcatb_2025_125456 crossref_primary_10_1007_s10163_025_02245_0 crossref_primary_10_1007_s42114_023_00812_3 crossref_primary_10_1016_j_mtnano_2024_100501 crossref_primary_10_1039_D3QM01251D crossref_primary_10_1021_acs_langmuir_5c02179 crossref_primary_10_1021_acs_nanolett_4c06089 crossref_primary_10_1016_j_ces_2025_122344 crossref_primary_10_1007_s42765_022_00177_0 crossref_primary_10_1016_j_polymer_2025_128221 crossref_primary_10_1016_j_coco_2024_102076 crossref_primary_10_1016_j_renene_2024_121658 crossref_primary_10_1002_app_54788 crossref_primary_10_1177_15280837241299694 crossref_primary_10_1002_advs_202300598 crossref_primary_10_1016_j_cej_2025_164394 crossref_primary_10_1016_j_seppur_2023_124952 crossref_primary_10_1007_s42765_022_00202_2 crossref_primary_10_1016_j_mattod_2023_05_005 crossref_primary_10_1007_s12274_024_6753_8 crossref_primary_10_1007_s12221_024_00701_6 crossref_primary_10_1051_shsconf_202418701018 crossref_primary_10_1016_j_colsurfa_2023_132224 crossref_primary_10_1002_adma_202508400 crossref_primary_10_1016_j_ijbiomac_2024_139100 crossref_primary_10_1016_j_memsci_2025_124413 crossref_primary_10_1016_j_seppur_2024_131335 crossref_primary_10_1093_rb_rbae150 crossref_primary_10_3390_polym16172423 crossref_primary_10_1016_j_mtcomm_2023_106530 crossref_primary_10_1007_s42765_025_00539_4 crossref_primary_10_1016_j_nanoen_2025_110649 crossref_primary_10_1002_adma_202308586 crossref_primary_10_1186_s12896_025_01017_w crossref_primary_10_1016_j_cej_2023_144984 crossref_primary_10_1016_j_ijbiomac_2023_127723 crossref_primary_10_1016_j_ijbiomac_2024_131963 crossref_primary_10_3390_gels9040339 crossref_primary_10_1002_mame_202300312 crossref_primary_10_1186_s12951_022_01463_0 crossref_primary_10_1016_j_mtcomm_2022_105014 crossref_primary_10_1016_j_scib_2022_09_014 crossref_primary_10_1038_s41378_023_00593_1 crossref_primary_10_1007_s40820_023_01028_2 crossref_primary_10_1016_j_cej_2024_158636 crossref_primary_10_1016_j_cej_2025_160214 crossref_primary_10_1016_j_coco_2025_102593 crossref_primary_10_3389_fbioe_2023_1094397 crossref_primary_10_1002_app_57712 crossref_primary_10_1016_j_cej_2024_148841 crossref_primary_10_1021_acspolymersau_5c00021 crossref_primary_10_3934_matersci_2025034 |
| Cites_doi | 10.1016/j.seppur.2015.11.046 10.1177/152808378501500205 10.1039/C7RA04843B 10.1021/nl5036572 10.1063/1.1510664 10.1016/j.memsci.2014.03.055 10.1002/adfm.201903633 10.1017/S0022112099007223 10.3390/s18020330 10.1177/1528083717705622 10.1063/1.1408260 10.1016/j.cej.2021.130925 10.1007/s11242-012-9945-8 10.1016/j.jcis.2021.02.048 10.1016/S0266-3538(03)00178-7 10.1016/j.polymer.2005.03.011 10.1016/j.memsci.2011.03.014 10.1016/j.jclepro.2020.122739 10.1039/C4RA09129A 10.1039/b703447b 10.1016/j.nanoen.2019.02.010 10.1016/j.elstat.2020.103425 10.1021/acsami.0c00846 10.1021/acsami.7b08885 10.1002/mame.202100371 10.1155/2012/725950 10.1021/acsnano.0c05537 10.1177/1528083714537101 10.1088/0957-4484/26/2/025301 10.1021/acsnano.0c10817 10.1557/jmr.2020.88 10.1002/admi.201700062 10.1016/j.coco.2019.06.002 10.1016/j.eurpolymj.2005.05.008 10.1016/j.memsci.2009.11.031 10.1001/archotol.1993.01880210098013 10.1007/978-94-007-3840-9 10.1002/app.28067 10.1002/app.41515 10.1002/polb.10511 10.3390/molecules25235540 10.1016/j.cej.2020.126222 10.1016/j.jmapro.2011.01.003 10.1002/adma.201908496 10.1016/S0021-8502(99)00034-8 10.1021/acsami.6b09392 10.1177/1528083720904675 10.1016/S1369-7021(06)71389-X 10.2174/1874140101307010008 10.1016/j.memsci.2009.10.047 10.1142/5894 10.1002/adfm.202005033 10.1007/s00330-020-06850-5 10.1016/j.seppur.2005.10.010 10.1007/s12221-012-1007-x 10.1002/app.46342 10.1002/adsu.202000105 10.1080/00405000.2010.529285 10.1016/j.coco.2021.100720 10.1103/RevModPhys.92.035004 10.1016/j.msec.2012.02.019 10.1016/j.ijbiomac.2015.05.014 10.1021/acsami.8b07393 10.1021/nl049590f 10.1021/acssuschemeng.9b05092 10.1007/s12221-011-0057-9 10.1016/j.biomaterials.2008.01.011 10.1039/C7RA13444D 10.1016/j.progpolymsci.2016.06.006 10.2486/indhealth.44.404 10.1002/pen.10799 10.1080/01426390903560414 10.1080/00405160902904641 10.1016/j.cis.2019.03.006 10.1002/admi.201900622 10.1021/la403111m 10.1080/03602559909351596 10.1063/1.373532 10.1016/S0032-3861(00)00250-0 10.1016/j.jcis.2020.01.063 10.1063/1.5109517 10.1201/b12160 10.1016/S0167-577X(00)00328-1 10.1016/j.jenvman.2021.113043 10.1007/s11814-010-0376-3 10.1016/j.coco.2017.10.002 10.1002/app.50391 10.1080/15583720802022281 10.1021/acsnano.8b08242 10.1109/ICPADM.2006.284332 10.1016/j.jcis.2017.08.055 10.1177/1528083712450742 10.1515/IJNSNS.2007.8.3.393 10.1002/aenm.201903921 10.1088/1361-6463/ab7562 10.1002/app.24123 10.1136/svn-2020-000382 10.1016/0021-9797(71)90141-X 10.1016/j.tsf.2007.04.086 10.1002/mame.200500215 10.1088/0953-8984/19/35/356002 10.1021/acsami.1c08798 10.1007/s11814-009-0309-1 10.1126/sciadv.1700895 10.1016/j.polymer.2007.08.002 10.1016/j.compositesb.2014.06.025 10.1002/adfm.202002437 10.1088/0957-4484/7/3/009 10.1515/IJNSNS.2005.6.3.243 10.1016/j.jcis.2019.08.092 10.1002/jbm.b.30336 10.1016/j.progpolymsci.2016.01.001 10.1002/adv.21568 10.1098/rspa.1964.0151 10.1098/rspa.1969.0205 10.1039/C8TC00002F 10.1177/1528083716682920 10.1002/adma.202070064 10.1021/acsami.1c03658 10.1080/00222348.2015.1090654 10.1021/ja068165g 10.1021/acsami.7b02594 10.1007/978-3-319-39715-3_4 10.1016/j.pmatsci.2013.05.001 10.1002/app.40515 10.1002/app.47125 10.1007/s12221-016-5730-6 10.1007/978-94-009-7343-5_5 10.1021/acs.iecr.9b05617 10.1016/j.matlet.2010.04.008 10.1088/0957-4484/17/20/019 10.1016/j.eurpolymj.2015.11.014 10.1021/acssuschemeng.5b00749 10.1080/00222348.2013.763569 10.1016/j.enpol.2008.08.016 10.1126/science.aaf5471 10.1002/adfm.202105587 10.1002/polb.24534 10.1016/j.progpolymsci.2013.07.006 10.1088/0957-4484/17/14/R01 10.1097/MD.0000000000020603 