Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications

Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 34; číslo 17; s. e2107938 - n/a
Hlavní autori: Shi, Shuo, Si, Yifan, Han, Yanting, Wu, Ting, Iqbal, Mohammad Irfan, Fei, Bin, Li, Robert K. Y., Hu, Jinlian, Qu, Jinping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.04.2022
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection. Electrospinning has been used for several applications over the last 20 years. Multifunctional protective membranes in terms of novel material design, novel structure construction, and various applications via electrospinning are reviewed. Diverse protective membranes are investigated, existing problems are discussed, and solutions for future technology development are proposed. This is of significance for the sustainable development of intelligent protection systems.
AbstractList Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high‐efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti‐UV, antibacterial, and electromagnetic‐shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of “green electrospinning solutions” with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection. Electrospinning has been used for several applications over the last 20 years. Multifunctional protective membranes in terms of novel material design, novel structure construction, and various applications via electrospinning are reviewed. Diverse protective membranes are investigated, existing problems are discussed, and solutions for future technology development are proposed. This is of significance for the sustainable development of intelligent protection systems.
Author Han, Yanting
Li, Robert K. Y.
Si, Yifan
Fei, Bin
Qu, Jinping
Iqbal, Mohammad Irfan
Hu, Jinlian
Shi, Shuo
Wu, Ting
Author_xml – sequence: 1
  givenname: Shuo
  surname: Shi
  fullname: Shi, Shuo
  organization: City University of Hong Kong
– sequence: 2
  givenname: Yifan
  surname: Si
  fullname: Si, Yifan
  organization: City University of Hong Kong
– sequence: 3
  givenname: Yanting
  surname: Han
  fullname: Han, Yanting
  organization: Sichuan University
– sequence: 4
  givenname: Ting
  surname: Wu
  fullname: Wu, Ting
  organization: Huazhong University of Science & Technology
– sequence: 5
  givenname: Mohammad Irfan
  surname: Iqbal
  fullname: Iqbal, Mohammad Irfan
  organization: City University of Hong Kong
– sequence: 6
  givenname: Bin
  surname: Fei
  fullname: Fei, Bin
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Robert K. Y.
  surname: Li
  fullname: Li, Robert K. Y.
  organization: City University of Hong Kong
– sequence: 8
  givenname: Jinlian
  orcidid: 0000-0001-8914-5473
  surname: Hu
  fullname: Hu, Jinlian
  email: jinliahu@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 9
  givenname: Jinping
  surname: Qu
  fullname: Qu, Jinping
  email: jpqu@hust.edu.cn
  organization: Huazhong University of Science & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34969155$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFK0dkiQuHZvGf2Im5paULSF2BoHfLcWYrV4kTbGdRvwSfGYdtQaqEONkj_94bz7wTdORHDwi9pGRNCWFvTTeYNSOMkkrx-glaUcFoURIljtCKKC4KJcv6GJ3EeEsIUZLIZ-iYl0oqKsQK_fwKFnzCX8J4EyBG7PxyT2CT2wPewtAG4yHijWmDsyZBh_fO4Ms-E2GMk_Pe-Zt3uOn2xtv8us1McKaPZ_jcjYMbIDmLv6Uw2zTnFmfY-A5vZp87jN70uJmmfnHOVXyOnu6yFF7cn6foenN5ffGxuPr84dNFc1VYXvG6oIR30lJpDaEVoaxuGZHAlDTdjlXWMsI5mMrsQAKXtmK5Yp3oJKlawww_RW8OtlMYv88Qkx5ctND3edRxjppJKhStBasz-voRejvOIf97oYQoVU2JyNSre2puB-j0FNxgwp1-WHQGygNg89JigJ22Lv2eOQXjek2JXvLUS576T55Ztn4ke3D-p0AdBD9cD3f_oXXzftv81f4Cr220Zw
CitedBy_id crossref_primary_10_1002_sstr_202400666
crossref_primary_10_1016_j_mser_2024_100915
crossref_primary_10_1016_j_polymer_2023_126249
crossref_primary_10_1016_j_apmt_2023_101792
crossref_primary_10_1016_j_cej_2025_166527
crossref_primary_10_1016_j_cej_2023_144854
crossref_primary_10_3390_molecules28124857
crossref_primary_10_3390_polym15132813
crossref_primary_10_1016_j_polymer_2023_126481
crossref_primary_10_1016_j_seppur_2025_132938
crossref_primary_10_3390_ma16155339
crossref_primary_10_1002_adfm_202415258
crossref_primary_10_1002_smll_202307810
crossref_primary_10_1039_D5TA01990G
crossref_primary_10_1007_s10965_023_03827_y
crossref_primary_10_1016_j_ijbiomac_2023_127862
crossref_primary_10_1063_5_0231856
crossref_primary_10_3390_polym15071686
crossref_primary_10_1038_s41467_024_53137_0
crossref_primary_10_1016_j_pmatsci_2024_101376
crossref_primary_10_3390_s24113602
crossref_primary_10_1016_j_jmbbm_2023_106214
crossref_primary_10_1007_s10853_024_09416_8
crossref_primary_10_3390_biomimetics9090523
crossref_primary_10_1051_bioconf_202414701024
crossref_primary_10_3390_membranes14110244
crossref_primary_10_1007_s42765_022_00200_4
crossref_primary_10_1016_j_carbpol_2023_121050
crossref_primary_10_1016_j_nwnano_2025_100119
crossref_primary_10_1016_j_mtcomm_2023_107705
crossref_primary_10_3390_ma16103677
crossref_primary_10_1016_j_memsci_2024_122795
crossref_primary_10_1177_15589250251359274
crossref_primary_10_1007_s42765_023_00364_7
crossref_primary_10_1016_j_ijbiomac_2025_140127
crossref_primary_10_1002_adma_202409606
crossref_primary_10_1016_j_mtcomm_2024_110840
crossref_primary_10_1016_j_bioactmat_2024_09_003
crossref_primary_10_1016_j_jallcom_2024_174433
crossref_primary_10_1002_adma_202306880
crossref_primary_10_1016_j_seppur_2022_122175
crossref_primary_10_1039_D3SC05283D
crossref_primary_10_1016_j_cej_2023_144705
crossref_primary_10_3390_polym14122489
crossref_primary_10_1002_adma_202208852
crossref_primary_10_1186_s12951_022_01685_2
crossref_primary_10_1002_admt_202500314
crossref_primary_10_1002_adma_202507498
crossref_primary_10_1007_s40820_025_01716_1
crossref_primary_10_1039_D5NR01228G
crossref_primary_10_1002_marc_202401144
crossref_primary_10_1002_advs_202207192
crossref_primary_10_1002_admt_202200834
crossref_primary_10_3390_electronics12040885
crossref_primary_10_3390_ma16165720
crossref_primary_10_1016_j_cej_2025_163367
crossref_primary_10_1007_s42765_025_00541_w
crossref_primary_10_1016_j_cej_2025_163450
crossref_primary_10_3390_pharmaceutics15051347
crossref_primary_10_1002_idm2_12215
crossref_primary_10_1002_smll_202301071
crossref_primary_10_3390_ijms241311037
crossref_primary_10_3390_polym16162352
crossref_primary_10_1007_s40820_024_01359_8
crossref_primary_10_3390_polym15071654
crossref_primary_10_1002_adfm_202416428
crossref_primary_10_1016_j_matdes_2024_113153
crossref_primary_10_1016_j_jhazmat_2024_134740
crossref_primary_10_1016_j_solmat_2024_113253
crossref_primary_10_1002_adma_202306435
crossref_primary_10_1016_j_compositesb_2022_110312
crossref_primary_10_1016_j_seppur_2025_135275
crossref_primary_10_1016_j_cej_2024_158133
crossref_primary_10_1016_j_porgcoat_2024_108744
crossref_primary_10_1016_j_compositesa_2025_109281
crossref_primary_10_1016_j_jallcom_2023_172445
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1088_2631_7990_ade9fe
crossref_primary_10_1016_j_colsurfa_2025_136319
crossref_primary_10_1016_j_apmt_2025_102676
crossref_primary_10_1002_adfm_202209029
crossref_primary_10_1002_marc_202500329
crossref_primary_10_3390_ijms25052507
crossref_primary_10_1039_D3MH00340J
crossref_primary_10_1002_adfm_202309270
crossref_primary_10_1002_smll_202309572
crossref_primary_10_1002_smll_202505941
crossref_primary_10_1002_admt_202201161
crossref_primary_10_1016_j_cej_2024_150873
crossref_primary_10_1016_j_jcis_2024_05_105
crossref_primary_10_1016_j_compag_2025_110988
crossref_primary_10_1021_acs_langmuir_4c03882
crossref_primary_10_1186_s12951_023_01987_z
crossref_primary_10_3390_coatings13101686
crossref_primary_10_1007_s12274_022_4733_4
crossref_primary_10_1016_j_nantod_2022_101723
crossref_primary_10_1038_s43246_024_00597_y
crossref_primary_10_1016_j_mtnano_2025_100642
crossref_primary_10_1088_2631_7990_ada7aa
crossref_primary_10_1007_s42235_022_00199_9
crossref_primary_10_1002_app_57548
crossref_primary_10_1016_j_nanoen_2024_110407
crossref_primary_10_1016_j_cej_2025_166383
crossref_primary_10_1002_admi_202300507
crossref_primary_10_1016_j_desal_2024_117742
crossref_primary_10_3390_technologies12100173
crossref_primary_10_1016_j_ceramint_2023_11_040
crossref_primary_10_1108_PRT_11_2023_0101
crossref_primary_10_1016_j_coco_2023_101500
crossref_primary_10_1007_s42765_022_00233_9
crossref_primary_10_1021_acsaem_5c01303
crossref_primary_10_1016_j_cej_2023_142847
crossref_primary_10_1038_s41467_025_62146_6
crossref_primary_10_1002_adfm_202418066
crossref_primary_10_1007_s42765_024_00379_8
crossref_primary_10_1039_D3MH00768E
crossref_primary_10_1002_adhm_202304114
crossref_primary_10_1016_j_fbio_2025_107531
crossref_primary_10_1149_1945_7111_ad2643
crossref_primary_10_1016_j_talanta_2024_127335
crossref_primary_10_1007_s11426_024_2412_y
crossref_primary_10_1002_marc_202200740
crossref_primary_10_1007_s40820_025_01771_8
crossref_primary_10_1016_j_cej_2025_166151
crossref_primary_10_3390_nano13132000
crossref_primary_10_1016_j_apcatb_2023_123300
crossref_primary_10_1016_j_cej_2024_149749
crossref_primary_10_1002_mabi_202300283
crossref_primary_10_1002_smll_202205067
crossref_primary_10_1016_j_jhazmat_2025_139676
crossref_primary_10_1016_j_seppur_2025_133984
crossref_primary_10_3390_polym16040514
crossref_primary_10_1016_j_ijbiomac_2024_135477
crossref_primary_10_3390_catal15010074
crossref_primary_10_1002_smll_202304705
crossref_primary_10_3390_nano15060461
crossref_primary_10_1016_j_pmatsci_2023_101144
crossref_primary_10_1002_adfm_202408696
crossref_primary_10_1007_s42765_025_00606_w
crossref_primary_10_1016_j_cis_2024_103236
crossref_primary_10_1016_j_memsci_2023_122090
crossref_primary_10_1016_j_polymdegradstab_2025_111381
crossref_primary_10_3390_nano15080623
crossref_primary_10_1002_mabi_202300274
crossref_primary_10_1088_3050_287X_adfaf7
crossref_primary_10_1016_j_matt_2024_01_009
crossref_primary_10_1016_j_memsci_2025_123750
crossref_primary_10_1016_j_seppur_2025_132402
crossref_primary_10_1038_s41598_024_81778_0
crossref_primary_10_1039_D5CS00093A
crossref_primary_10_1007_s42765_025_00545_6
crossref_primary_10_1007_s10854_025_15394_7
crossref_primary_10_1039_D4RA04231J
crossref_primary_10_1016_j_cej_2022_139281
crossref_primary_10_1002_adma_202305711
crossref_primary_10_1016_j_watres_2023_119830
crossref_primary_10_1016_j_jcis_2023_12_014
crossref_primary_10_1016_j_memsci_2022_120962
crossref_primary_10_1016_j_jcis_2023_04_140
crossref_primary_10_1039_D4MH01618A
crossref_primary_10_1007_s10853_025_10794_w
crossref_primary_10_1016_j_seppur_2024_131378
crossref_primary_10_1111_php_13924
crossref_primary_10_1007_s12274_022_4987_x
crossref_primary_10_1002_app_54631
crossref_primary_10_1016_j_ijbiomac_2023_127000
crossref_primary_10_1016_j_jece_2024_113034
crossref_primary_10_1002_adma_202305606
crossref_primary_10_1002_adfm_202406950
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_1016_j_ijbiomac_2024_136780
crossref_primary_10_1016_j_susmat_2025_e01598
crossref_primary_10_1002_adfm_202305411
crossref_primary_10_1002_advs_202400626
crossref_primary_10_3390_membranes13050488
crossref_primary_10_1002_adfm_202423284
crossref_primary_10_3390_ma18071479
crossref_primary_10_1016_j_cej_2025_168746
crossref_primary_10_1002_adma_202401264
crossref_primary_10_3390_polym17081118
crossref_primary_10_1002_adhm_202401786
crossref_primary_10_1016_j_cej_2024_153770
crossref_primary_10_1016_j_carbpol_2023_120868
crossref_primary_10_1016_j_pmatsci_2025_101504
crossref_primary_10_1016_j_memsci_2024_123385
crossref_primary_10_3390_ddc4010008
crossref_primary_10_3390_polym14235073
crossref_primary_10_1177_00405175241247340
crossref_primary_10_1016_j_apcatb_2025_125456
crossref_primary_10_1007_s10163_025_02245_0
crossref_primary_10_1007_s42114_023_00812_3
crossref_primary_10_1016_j_mtnano_2024_100501
crossref_primary_10_1039_D3QM01251D
crossref_primary_10_1021_acs_langmuir_5c02179
crossref_primary_10_1021_acs_nanolett_4c06089
crossref_primary_10_1016_j_ces_2025_122344
crossref_primary_10_1007_s42765_022_00177_0
crossref_primary_10_1016_j_polymer_2025_128221
crossref_primary_10_1016_j_coco_2024_102076
crossref_primary_10_1016_j_renene_2024_121658
crossref_primary_10_1002_app_54788
crossref_primary_10_1177_15280837241299694
crossref_primary_10_1002_advs_202300598
crossref_primary_10_1016_j_cej_2025_164394
crossref_primary_10_1016_j_seppur_2023_124952
crossref_primary_10_1007_s42765_022_00202_2
crossref_primary_10_1016_j_mattod_2023_05_005
crossref_primary_10_1007_s12274_024_6753_8
crossref_primary_10_1007_s12221_024_00701_6
crossref_primary_10_1051_shsconf_202418701018
crossref_primary_10_1016_j_colsurfa_2023_132224
crossref_primary_10_1002_adma_202508400
crossref_primary_10_1016_j_ijbiomac_2024_139100
crossref_primary_10_1016_j_memsci_2025_124413
crossref_primary_10_1016_j_seppur_2024_131335
crossref_primary_10_1093_rb_rbae150
crossref_primary_10_3390_polym16172423
crossref_primary_10_1016_j_mtcomm_2023_106530
crossref_primary_10_1007_s42765_025_00539_4
crossref_primary_10_1016_j_nanoen_2025_110649
crossref_primary_10_1002_adma_202308586
crossref_primary_10_1186_s12896_025_01017_w
crossref_primary_10_1016_j_cej_2023_144984
crossref_primary_10_1016_j_ijbiomac_2023_127723
crossref_primary_10_1016_j_ijbiomac_2024_131963
crossref_primary_10_3390_gels9040339
crossref_primary_10_1002_mame_202300312
crossref_primary_10_1186_s12951_022_01463_0
crossref_primary_10_1016_j_mtcomm_2022_105014
crossref_primary_10_1016_j_scib_2022_09_014
crossref_primary_10_1038_s41378_023_00593_1
crossref_primary_10_1007_s40820_023_01028_2
crossref_primary_10_1016_j_cej_2024_158636
crossref_primary_10_1016_j_cej_2025_160214
crossref_primary_10_1016_j_coco_2025_102593
crossref_primary_10_3389_fbioe_2023_1094397
crossref_primary_10_1002_app_57712
crossref_primary_10_1016_j_cej_2024_148841
crossref_primary_10_1021_acspolymersau_5c00021
crossref_primary_10_3934_matersci_2025034
Cites_doi 10.1016/j.seppur.2015.11.046
10.1177/152808378501500205
10.1039/C7RA04843B
10.1021/nl5036572
10.1063/1.1510664
10.1016/j.memsci.2014.03.055
10.1002/adfm.201903633
10.1017/S0022112099007223
10.3390/s18020330
10.1177/1528083717705622
10.1063/1.1408260
10.1016/j.cej.2021.130925
10.1007/s11242-012-9945-8
10.1016/j.jcis.2021.02.048
10.1016/S0266-3538(03)00178-7
10.1016/j.polymer.2005.03.011
10.1016/j.memsci.2011.03.014
10.1016/j.jclepro.2020.122739
10.1039/C4RA09129A
10.1039/b703447b
10.1016/j.nanoen.2019.02.010
10.1016/j.elstat.2020.103425
10.1021/acsami.0c00846
10.1021/acsami.7b08885
10.1002/mame.202100371
10.1155/2012/725950
10.1021/acsnano.0c05537
10.1177/1528083714537101
10.1088/0957-4484/26/2/025301
10.1021/acsnano.0c10817
10.1557/jmr.2020.88
10.1002/admi.201700062
10.1016/j.coco.2019.06.002
10.1016/j.eurpolymj.2005.05.008
10.1016/j.memsci.2009.11.031
10.1001/archotol.1993.01880210098013
10.1007/978-94-007-3840-9
10.1002/app.28067
10.1002/app.41515
10.1002/polb.10511
10.3390/molecules25235540
10.1016/j.cej.2020.126222
10.1016/j.jmapro.2011.01.003
10.1002/adma.201908496
10.1016/S0021-8502(99)00034-8
10.1021/acsami.6b09392
10.1177/1528083720904675
10.1016/S1369-7021(06)71389-X
10.2174/1874140101307010008
10.1016/j.memsci.2009.10.047
10.1142/5894
10.1002/adfm.202005033
10.1007/s00330-020-06850-5
10.1016/j.seppur.2005.10.010
10.1007/s12221-012-1007-x
10.1002/app.46342
10.1002/adsu.202000105
10.1080/00405000.2010.529285
10.1016/j.coco.2021.100720
10.1103/RevModPhys.92.035004
10.1016/j.msec.2012.02.019
10.1016/j.ijbiomac.2015.05.014
10.1021/acsami.8b07393
10.1021/nl049590f
10.1021/acssuschemeng.9b05092
10.1007/s12221-011-0057-9
10.1016/j.biomaterials.2008.01.011
10.1039/C7RA13444D
10.1016/j.progpolymsci.2016.06.006
10.2486/indhealth.44.404
10.1002/pen.10799
10.1080/01426390903560414
10.1080/00405160902904641
10.1016/j.cis.2019.03.006
10.1002/admi.201900622
10.1021/la403111m
10.1080/03602559909351596
10.1063/1.373532
10.1016/S0032-3861(00)00250-0
10.1016/j.jcis.2020.01.063
10.1063/1.5109517
10.1201/b12160
10.1016/S0167-577X(00)00328-1
10.1016/j.jenvman.2021.113043
10.1007/s11814-010-0376-3
10.1016/j.coco.2017.10.002
10.1002/app.50391
10.1080/15583720802022281
10.1021/acsnano.8b08242
10.1109/ICPADM.2006.284332
10.1016/j.jcis.2017.08.055
10.1177/1528083712450742
10.1515/IJNSNS.2007.8.3.393
10.1002/aenm.201903921
10.1088/1361-6463/ab7562
10.1002/app.24123
10.1136/svn-2020-000382
10.1016/0021-9797(71)90141-X
10.1016/j.tsf.2007.04.086
10.1002/mame.200500215
10.1088/0953-8984/19/35/356002
10.1021/acsami.1c08798
10.1007/s11814-009-0309-1
10.1126/sciadv.1700895
10.1016/j.polymer.2007.08.002
10.1016/j.compositesb.2014.06.025
10.1002/adfm.202002437
10.1088/0957-4484/7/3/009
10.1515/IJNSNS.2005.6.3.243
10.1016/j.jcis.2019.08.092
10.1002/jbm.b.30336
10.1016/j.progpolymsci.2016.01.001
10.1002/adv.21568
10.1098/rspa.1964.0151
10.1098/rspa.1969.0205
10.1039/C8TC00002F
10.1177/1528083716682920
10.1002/adma.202070064
10.1021/acsami.1c03658
10.1080/00222348.2015.1090654
10.1021/ja068165g
10.1021/acsami.7b02594
10.1007/978-3-319-39715-3_4
10.1016/j.pmatsci.2013.05.001
10.1002/app.40515
10.1002/app.47125
10.1007/s12221-016-5730-6
10.1007/978-94-009-7343-5_5
10.1021/acs.iecr.9b05617
10.1016/j.matlet.2010.04.008
10.1088/0957-4484/17/20/019
10.1016/j.eurpolymj.2015.11.014
10.1021/acssuschemeng.5b00749
10.1080/00222348.2013.763569
10.1016/j.enpol.2008.08.016
10.1126/science.aaf5471
10.1002/adfm.202105587
10.1002/polb.24534
10.1016/j.progpolymsci.2013.07.006
10.1088/0957-4484/17/14/R01
10.1097/MD.0000000000020603
10.1016/j.carbpol.2012.09.026
10.1080/14786448208628425
10.1080/00405169208688856
10.1016/j.jcis.2021.05.171
10.1016/j.msec.2018.05.076
10.1007/s12221-020-9860-5
10.1063/1.1383791
10.1016/j.jmatprotec.2005.06.053
10.3144/expresspolymlett.2020.82
10.1002/anie.200461092
10.1081/MA-120014836
10.1177/152808378501500105
10.1002/app.25464
10.1007/s007060170142
10.1007/s12221-020-9562-z
10.1016/S0140-6736(96)12338-2
10.1007/s10853-012-6276-7
10.1016/S1369-7021(10)70200-5
10.1007/s00521-017-2996-6
10.1533/9781845693732.1.3
10.1021/acsami.5b02848
10.1016/j.enpol.2007.11.002
10.1615/JPorMedia.v18.i3.50
10.1021/acsami.0c20172
10.1177/1528083718779426
10.3390/pharmaceutics13020286
10.1016/0040-6031(70)85016-X
10.1021/acsami.8b10408
10.1201/9781315365701-3
10.1016/j.biombioe.2003.07.005
10.1002/app.36774
10.1016/j.memsci.2017.12.032
10.5772/2416
10.1039/C7TC03058D
10.1007/s10853-011-5310-5
10.1002/pen.24726
10.14502/Tekstilec2013.56.4-12
10.1016/0021-9797(71)90241-4
10.1002/wnan.1611
10.1016/0040-6031(71)80001-1
10.1002/ange.200460333
10.1021/acsami.8b08191
10.1103/PhysRev.10.1
10.1007/BF02875881
10.1016/j.nanoen.2017.04.035
10.1002/mame.202000370
10.1002/ceat.201400323
10.1002/app.21481
10.1002/adma.202100140
10.1021/acsami.0c22670
10.1002/adma.201704765
10.1002/app.28994
10.1177/152808378901800304
10.1039/C5RA27913E
10.1016/j.matlet.2015.04.119
10.1016/j.addr.2007.04.020
10.1016/S0964-8305(02)00051-3
10.1002/adfm.202008705
10.1002/pat.1839
10.1021/jz402762h
10.1016/B978-0-08-100907-9.00012-X
10.1016/j.aiepr.2019.06.002
10.1177/1528083717710711
10.1002/smll.201801527
10.1039/C3TC31680G
10.1021/acsami.7b16422
10.1016/j.colsurfb.2011.04.018
10.1038/s41563-020-00902-3
10.1007/978-3-642-54160-5
10.1021/acsami.0c04486
10.1016/S1473-3099(20)30152-3
10.1016/j.jcis.2020.05.062
10.1146/annurev.fluid.29.1.27
10.1177/152808377900800408
10.1063/1.3567097
10.1016/j.memsci.2016.10.028
10.1166/jnn.2008.536
10.1163/156855508X292383
10.1002/admi.201600036
10.1021/acsabm.9b00875
10.1002/app.41388
10.1002/app.46360
10.1016/j.jfoodeng.2005.04.007
10.1002/(SICI)1097-0363(19960815)23:3<221::AID-FLD419>3.0.CO;2-0
10.1002/admi.201600516
10.1002/smll.202000397
10.1515/epoly-2020-0068
10.1016/j.jhazmat.2021.127602
10.1002/adma.201904113
10.1166/asl.2012.3360
10.1021/nl035135s
10.1002/adv.21947
10.1017/S0022112004000679
10.1002/mame.201600272
10.1002/adma.200400719
10.1016/j.polymer.2005.01.054
10.1126/science.aau1217
10.1016/j.apsusc.2017.12.267
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202107938
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34969155
10_1002_adma_202107938
ADMA202107938
Genre reviewArticle
Systematic Review
Journal Article
GrantInformation_xml – fundername: Contract Research
  funderid: 9231419
– fundername: CityU
  funderid: 9380116
– fundername: National Natural Science Foundation of China
  funderid: 51673162; 52073241
– fundername: Contract Research
  grantid: 9231419
– fundername: National Natural Science Foundation of China
  grantid: 51673162
– fundername: National Natural Science Foundation of China
  grantid: 52073241
– fundername: CityU
  grantid: 9380116
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3738-103d6c16ca0170128b206e296adf27cc2033ea7afe6e36c723ea2d5d607ba2a3
IEDL.DBID DRFUL
ISICitedReferencesCount 318
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767506700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:58:26 EDT 2025
Sun Nov 09 08:10:11 EST 2025
Mon Jul 21 06:06:25 EDT 2025
Tue Nov 18 22:19:30 EST 2025
Sat Nov 29 07:23:12 EST 2025
Wed Jan 22 16:26:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords breathability
unidirectional transmission
protective membranes
electrospinning
waterproofing
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-103d6c16ca0170128b206e296adf27cc2033ea7afe6e36c723ea2d5d607ba2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0001-8914-5473
PMID 34969155
PQID 2655498105
PQPubID 2045203
PageCount 31
ParticipantIDs proquest_miscellaneous_2615918528
proquest_journals_2655498105
pubmed_primary_34969155
crossref_citationtrail_10_1002_adma_202107938
crossref_primary_10_1002_adma_202107938
wiley_primary_10_1002_adma_202107938_ADMA202107938
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 103
2019 2020; 363 30
2010; 13
1970 1971; 1 3
2020; 20
2019; 15
2021; 602
2013 2016 2020; 58 61 10
2004; 4
2009; 111
2001 2014 2020 2013 2017; 13 48 92 47
2020; 14
2020; 13
2020; 12
2020; 565
2007 2017 2018; 17 2
2013; 7
2012; 13
2014; 131
2001; 41
2016; 35
2018; 47
2019 2018 2001 2016; 268 10 48 38
2018; 6
2018; 8
1996 1997 2000 2002 2005 2012 2000 2013 2020; 23 29 87 14 6 10 405 29 16
2013; 52
2015; 132
2007; 8
2008; 516
2020; 577
2019; 556
2019; 29
1982
2016; 158
2018 2014 2011 2008; 18 2 22 29
2003; 41
2004; 43
2019; 7
2007; 19
2011 2020 2015 2012 2019; 13 104 38 47 31
2019; 31
2019; 2
2020; 305
2020; 35
2012 2012
2020; 32
2016; 17
2011; 5
2012; 32
2015; 471
2015 2013; 54 22
2016; 6
1999 2021 2010 2020; 38 294 35 274
2016; 3
2020; 30
1971; 35
2006; 49
2013 2011; 43 102
2008 2015 2015; 109 156 79
2021; 138
1917; 10
1971; 36
2011; 86
2008; 48
2020; 25
2020; 21
1969; 313
2018; 10
2017; 302
2016; 8
2018; 14
2006; 102
2018; 13
2017; 5
2021; 25
2017; 6
2017; 7
2021; 20
2006; 75
2001; 90
2017; 4
2006; 76
2019 2016; 45
2019; 58
2020; 402
2005 2012; 41 126
2020; 59
2011; 12
2017; 9
2014; 67
1992 2006 1994 2019 2019; 22 44 25 6 49
2002; 49
2010; 64
2014; 5
2020; 4
1997; 349
2014; 4
2021; 31
2021; 33
2018 2008 2010 2011 2016; 37 8 27 28 74
2001
2020; 53
2017; 36
2001 2006 2008 2017; 42 9 42
2018; 135
2004 2009 2008; 27 37 36
2021 2021; 424 306
2016; 353
2021; 592
2020 2020 2020; 99 5 20
2012 2010 2010; 8 348 349
1996; 7
2017; 525
2002; 39
2007; 129
2015; 18
2015; 3
1964; 280
2012
2005 2006 2009; 17 41
2006; 17
2013 2018; 56 91
2008
2007
2014 2011 2014; 39 375 463
2008; 11
2018; 549
1979 1989 1993; 8 18 119
2015; 7
2007; 59
2005; 46
2016; 56
2021; 13
2012; 93
2021; 15
2004; 116
2017; 508
1882; 14
2021
2004; 16
2005; 167
2018 2018; 47 30
2020
2000; 31
2020 2005; 96
2019; 136
2016
2011; 46
2005 2021; 46 13
2018; 439
2014
1985 1985; 15 15
2004; 516
2022; 427
2018; 56
2015 2017; 15 3
2003; 63
2012 2005 2015 2013; 49 290 132 92
2012 2014; 2012 26
2007; 48
2018; 58
e_1_2_9_71_2
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_2
e_1_2_9_18_1
e_1_2_9_183_1
Heald M. A. (e_1_2_9_186_1) 2012
e_1_2_9_18_3
e_1_2_9_160_1
e_1_2_9_60_3
e_1_2_9_60_2
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_45_5
e_1_2_9_45_3
e_1_2_9_68_3
e_1_2_9_68_2
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_11_2
e_1_2_9_129_6
e_1_2_9_129_2
e_1_2_9_129_3
e_1_2_9_129_4
e_1_2_9_129_5
e_1_2_9_129_1
e_1_2_9_106_2
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
He J. H. (e_1_2_9_54_1) 2008
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_5_3
e_1_2_9_5_2
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
Raheel M. (e_1_2_9_3_3) 1994
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_31_3
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_2
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_16_3
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_2
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_8_4
e_1_2_9_8_3
e_1_2_9_8_2
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_55_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_2
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_17_3
e_1_2_9_17_2
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_7_2
Moghadam B. H. (e_1_2_9_65_2) 2013; 22
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_7_4
Subbotin A. V. (e_1_2_9_44_1) 2015; 471
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_7_3
e_1_2_9_150_2
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_103_2
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_87_1
Mohammadian M. (e_1_2_9_64_1) 2012; 49
e_1_2_9_64_4
e_1_2_9_64_3
e_1_2_9_64_2
e_1_2_9_2_1
Karim S. A. (e_1_2_9_60_1) 2012; 8
e_1_2_9_138_1
e_1_2_9_115_2
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_3
e_1_2_9_76_2
e_1_2_9_76_1
e_1_2_9_91_1
Kara S. (e_1_2_9_12_3) 2018; 2
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_15_3
e_1_2_9_15_2
e_1_2_9_42_1
Fragassa C. (e_1_2_9_16_4) 2016; 38
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_2
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
Chavarria G. (e_1_2_9_182_2) 2012
e_1_2_9_27_1
Haghi A. (e_1_2_9_55_1) 2019
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
Zafar F. (e_1_2_9_88_1) 2012
e_1_2_9_128_1
e_1_2_9_105_3
e_1_2_9_105_2
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
Rafiei S. (e_1_2_9_45_4) 2013; 47
e_1_2_9_181_1
e_1_2_9_62_1
Williams J. T. (e_1_2_9_12_2) 2017
e_1_2_9_24_1
e_1_2_9_85_1
Li H. (e_1_2_9_75_1) 2014; 131
e_1_2_9_4_1
e_1_2_9_47_9
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_3
e_1_2_9_47_4
e_1_2_9_47_1
e_1_2_9_47_2
e_1_2_9_132_1
e_1_2_9_47_7
e_1_2_9_47_8
e_1_2_9_47_5
e_1_2_9_47_6
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_104_2
e_1_2_9_188_1
Seyedin S. (e_1_2_9