10.1016/j.carbpol.2012.09.026 10.1080/14786448208628425 10.1080/00405169208688856 10.1016/j.jcis.2021.05.171 10.1016/j.msec.2018.05.076 10.1007/s12221-020-9860-5 10.1063/1.1383791 10.1016/j.jmatprotec.2005.06.053 10.3144/expresspolymlett.2020.82 10.1002/anie.200461092 10.1081/MA-120014836 10.1177/152808378501500105 10.1002/app.25464 10.1007/s007060170142 10.1007/s12221-020-9562-z 10.1016/S0140-6736(96)12338-2 10.1007/s10853-012-6276-7 10.1016/S1369-7021(10)70200-5 10.1007/s00521-017-2996-6 10.1533/9781845693732.1.3 10.1021/acsami.5b02848 10.1016/j.enpol.2007.11.002 10.1615/JPorMedia.v18.i3.50 10.1021/acsami.0c20172 10.1177/1528083718779426 10.3390/pharmaceutics13020286 10.1016/0040-6031(70)85016-X 10.1021/acsami.8b10408 10.1201/9781315365701-3 10.1016/j.biombioe.2003.07.005 10.1002/app.36774 10.1016/j.memsci.2017.12.032 10.5772/2416 10.1039/C7TC03058D 10.1007/s10853-011-5310-5 10.1002/pen.24726 10.14502/Tekstilec2013.56.4-12 10.1016/0021-9797(71)90241-4 10.1002/wnan.1611 10.1016/0040-6031(71)80001-1 10.1002/ange.200460333 10.1021/acsami.8b08191 10.1103/PhysRev.10.1 10.1007/BF02875881 10.1016/j.nanoen.2017.04.035 10.1002/mame.202000370 10.1002/ceat.201400323 10.1002/app.21481 10.1002/adma.202100140 10.1021/acsami.0c22670 10.1002/adma.201704765 10.1002/app.28994 10.1177/152808378901800304 10.1039/C5RA27913E 10.1016/j.matlet.2015.04.119 10.1016/j.addr.2007.04.020 10.1016/S0964-8305(02)00051-3 10.1002/adfm.202008705 10.1002/pat.1839 10.1021/jz402762h 10.1016/B978-0-08-100907-9.00012-X 10.1016/j.aiepr.2019.06.002 10.1177/1528083717710711 10.1002/smll.201801527 10.1039/C3TC31680G 10.1021/acsami.7b16422 10.1016/j.colsurfb.2011.04.018 10.1038/s41563-020-00902-3 10.1007/978-3-642-54160-5 10.1021/acsami.0c04486 10.1016/S1473-3099(20)30152-3 10.1016/j.jcis.2020.05.062 10.1146/annurev.fluid.29.1.27 10.1177/152808377900800408 10.1063/1.3567097 10.1016/j.memsci.2016.10.028 10.1166/jnn.2008.536 10.1163/156855508X292383 10.1002/admi.201600036 10.1021/acsabm.9b00875 10.1002/app.41388 10.1002/app.46360 10.1016/j.jfoodeng.2005.04.007 10.1002/(SICI)1097-0363(19960815)23:3<221::AID-FLD419>3.0.CO;2-0 10.1002/admi.201600516 10.1002/smll.202000397 10.1515/epoly-2020-0068 10.1016/j.jhazmat.2021.127602 10.1002/adma.201904113 10.1166/asl.2012.3360 10.1021/nl035135s 10.1002/adv.21947 10.1017/S0022112004000679 10.1002/mame.201600272 10.1002/adma.200400719 10.1016/j.polymer.2005.01.054 10.1126/science.aau1217 10.1016/j.apsusc.2017.12.267 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202107938 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 34969155 10_1002_adma_202107938 ADMA202107938 |
| Genre | reviewArticle Systematic Review Journal Article |
| GrantInformation_xml | – fundername: Contract Research funderid: 9231419 – fundername: CityU funderid: 9380116 – fundername: National Natural Science Foundation of China funderid: 51673162; 52073241 – fundername: Contract Research grantid: 9231419 – fundername: National Natural Science Foundation of China grantid: 51673162 – fundername: National Natural Science Foundation of China grantid: 52073241 – fundername: CityU grantid: 9380116 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3738-103d6c16ca0170128b206e296adf27cc2033ea7afe6e36c723ea2d5d607ba2a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 318 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767506700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 11:58:26 EDT 2025 Sun Nov 09 08:10:11 EST 2025 Mon Jul 21 06:06:25 EDT 2025 Tue Nov 18 22:19:30 EST 2025 Sat Nov 29 07:23:12 EST 2025 Wed Jan 22 16:26:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | breathability unidirectional transmission protective membranes electrospinning waterproofing |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3738-103d6c16ca0170128b206e296adf27cc2033ea7afe6e36c723ea2d5d607ba2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
| ORCID | 0000-0001-8914-5473 |
| PMID | 34969155 |
| PQID | 2655498105 |
| PQPubID | 2045203 |
| PageCount | 31 |
| ParticipantIDs | proquest_miscellaneous_2615918528 proquest_journals_2655498105 pubmed_primary_34969155 crossref_citationtrail_10_1002_adma_202107938 crossref_primary_10_1002_adma_202107938 wiley_primary_10_1002_adma_202107938_ADMA202107938 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 103 2019 2020; 363 30 2010; 13 1970 1971; 1 3 2020; 20 2019; 15 2021; 602 2013 2016 2020; 58 61 10 2004; 4 2009; 111 2001 2014 2020 2013 2017; 13 48 92 47 2020; 14 2020; 13 2020; 12 2020; 565 2007 2017 2018; 17 2 2013; 7 2012; 13 2014; 131 2001; 41 2016; 35 2018; 47 2019 2018 2001 2016; 268 10 48 38 2018; 6 2018; 8 1996 1997 2000 2002 2005 2012 2000 2013 2020; 23 29 87 14 6 10 405 29 16 2013; 52 2015; 132 2007; 8 2008; 516 2020; 577 2019; 556 2019; 29 1982 2016; 158 2018 2014 2011 2008; 18 2 22 29 2003; 41 2004; 43 2019; 7 2007; 19 2011 2020 2015 2012 2019; 13 104 38 47 31 2019; 31 2019; 2 2020; 305 2020; 35 2012 2012 2020; 32 2016; 17 2011; 5 2012; 32 2015; 471 2015 2013; 54 22 2016; 6 1999 2021 2010 2020; 38 294 35 274 2016; 3 2020; 30 1971; 35 2006; 49 2013 2011; 43 102 2008 2015 2015; 109 156 79 2021; 138 1917; 10 1971; 36 2011; 86 2008; 48 2020; 25 2020; 21 1969; 313 2018; 10 2017; 302 2016; 8 2018; 14 2006; 102 2018; 13 2017; 5 2021; 25 2017; 6 2017; 7 2021; 20 2006; 75 2001; 90 2017; 4 2006; 76 2019 2016; 45 2019; 58 2020; 402 2005 2012; 41 126 2020; 59 2011; 12 2017; 9 2014; 67 1992 2006 1994 2019 2019; 22 44 25 6 49 2002; 49 2010; 64 2014; 5 2020; 4 1997; 349 2014; 4 2021; 31 2021; 33 2018 2008 2010 2011 2016; 37 8 27 28 74 2001 2020; 53 2017; 36 2001 2006 2008 2017; 42 9 42 2018; 135 2004 2009 2008; 27 37 36 2021 2021; 424 306 2016; 353 2021; 592 2020 2020 2020; 99 5 20 2012 2010 2010; 8 348 349 1996; 7 2017; 525 2002; 39 2007; 129 2015; 18 2015; 3 1964; 280 2012 2005 2006 2009; 17 41 2006; 17 2013 2018; 56 91 2008 2007 2014 2011 2014; 39 375 463 2008; 11 2018; 549 1979 1989 1993; 8 18 119 2015; 7 2007; 59 2005; 46 2016; 56 2021; 13 2012; 93 2021; 15 2004; 116 2017; 508 1882; 14 2021 2004; 16 2005; 167 2018 2018; 47 30 2020 2000; 31 2020 2005; 96 2019; 136 2016 2011; 46 2005 2021; 46 13 2018; 439 2014 1985 1985; 15 15 2004; 516 2022; 427 2018; 56 2015 2017; 15 3 2003; 63 2012 2005 2015 2013; 49 290 132 92 2012 2014; 2012 26 2007; 48 2018; 58 e_1_2_9_71_2 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_2 e_1_2_9_18_1 e_1_2_9_183_1 Heald M. A. (e_1_2_9_186_1) 2012 e_1_2_9_18_3 e_1_2_9_160_1 e_1_2_9_60_3 e_1_2_9_60_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_45_5 e_1_2_9_45_3 e_1_2_9_68_3 e_1_2_9_68_2 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_11_2 e_1_2_9_129_6 e_1_2_9_129_2 e_1_2_9_129_3 e_1_2_9_129_4 e_1_2_9_129_5 e_1_2_9_129_1 e_1_2_9_106_2 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 He J. H. (e_1_2_9_54_1) 2008 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_5_3 e_1_2_9_5_2 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 Raheel M. (e_1_2_9_3_3) 1994 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_31_3 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_2 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_16_3 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_2 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_8_4 e_1_2_9_8_3 e_1_2_9_8_2 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_55_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_2 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_17_3 e_1_2_9_17_2 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_7_2 Moghadam B. H. (e_1_2_9_65_2) 2013; 22 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_7_4 Subbotin A. V. (e_1_2_9_44_1) 2015; 471 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_7_3 e_1_2_9_150_2 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_103_2 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_87_1 Mohammadian M. (e_1_2_9_64_1) 2012; 49 e_1_2_9_64_4 e_1_2_9_64_3 e_1_2_9_64_2 e_1_2_9_2_1 Karim S. A. (e_1_2_9_60_1) 2012; 8 e_1_2_9_138_1 e_1_2_9_115_2 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_3 e_1_2_9_76_2 e_1_2_9_76_1 e_1_2_9_91_1 Kara S. (e_1_2_9_12_3) 2018; 2 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_15_3 e_1_2_9_15_2 e_1_2_9_42_1 Fragassa C. (e_1_2_9_16_4) 2016; 38 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_2 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 Chavarria G. (e_1_2_9_182_2) 2012 e_1_2_9_27_1 Haghi A. (e_1_2_9_55_1) 2019 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 Zafar F. (e_1_2_9_88_1) 2012 e_1_2_9_128_1 e_1_2_9_105_3 e_1_2_9_105_2 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 Rafiei S. (e_1_2_9_45_4) 2013; 47 e_1_2_9_181_1 e_1_2_9_62_1 Williams J. T. (e_1_2_9_12_2) 2017 e_1_2_9_24_1 e_1_2_9_85_1 Li H. (e_1_2_9_75_1) 2014; 131 e_1_2_9_4_1 e_1_2_9_47_9 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_3 e_1_2_9_47_4 e_1_2_9_47_1 e_1_2_9_47_2 e_1_2_9_132_1 e_1_2_9_47_7 e_1_2_9_47_8 e_1_2_9_47_5 e_1_2_9_47_6 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_104_2 e_1_2_9_188_1 Seyedin S. (e_1_2_9_56_1) 2017; 6 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 Rafiei S. (e_1_2_9_45_2) 2014; 48 e_1_2_9_180_1 e_1_2_9_63_2 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_63_5 e_1_2_9_63_4 e_1_2_9_63_3 e_1_2_9_86_1 e_1_2_9_3_5 e_1_2_9_3_4 e_1_2_9_3_2 e_1_2_9_3_1 Forsberg K. (e_1_2_9_1_1) 2020 Beglou M. (e_1_2_9_48_3) 2008; 42 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_48_2 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_48_4 |
| References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 129 start-page: 764 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 2012 26 year: 2012 2014 publication-title: J. Nanomater. Nanotechnology – volume: 21 start-page: 954 year: 2020 publication-title: Fibers Polym. – volume: 46 13 start-page: 2889 940 year: 2005 2021 end-page: 943 publication-title: Polymer ACS Appl. Mater. Interfaces – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 135 year: 2018 publication-title: J. Appl. Polym. Sci. – start-page: 89 year: 2016 end-page: 154 – volume: 1 3 start-page: 459 81 year: 1970 1971 publication-title: Thermochim. Acta Thermochim. Acta – volume: 14 year: 2018 publication-title: Small – volume: 2 start-page: 5949 year: 2019 publication-title: ACS Appl. Bio Mater. – volume: 76 start-page: 219 year: 2006 publication-title: J. Biomed. Mater. Res., Part B – volume: 13 start-page: 1007 year: 2012 publication-title: Fibers Polym. – year: 2014 – volume: 6 start-page: 3120 year: 2018 publication-title: J. Mater. Chem. C – start-page: 3 year: 2007 end-page: 21 – volume: 54 22 start-page: 1404 23 year: 2015 2013 publication-title: J. Macromol. Sci., Part B: Phys. System – volume: 41 start-page: 982 year: 2001 publication-title: Polym. Eng. Sci. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 16 start-page: 1151 year: 2004 publication-title: Adv. Mater. – volume: 353 start-page: 1019 year: 2016 publication-title: Science – volume: 592 start-page: 310 year: 2021 publication-title: J. Colloid Interface Sci. – start-page: 105 year: 2012 2012 end-page: 132 – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 378 year: 2008 publication-title: Polym. Rev. – volume: 12 start-page: 57 year: 2011 publication-title: Fibers Polym. – volume: 103 start-page: 3105 year: 2007 publication-title: J. Appl. Polym. Sci. – year: 2008 – volume: 116 start-page: 4438 year: 2004 publication-title: Angew. Chem. – volume: 25 year: 2021 publication-title: Compos. Commun. – volume: 46 start-page: 3372 year: 2005 publication-title: Polymer – volume: 6 start-page: 20 year: 2017 publication-title: Int. J. Cheminf. Chem. Eng. – volume: 49 start-page: 271 year: 2006 publication-title: Sep. Purif. Technol. – volume: 15 3 start-page: 365 year: 2015 2017 publication-title: Nano Lett. Sci. Adv. – volume: 63 start-page: 2223 year: 2003 publication-title: Compos. Sci. Technol. – volume: 86 start-page: 345 year: 2011 publication-title: Colloids Surf., B – volume: 17 2 start-page: 2775 40 year: 2007 2017 2018 publication-title: J. Mater. Chem. Fibres Text. – volume: 39 375 463 start-page: 683 1 145 year: 2014 2011 2014 publication-title: Prog. Polym. Sci. J. Membr. Sci. J. Membr. Sci. – volume: 136 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 525 start-page: 57 year: 2017 publication-title: J. Membr. Sci. – volume: 13 start-page: 1060 year: 2018 publication-title: ACS Nano – volume: 90 start-page: 4836 year: 2001 publication-title: J. Appl. Phys. – volume: 47 start-page: 1166 year: 2018 publication-title: J. Ind. Text. – volume: 12 year: 2020 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 42 9 42 start-page: 261 40 441 33 year: 2001 2006 2008 2017 publication-title: Polymer Mater. Today Cellul. Chem. Technol. – volume: 99 5 20 start-page: 523 year: 2020 2020 2020 publication-title: Medicine Stroke Vasc. Neurol. Lancet Infect. Dis. – volume: 2 start-page: 110 year: 2019 publication-title: Adv. Ind. Eng. Polym. Res. – volume: 43 102 start-page: 174 1019 year: 2013 2011 publication-title: J. Ind. Text. J. Text. Inst. – volume: 167 start-page: 283 year: 2005 publication-title: J. Mater. Process. Technol. – volume: 17 start-page: 624 year: 2016 publication-title: Fibers Polym. – volume: 158 start-page: 53 year: 2016 publication-title: Sep. Purif. Technol. – volume: 471 year: 2015 publication-title: Proc. R. Soc. London, Ser. A – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 402 year: 2020 publication-title: Chem. Eng. J. – volume: 58 61 10 start-page: 1173 67 year: 2013 2016 2020 publication-title: Prog. Mater. Sci. Prog. Polym. Sci. Adv. Energy Mater. – volume: 15 start-page: 5307 year: 2021 publication-title: ACS Nano – volume: 93 start-page: 79 year: 2012 publication-title: Transp. Porous Media – volume: 13 start-page: 286 year: 2021 publication-title: Pharmaceutics – volume: 3 start-page: 2551 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 38 294 35 274 start-page: 499 157 year: 1999 2021 2010 2020 publication-title: Polym.‐Plast. Technol. Eng. J. Environ. Manage. Landscape Res. J. Cleaner Prod. – volume: 13 48 92 47 start-page: 2201 401 323 277 year: 2001 2014 2020 2013 2017 end-page: 301 publication-title: Phys. Fluids Cellul. Chem. Technol. Rev. Mod. Phys. Cellul. Chem. Technol. – volume: 313 start-page: 453 year: 1969 publication-title: Proc. R. Soc. London, Ser. A – volume: 14 start-page: 1003 year: 2020 publication-title: eXPRESS Polym. Lett. – volume: 602 start-page: 105 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 41 126 start-page: 2559 232 year: 2005 2012 publication-title: Eur. Polym. J. J. Appl. Polym. Sci. – volume: 25 start-page: 5540 year: 2020 publication-title: Molecules – volume: 8 start-page: 4794 year: 2018 publication-title: RSC Adv. – volume: 305 year: 2020 publication-title: Macromol. Mater. Eng. – volume: 59 start-page: 4447 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 516 start-page: 2495 year: 2008 publication-title: Thin Solid Films – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 start-page: 65 year: 2000 publication-title: J. Aerosol Sci. – volume: 5 start-page: 686 year: 2014 publication-title: J. Phys. Chem. Lett. – year: 2020 publication-title: J. Ind. Text. – volume: 46 start-page: 3890 year: 2011 publication-title: J. Mater. Sci. – volume: 39 start-page: 1085 year: 2002 publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 47 start-page: 1645 year: 2018 publication-title: J. Ind. Text. – volume: 49 290 132 92 start-page: 301 1097 1416 year: 2012 2005 2015 2013 publication-title: Mater. Plast. Macromol. Mater. Eng. J. Appl. Polym. Sci. Carbohydr. Polym. – volume: 56 start-page: 116 year: 2016 publication-title: Prog. Polym. Sci. – volume: 75 start-page: 187 year: 2006 publication-title: J. Food Eng. – volume: 5 year: 2011 publication-title: Biomicrofluidics – volume: 15 start-page: 40 year: 2019 publication-title: Compos. Commun. – volume: 56 91 start-page: 4 541 year: 2013 2018 publication-title: Tekstilec Mater. Sci. Eng., C – volume: 109 156 79 start-page: 406 46 469 year: 2008 2015 2015 publication-title: J. Appl. Polym. Sci. Mater. Lett. Int. J. Biol. Macromol. – volume: 14 start-page: 184 year: 1882 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. – start-page: 195 year: 1982 end-page: 273 – volume: 8 348 349 start-page: 2510 109 113 year: 2012 2010 2010 publication-title: J. Appl. Sci. Res. J. Membr. Sci. J. Membr. Sci. – year: 2021 – volume: 41 start-page: 1572 year: 2003 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 58 start-page: 1381 year: 2018 publication-title: Polym. Eng. Sci. – volume: 439 start-page: 589 year: 2018 publication-title: Appl. Surf. Sci. – volume: 37 8 27 28 74 start-page: 2743 2509 340 428 91 year: 2018 2008 2010 2011 2016 publication-title: Adv. Polym. Technol. J. Nanosci. Nanotechnol. Korean J. Chem. Eng. Korean J. Chem. Eng. Eur. Polym. J. – volume: 10 start-page: 1 year: 1917 publication-title: Phys. Rev. – volume: 35 start-page: 419 year: 2016 publication-title: Adv. Polym. Technol. – volume: 17 41 start-page: R89 59 year: 2005 2006 2009 publication-title: Nanotechnology Text. Prog. – volume: 32 start-page: 1037 year: 2012 publication-title: Mater. Sci. Eng., C – volume: 27 37 36 start-page: 613 181 775 year: 2004 2009 2008 publication-title: Biomass Bioenergy Energy Policy Energy Policy – volume: 18 2 22 29 start-page: 330 1209 326 1989 year: 2018 2014 2011 2008 publication-title: Sensors J. Mater. Chem. C Polym. Adv. Tecnnol. Biomaterials – volume: 8 start-page: 564 year: 2007 publication-title: Fibers Polym. – volume: 47 30 start-page: 1791 year: 2018 2018 publication-title: J. Ind. Text. Adv. Mater. – volume: 7 start-page: 216 year: 1996 publication-title: Nanotechnology – volume: 424 306 year: 2021 2021 publication-title: J. Hazard. Mater. Macromol. Mater. Eng. – volume: 102 start-page: 1023 year: 2006 publication-title: J. Appl. Polym. Sci. – start-page: 31 year: 2001 publication-title: Monatsh. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – start-page: 3 year: 2012 end-page: 16 – volume: 4 start-page: 933 year: 2004 publication-title: Nano Lett. – volume: 4 year: 2020 publication-title: Adv. Sustainable Syst. – volume: 565 start-page: 426 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 67 start-page: 30 year: 2014 publication-title: Composites, Part B – volume: 549 start-page: 332 year: 2018 publication-title: J. Membr. Sci. – volume: 508 start-page: 508 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 36 start-page: 71 year: 1971 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 1 year: 2008 publication-title: Des. Monomers Polym. – volume: 49 start-page: 245 year: 2002 publication-title: Int. Biodeterior. Biodegrad. – volume: 52 start-page: 1250 year: 2013 publication-title: J. Macromol. Sci., Part B: Phys. – volume: 6 start-page: 63 year: 2017 publication-title: Compos. Commun. – volume: 13 start-page: 16 year: 2010 publication-title: Mater. Today – volume: 53 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 13 104 38 47 31 start-page: 104 844 4262 239 year: 2011 2020 2015 2012 2019 publication-title: J. Manuf. Process. J. Electrost. Chem. Eng. Technol. J. Mater. Sci. Neural Comput. Appl. – volume: 20 start-page: 859 year: 2021 publication-title: Nat. Mater. – volume: 23 29 87 14 6 10 405 29 16 start-page: 221 27 4531 3912 243 590 131 year: 1996 1997 2000 2002 2005 2012 2000 2013 2020 publication-title: Int. J. Numer. Methods Fluids Annu. Rev. Fluid Mech. J. Appl. Phys. Phys. Fluids Int. J. Nonlinear Sci. Numer. Simul. Adv. Sci. Lett. J. Fluid Mech. Langmuir Small – volume: 138 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 132 year: 2015 publication-title: J. Appl. Polym. Sci. – volume: 35 start-page: 1173 year: 2020 publication-title: J. Mater. Res. – volume: 17 start-page: 5151 year: 2006 publication-title: Nanotechnology – volume: 22 44 25 6 49 start-page: 1 404 97 year: 1992 2006 1994 2019 2019 publication-title: Text. Prog. Ind. Health Adv. Mater. Interfaces J. Ind. Text. – volume: 48 start-page: 6064 year: 2007 publication-title: Polymer – volume: 577 start-page: 207 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 96 start-page: 557 year: 2020 2005 publication-title: J. Appl. Polym. Sci. – volume: 268 10 48 38 start-page: 114 2026 362 241 year: 2019 2018 2001 2016 publication-title: Adv. Colloid Interface Sci. ACS Appl. Mater. Interfaces Mater. Lett. Tribol. Ind. – volume: 280 start-page: 383 year: 1964 publication-title: Proc. R. Soc. London, Ser. A – volume: 131 year: 2014 publication-title: J. Appl. Polym. Sci. – volume: 21 start-page: 1444 year: 2020 publication-title: Fibers Polym. – volume: 43 start-page: 5210 year: 2004 publication-title: Angew. Chem., Int Ed. – volume: 64 start-page: 1517 year: 2010 publication-title: Mater. Lett. – volume: 516 start-page: 349 year: 2004 publication-title: J. Fluid Mech. – volume: 111 start-page: 408 year: 2009 publication-title: J. Appl. Polym. Sci. – year: 2012 – volume: 56 start-page: 36 year: 2018 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 30 start-page: 3603 year: 2020 publication-title: Eur. Radiol. – volume: 18 start-page: 245 year: 2015 publication-title: J. Porous Media – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 19 year: 2007 publication-title: J. Phys.: Condens. Matter – volume: 45 start-page: 483 year: 2019 2016 publication-title: J. Ind. Text. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 8 18 119 start-page: 312 180 1008 year: 1979 1989 1993 publication-title: Coated Fabr. Coated Fabr. Arch. Otolaryngol., Head Neck Surg. – volume: 363 30 start-page: 619 year: 2019 2020 publication-title: Science Adv. Funct. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 750 year: 2019 publication-title: Nano Energy – volume: 35 start-page: 417 year: 1971 publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 393 year: 2007 publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 349 start-page: 1341 year: 1997 publication-title: Lancet – volume: 36 start-page: 341 year: 2017 publication-title: Nano Energy – volume: 13 start-page: 2081 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 459 year: 2004 publication-title: Nano Lett. – volume: 15 15 start-page: 40 115 year: 1985 1985 publication-title: Coated Fabr. Coated Fabr. – volume: 20 start-page: 682 year: 2020 publication-title: e‐Polymers – volume: 302 year: 2017 publication-title: Macromol. Mater. Eng. – volume: 556 start-page: 541 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 8 year: 2013 publication-title: Open Nanosci. J. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 59 start-page: 1384 year: 2007 publication-title: Adv. Drug Delivery Rev. – ident: e_1_2_9_174_1 doi: 10.1016/j.seppur.2015.11.046 – ident: e_1_2_9_11_2 doi: 10.1177/152808378501500205 – ident: e_1_2_9_141_1 doi: 10.1039/C7RA04843B – ident: e_1_2_9_103_1 doi: 10.1021/nl5036572 – ident: e_1_2_9_47_4 doi: 10.1063/1.1510664 – ident: e_1_2_9_76_3 doi: 10.1016/j.memsci.2014.03.055 – ident: e_1_2_9_79_1 doi: 10.1002/adfm.201903633 – ident: e_1_2_9_47_7 doi: 10.1017/S0022112099007223 – ident: e_1_2_9_8_1 doi: 10.3390/s18020330 – ident: e_1_2_9_99_1 doi: 10.1177/1528083717705622 – ident: e_1_2_9_38_1 doi: 10.1063/1.1408260 – ident: e_1_2_9_91_1 doi: 10.1016/j.cej.2021.130925 – ident: e_1_2_9_96_1 doi: 10.1007/s11242-012-9945-8 – ident: e_1_2_9_179_1 doi: 10.1016/j.jcis.2021.02.048 – volume: 38 start-page: 241 year: 2016 ident: e_1_2_9_16_4 publication-title: Tribol. Ind. – ident: e_1_2_9_32_1 doi: 10.1016/S0266-3538(03)00178-7 – ident: e_1_2_9_46_1 doi: 10.1016/j.polymer.2005.03.011 – ident: e_1_2_9_76_2 doi: 10.1016/j.memsci.2011.03.014 – ident: e_1_2_9_7_4 doi: 10.1016/j.jclepro.2020.122739 – ident: e_1_2_9_109_1 doi: 10.1039/C4RA09129A – ident: e_1_2_9_12_1 doi: 10.1039/b703447b – ident: e_1_2_9_86_1 doi: 10.1016/j.nanoen.2019.02.010 – ident: e_1_2_9_129_3 doi: 10.1016/j.elstat.2020.103425 – ident: e_1_2_9_178_1 doi: 10.1021/acsami.0c00846 – ident: e_1_2_9_92_1 doi: 10.1021/acsami.7b08885 – ident: e_1_2_9_115_2 doi: 10.1002/mame.202100371 – ident: e_1_2_9_70_1 doi: 10.1155/2012/725950 – ident: e_1_2_9_4_1 doi: 10.1021/acsnano.0c05537 – volume-title: Waterproof and Water Repellent Textiles and Clothing year: 2017 ident: e_1_2_9_12_2 – ident: e_1_2_9_55_2 doi: 10.1177/1528083714537101 – ident: e_1_2_9_70_2 doi: 10.1088/0957-4484/26/2/025301 – ident: e_1_2_9_80_1 doi: 10.1021/acsnano.0c10817 – ident: e_1_2_9_137_1 doi: 10.1557/jmr.2020.88 – ident: e_1_2_9_111_1 doi: 10.1002/admi.201700062 – ident: e_1_2_9_172_1 doi: 10.1016/j.coco.2019.06.002 – ident: e_1_2_9_113_1 doi: 10.1016/j.eurpolymj.2005.05.008 – ident: e_1_2_9_60_3 doi: 10.1016/j.memsci.2009.11.031 – ident: e_1_2_9_15_3 doi: 10.1001/archotol.1993.01880210098013 – ident: e_1_2_9_182_1 doi: 10.1007/978-94-007-3840-9 – ident: e_1_2_9_105_1 doi: 10.1002/app.28067 – ident: e_1_2_9_176_1 doi: 10.1002/app.41515 – ident: e_1_2_9_81_1 doi: 10.1002/polb.10511 – ident: e_1_2_9_73_1 doi: 10.3390/molecules25235540 – ident: e_1_2_9_123_1 doi: 10.1016/j.cej.2020.126222 – ident: e_1_2_9_129_1 doi: 10.1016/j.jmapro.2011.01.003 – ident: e_1_2_9_185_1 doi: 10.1002/adma.201908496 – ident: e_1_2_9_37_1 doi: 10.1016/S0021-8502(99)00034-8 – ident: e_1_2_9_136_1 doi: 10.1021/acsami.6b09392 – ident: e_1_2_9_159_1 doi: 10.1177/1528083720904675 – ident: e_1_2_9_48_2 doi: 10.1016/S1369-7021(06)71389-X – ident: e_1_2_9_61_1 doi: 10.2174/1874140101307010008 – volume: 471 year: 2015 ident: e_1_2_9_44_1 publication-title: Proc. R. Soc. London, Ser. A – ident: e_1_2_9_60_2 doi: 10.1016/j.memsci.2009.10.047 – ident: e_1_2_9_31_1 doi: 10.1142/5894 – ident: e_1_2_9_104_2 doi: 10.1002/adfm.202005033 – ident: e_1_2_9_13_1 doi: 10.1007/s00330-020-06850-5 – ident: e_1_2_9_62_1 doi: 10.1016/j.seppur.2005.10.010 – ident: e_1_2_9_98_1 doi: 10.1007/s12221-012-1007-x – ident: e_1_2_9_164_1 doi: 10.1002/app.46342 – ident: e_1_2_9_166_1 doi: 10.1002/adsu.202000105 – ident: e_1_2_9_6_2 doi: 10.1080/00405000.2010.529285 – ident: e_1_2_9_128_1 doi: 10.1016/j.coco.2021.100720 – ident: e_1_2_9_45_3 doi: 10.1103/RevModPhys.92.035004 – ident: e_1_2_9_148_1 doi: 10.1016/j.msec.2012.02.019 – ident: e_1_2_9_105_3 doi: 10.1016/j.ijbiomac.2015.05.014 – ident: e_1_2_9_183_1 doi: 10.1021/acsami.8b07393 – ident: e_1_2_9_143_1 doi: 10.1021/nl049590f – ident: e_1_2_9_119_1 doi: 10.1021/acssuschemeng.9b05092 – ident: e_1_2_9_161_1 doi: 10.1007/s12221-011-0057-9 – ident: e_1_2_9_8_4 doi: 10.1016/j.biomaterials.2008.01.011 – volume: 8 start-page: 2510 year: 2012 ident: e_1_2_9_60_1 publication-title: J. Appl. Sci. Res. – ident: e_1_2_9_49_1 doi: 10.1039/C7RA13444D – ident: e_1_2_9_18_2 doi: 10.1016/j.progpolymsci.2016.06.006 – ident: e_1_2_9_3_2 doi: 10.2486/indhealth.44.404 – ident: e_1_2_9_10_1 doi: 10.1002/pen.10799 – ident: e_1_2_9_7_3 doi: 10.1080/01426390903560414 – ident: e_1_2_9_31_3 doi: 10.1080/00405160902904641 – ident: e_1_2_9_16_1 doi: 10.1016/j.cis.2019.03.006 – ident: e_1_2_9_24_1 – ident: e_1_2_9_3_4 doi: 10.1002/admi.201900622 – ident: e_1_2_9_47_8 doi: 10.1021/la403111m – ident: e_1_2_9_7_1 doi: 10.1080/03602559909351596 – ident: e_1_2_9_47_3 doi: 10.1063/1.373532 – ident: e_1_2_9_48_1 doi: 10.1016/S0032-3861(00)00250-0 – ident: e_1_2_9_107_1 doi: 10.1016/j.jcis.2020.01.063 – ident: e_1_2_9_129_2 doi: 10.1063/1.5109517 – ident: e_1_2_9_134_1 doi: 10.1201/b12160 – ident: e_1_2_9_16_3 doi: 10.1016/S0167-577X(00)00328-1 – ident: e_1_2_9_7_2 doi: 10.1016/j.jenvman.2021.113043 – ident: e_1_2_9_63_4 doi: 10.1007/s11814-010-0376-3 – ident: e_1_2_9_170_1 doi: 10.1016/j.coco.2017.10.002 – volume: 22 start-page: 23 year: 2013 ident: e_1_2_9_65_2 publication-title: System – ident: e_1_2_9_158_1 doi: 10.1002/app.50391 – ident: e_1_2_9_14_1 – volume-title: Protective Clothing Systems and Materials year: 1994 ident: e_1_2_9_3_3 – ident: e_1_2_9_118_1 doi: 10.1080/15583720802022281 – ident: e_1_2_9_145_1 doi: 10.1021/acsnano.8b08242 – ident: e_1_2_9_68_2 doi: 10.1109/ICPADM.2006.284332 – ident: e_1_2_9_162_1 doi: 10.1016/j.jcis.2017.08.055 – ident: e_1_2_9_6_1 doi: 10.1177/1528083712450742 – ident: e_1_2_9_152_1 doi: 10.1515/IJNSNS.2007.8.3.393 – ident: e_1_2_9_18_3 doi: 10.1002/aenm.201903921 – ident: e_1_2_9_157_1 doi: 10.1088/1361-6463/ab7562 – ident: e_1_2_9_59_1 doi: 10.1002/app.24123 – ident: e_1_2_9_17_2 doi: 10.1136/svn-2020-000382 – ident: e_1_2_9_41_1 doi: 10.1016/0021-9797(71)90141-X – ident: e_1_2_9_125_1 doi: 10.1016/j.tsf.2007.04.086 – ident: e_1_2_9_64_2 doi: 10.1002/mame.200500215 – ident: e_1_2_9_132_1 doi: 10.1088/0953-8984/19/35/356002 – ident: e_1_2_9_68_3 doi: 10.1021/acsami.1c08798 – start-page: 105 volume-title: Advances in Selected Plant Physiology Aspects year: 2012 ident: e_1_2_9_182_2 – ident: e_1_2_9_63_3 doi: 10.1007/s11814-009-0309-1 – ident: e_1_2_9_103_2 doi: 10.1126/sciadv.1700895 – volume: 48 start-page: 401 year: 2014 ident: e_1_2_9_45_2 publication-title: Cellul. Chem. Technol. – ident: e_1_2_9_36_1 doi: 10.1016/j.polymer.2007.08.002 – ident: e_1_2_9_117_1 doi: 10.1016/j.compositesb.2014.06.025 – ident: e_1_2_9_181_1 doi: 10.1002/adfm.202002437 – ident: e_1_2_9_30_1 doi: 10.1088/0957-4484/7/3/009 – ident: e_1_2_9_47_5 doi: 10.1515/IJNSNS.2005.6.3.243 – ident: e_1_2_9_169_1 doi: 10.1016/j.jcis.2019.08.092 – ident: e_1_2_9_51_1 doi: 10.1002/jbm.b.30336 – ident: e_1_2_9_74_1 doi: 10.1016/j.progpolymsci.2016.01.001 – ident: e_1_2_9_168_1 doi: 10.1002/adv.21568 – ident: e_1_2_9_28_1 doi: 10.1098/rspa.1964.0151 – ident: e_1_2_9_42_1 doi: 10.1098/rspa.1969.0205 – ident: e_1_2_9_187_1 doi: 10.1039/C8TC00002F – volume-title: Quick Selection Guide to Chemical Protective Clothing year: 2020 ident: e_1_2_9_1_1 – ident: e_1_2_9_177_1 doi: 10.1177/1528083716682920 – ident: e_1_2_9_184_1 doi: 10.1002/adma.202070064 – ident: e_1_2_9_101_1 doi: 10.1021/acsami.1c03658 – ident: e_1_2_9_65_1 doi: 10.1080/00222348.2015.1090654 – ident: e_1_2_9_147_1 doi: 10.1021/ja068165g – ident: e_1_2_9_173_1 doi: 10.1021/acsami.7b02594 – ident: e_1_2_9_20_1 doi: 10.1007/978-3-319-39715-3_4 – ident: e_1_2_9_18_1 doi: 10.1016/j.pmatsci.2013.05.001 – volume: 131 year: 2014 ident: e_1_2_9_75_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40515 – ident: e_1_2_9_84_1 doi: 10.1002/app.47125 – ident: e_1_2_9_149_1 doi: 10.1007/s12221-016-5730-6 – ident: e_1_2_9_77_1 doi: 10.1007/978-94-009-7343-5_5 – ident: e_1_2_9_116_1 doi: 10.1021/acs.iecr.9b05617 – ident: e_1_2_9_126_1 doi: 10.1016/j.matlet.2010.04.008 – ident: e_1_2_9_151_1 doi: 10.1088/0957-4484/17/20/019 – ident: e_1_2_9_63_5 doi: 10.1016/j.eurpolymj.2015.11.014 – ident: e_1_2_9_188_1 doi: 10.1021/acssuschemeng.5b00749 – ident: e_1_2_9_83_1 doi: 10.1080/00222348.2013.763569 – ident: e_1_2_9_5_2 doi: 10.1016/j.enpol.2008.08.016 – ident: e_1_2_9_102_1 doi: 10.1126/science.aaf5471 – ident: e_1_2_9_154_1 doi: 10.1002/adfm.202105587 – ident: e_1_2_9_156_1 doi: 10.1002/polb.24534 – ident: e_1_2_9_76_1 doi: 10.1016/j.progpolymsci.2013.07.006 – ident: e_1_2_9_31_2 doi: 10.1088/0957-4484/17/14/R01 – ident: e_1_2_9_17_1 doi: 10.1097/MD.0000000000020603 – ident: e_1_2_9_64_4 doi: 10.1016/j.carbpol.2012.09.026 – ident: e_1_2_9_23_1 doi: 10.1080/14786448208628425 – volume: 2 start-page: 40 year: 2018 ident: e_1_2_9_12_3 publication-title: Fibres Text. – ident: e_1_2_9_3_1 doi: 10.1080/00405169208688856 – ident: e_1_2_9_100_1 doi: 10.1016/j.jcis.2021.05.171 – ident: e_1_2_9_22_1 – ident: e_1_2_9_71_2 doi: 10.1016/j.msec.2018.05.076 – ident: e_1_2_9_160_1 doi: 10.1007/s12221-020-9860-5 – ident: e_1_2_9_45_1 doi: 10.1063/1.1383791 – ident: e_1_2_9_50_1 doi: 10.1016/j.jmatprotec.2005.06.053 – ident: e_1_2_9_58_1 doi: 10.3144/expresspolymlett.2020.82 – ident: e_1_2_9_146_1 doi: 10.1002/anie.200461092 – ident: e_1_2_9_108_1 doi: 10.1081/MA-120014836 – ident: e_1_2_9_11_1 doi: 10.1177/152808378501500105 – ident: e_1_2_9_57_1 doi: 10.1002/app.25464 – ident: e_1_2_9_133_1 doi: 10.1007/s007060170142 – volume: 6 start-page: 20 year: 2017 ident: e_1_2_9_56_1 publication-title: Int. J. Cheminf. Chem. Eng. – ident: e_1_2_9_163_1 doi: 10.1007/s12221-020-9562-z – ident: e_1_2_9_2_1 doi: 10.1016/S0140-6736(96)12338-2 – ident: e_1_2_9_129_5 doi: 10.1007/s10853-012-6276-7 – ident: e_1_2_9_33_1 doi: 10.1016/S1369-7021(10)70200-5 – ident: e_1_2_9_129_6 doi: 10.1007/s00521-017-2996-6 – ident: e_1_2_9_39_1 doi: 10.1533/9781845693732.1.3 – ident: e_1_2_9_94_1 doi: 10.1021/acsami.5b02848 – ident: e_1_2_9_5_3 doi: 10.1016/j.enpol.2007.11.002 – ident: e_1_2_9_97_1 doi: 10.1615/JPorMedia.v18.i3.50 – ident: e_1_2_9_127_1 doi: 10.1021/acsami.0c20172 – ident: e_1_2_9_3_5 doi: 10.1177/1528083718779426 – ident: e_1_2_9_67_1 doi: 10.3390/pharmaceutics13020286 – ident: e_1_2_9_106_1 doi: 10.1016/0040-6031(70)85016-X – ident: e_1_2_9_167_1 doi: 10.1021/acsami.8b10408 – ident: e_1_2_9_48_4 doi: 10.1201/9781315365701-3 – ident: e_1_2_9_5_1 doi: 10.1016/j.biombioe.2003.07.005 – ident: e_1_2_9_113_2 doi: 10.1002/app.36774 – ident: e_1_2_9_155_1 doi: 10.1016/j.memsci.2017.12.032 – start-page: 3 volume-title: Polyurethane year: 2012 ident: e_1_2_9_88_1 doi: 10.5772/2416 – ident: e_1_2_9_9_1 doi: 10.1039/C7TC03058D – ident: e_1_2_9_52_1 doi: 10.1007/s10853-011-5310-5 – ident: e_1_2_9_138_1 doi: 10.1002/pen.24726 – ident: e_1_2_9_71_1 doi: 10.14502/Tekstilec2013.56.4-12 – ident: e_1_2_9_29_1 doi: 10.1016/0021-9797(71)90241-4 – volume-title: Electrospinning of Nanofibers in Textiles year: 2019 ident: e_1_2_9_55_1 – ident: e_1_2_9_66_1 doi: 10.1002/wnan.1611 – ident: e_1_2_9_106_2 doi: 10.1016/0040-6031(71)80001-1 – ident: e_1_2_9_142_1 doi: 10.1002/ange.200460333 – ident: e_1_2_9_78_1 doi: 10.1021/acsami.8b08191 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRev.10.1 – ident: e_1_2_9_93_1 doi: 10.1007/BF02875881 – ident: e_1_2_9_85_1 doi: 10.1016/j.nanoen.2017.04.035 – ident: e_1_2_9_120_1 doi: 10.1002/mame.202000370 – ident: e_1_2_9_129_4 doi: 10.1002/ceat.201400323 – ident: e_1_2_9_1_2 doi: 10.1002/app.21481 – ident: e_1_2_9_180_1 doi: 10.1002/adma.202100140 – ident: e_1_2_9_114_1 doi: 10.1021/acsami.0c22670 – ident: e_1_2_9_150_2 doi: 10.1002/adma.201704765 – ident: e_1_2_9_53_1 doi: 10.1002/app.28994 – volume-title: Electrospun Nanofibres and their Applications year: 2008 ident: e_1_2_9_54_1 – ident: e_1_2_9_69_1 – ident: e_1_2_9_15_2 doi: 10.1177/152808378901800304 – ident: e_1_2_9_110_1 doi: 10.1039/C5RA27913E – ident: e_1_2_9_105_2 doi: 10.1016/j.matlet.2015.04.119 – ident: e_1_2_9_19_1 doi: 10.1016/j.addr.2007.04.020 – ident: e_1_2_9_27_1 – ident: e_1_2_9_90_1 doi: 10.1016/S0964-8305(02)00051-3 – ident: e_1_2_9_112_1 doi: 10.1002/adfm.202008705 – ident: e_1_2_9_8_3 doi: 10.1002/pat.1839 – ident: e_1_2_9_130_1 doi: 10.1021/jz402762h – ident: e_1_2_9_45_5 doi: 10.1016/B978-0-08-100907-9.00012-X – ident: e_1_2_9_72_1 doi: 10.1016/j.aiepr.2019.06.002 – ident: e_1_2_9_150_1 doi: 10.1177/1528083717710711 – ident: e_1_2_9_95_1 doi: 10.1002/smll.201801527 – ident: e_1_2_9_8_2 doi: 10.1039/C3TC31680G – ident: e_1_2_9_16_2 doi: 10.1021/acsami.7b16422 – ident: e_1_2_9_34_1 doi: 10.1016/j.colsurfb.2011.04.018 – ident: e_1_2_9_122_1 doi: 10.1038/s41563-020-00902-3 – ident: e_1_2_9_87_1 doi: 10.1007/978-3-642-54160-5 – volume-title: Classical Electromagnetic Radiation year: 2012 ident: e_1_2_9_186_1 – volume: 42 start-page: 441 year: 2008 ident: e_1_2_9_48_3 publication-title: Cellul. Chem. Technol. – ident: e_1_2_9_153_1 doi: 10.1021/acsami.0c04486 – ident: e_1_2_9_17_3 doi: 10.1016/S1473-3099(20)30152-3 – ident: e_1_2_9_140_1 doi: 10.1016/j.jcis.2020.05.062 – volume: 47 start-page: 323 year: 2013 ident: e_1_2_9_45_4 publication-title: Cellul. Chem. Technol. – ident: e_1_2_9_47_2 doi: 10.1146/annurev.fluid.29.1.27 – ident: e_1_2_9_15_1 doi: 10.1177/152808377900800408 – ident: e_1_2_9_40_1 doi: 10.1063/1.3567097 – ident: e_1_2_9_124_1 doi: 10.1016/j.memsci.2016.10.028 – ident: e_1_2_9_63_2 doi: 10.1166/jnn.2008.536 – ident: e_1_2_9_89_1 doi: 10.1163/156855508X292383 – ident: e_1_2_9_139_1 doi: 10.1002/admi.201600036 – ident: e_1_2_9_175_1 doi: 10.1021/acsabm.9b00875 – ident: e_1_2_9_64_3 doi: 10.1002/app.41388 – ident: e_1_2_9_171_1 doi: 10.1002/app.46360 – ident: e_1_2_9_131_1 doi: 10.1016/j.jfoodeng.2005.04.007 – ident: e_1_2_9_47_1 doi: 10.1002/(SICI)1097-0363(19960815)23:3<221::AID-FLD419>3.0.CO;2-0 – ident: e_1_2_9_135_1 doi: 10.1002/admi.201600516 – ident: e_1_2_9_47_9 doi: 10.1002/smll.202000397 – ident: e_1_2_9_21_1 doi: 10.1515/epoly-2020-0068 – volume: 49 start-page: 301 year: 2012 ident: e_1_2_9_64_1 publication-title: Mater. Plast. – ident: e_1_2_9_115_1 doi: 10.1016/j.jhazmat.2021.127602 – ident: e_1_2_9_144_1 doi: 10.1002/adma.201904113 – ident: e_1_2_9_47_6 doi: 10.1166/asl.2012.3360 – ident: e_1_2_9_121_1 doi: 10.1021/nl035135s – ident: e_1_2_9_63_1 doi: 10.1002/adv.21947 – ident: e_1_2_9_26_1 – ident: e_1_2_9_43_1 doi: 10.1017/S0022112004000679 – ident: e_1_2_9_82_1 doi: 10.1002/mame.201600272 – ident: e_1_2_9_35_1 doi: 10.1002/adma.200400719 – ident: e_1_2_9_68_1 doi: 10.1016/j.polymer.2005.01.054 – ident: e_1_2_9_104_1 doi: 10.1126/science.aau1217 – ident: e_1_2_9_165_1 doi: 10.1016/j.apsusc.2017.12.267 |
| SSID | ssj0009606 |
| Score | 2.7185717 |
| SecondaryResourceType | review_article |
| Snippet | Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications,... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2107938 |
| SubjectTerms | Anti-Bacterial Agents Biomimetic materials breathability Electromagnetic shielding Electrospinning Hydrophobic and Hydrophilic Interactions Hydrostatic pressure Intelligent manufacturing systems Materials science Membranes Membranes, Artificial Nanofibers Nanofibers - chemistry protective membranes unidirectional transmission Water vapor waterproofing |
| Title | Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107938 https://www.ncbi.nlm.nih.gov/pubmed/34969155 https://www.proquest.com/docview/2655498105 https://www.proquest.com/docview/2615918528 |
| Volume | 34 |
| WOSCitedRecordID | wos000767506700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4ahQd4YBuwUcaQJyHxQkTqtE7CWxhEe1gR2kDqW-T4IkWiKaKFn8Fv5hw7Da0QQtreYsWJLfvcfDnfB3CobDwQfd0LUm0iojBLgxQj54Dz0GibJEL2rSObiC8vk9EovVrI4vf4EO2GG2mGs9ek4LKcnryAhkrtcINwyYIilqzAKkfhHXRg9fxPfvP7BXhXOH5NOu8LUtFP5sCNIT9Z_sOyY3oVbS4Hr8775B__v9-fYLOJPFnmReUzfDD1Fmws4BFuwxMGkeiE2BVd2kITyKqanmfeKLKhGWPDaBtZLktHL2Q0e6wku_BcOtO7yhEgnbKsuVnAhnLmRfyYnVWTcTWmnEn214HWPmATx0zWmuXoXP2eJMsWDtR34Dq_uP75K2gIGwJFAElo0iMtVE8oSag86PlKHgrDUyG15bFSPIwiI2NpjTCRUDHHEtcDLcK4lFxGX6BTT2qzCwztsE1sqEoUJVyB2tRyKy2RuAtc0EvThWA-WYVqwMyJU-O28DDMvKBhLtph7sJRW__Ow3i8WXN_PvdFo87TgguMutIEY9Eu_GhfoyLS6QqO--SB6mBkSKno-IuvXmbapgiVn4D4u8CdaLzThyI7H2Ztae9fPvoG65wSNdwdo33o4Lya77CmHmfV9P4AVuJRctCoyjN5ShQM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD54KagPalu1W22dQqEvBuNknSS-xUtQ3F2kbsG3MDsXCLhZ6a7-DH9zz5nJRhcRofiWIZPMMHNucznfB_BT2fhQtPVBkGoTEYVZGqQYOQech0bbJBGybR3ZRNzrJTc36VV9m5ByYTw-RLPhRprh7DUpOG1I7z-hhkrtgINwzYIylszDYhtlCYV88fR3_qfzhLwrHMEmHfgFqWgnU-TGkO_P_mHWM70IN2ejV-d-8rV36Pg6rNaxJ8u8sHyEOVN9gpVniISf4RHDSHRD7IqubaERZGVFzxNvFlnXDLFltI4slwNHMGQ0eyglO_NsOuO70lEgHbGsvlvAunLihXyPHZejYTmkrEl27WBr77GJPSYrzXJ0r35XkmXPjtQ3oJ-f9U_Og5qyIVAEkYRGPdJCHQglCZcHfd-Ah8LwVEhteawUD6PIyFhaI0wkVMyxxPWhFmE8kFxGm7BQjSrzBRhaYpvYUA1QmHANalPLrbRE4y5wSS9NC4LpbBWqhjMnVo3bwgMx84KGuWiGuQW_mvp3Hsjj1Zo708kvaoUeF1xg3JUmGI224EfzGlWRzldw3Ef3VAdjQ0pGx19seaFpmiJcfoLibwF3svFGH4rstJs1pa__89EuLJ33u52ic9G73IZlTmkb7sbRDizgHJtv8EE9TMrx3--1xvwDffIXFA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6s6Sjdwy69LWu3aVDoS01dOZXtvnlLzcaaENYW-mYUXcDQOKFJ8zP2m3eO5LgJZQzK3iwsW0I6N13O9wEcKhufiY4-DVJtIqIwS4MUI-eA89BomyRCdqwjm4j7_eT2Nh3UtwkpF8bjQzQbbqQZzl6TgpuJtiePqKFSO-AgXLOgjCVrsN4hJpkWrHd_5TeXj8i7whFs0oFfkIpOskBuDPnJ6h9WPdOTcHM1enXuJ3_zHzr-Fl7XsSfLvLC8gxem2oJXS4iE2_Abw0h0Q2xA17bQCLKyoueZN4usZ0bYMlpHlsuhIxgyms1LyS48m850UjoKpHOW1XcLWE_OvJAfs6_leFSOKGuSXTnY2gds4pjJSrMc3avflWTZ0pH6DlznF9ffvgc1ZUOgCCIJjXqkhToVShIuD_q-IQ-F4amQ2vJYKR5GkZGxtEaYSKiYY4nrMy3CeCi5jHahVY0r8x4YWmKb2FANUZhwDWpTy620ROMucEkvTRuCxWwVqoYzJ1aNu8IDMfOChrlohrkNR039iQfy-GvNg8XkF7VCTwsuMO5KE4xG2_CleY2qSOcrOO7jB6qDsSElo-Mv9rzQNE0RLj9B8beBO9n4Rx-KrNvLmtKH53z0GTYG3by4_NH_uQ-bnLI23IWjA2jhFJuP8FLNZ-X0_lOtMH8A5lgWjw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Protective+Membranes+Fabricated+via+Electrospinning%3A+Advanced+Materials%2C+Biomimetic+Structures%2C+and+Functional+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Shuo&rft.au=Si%2C+Yifan&rft.au=Han%2C+Yanting&rft.au=Wu%2C+Ting&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202107938&rft.externalDBID=10.1002%252Fadma.202107938&rft.externalDocID=ADMA202107938 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |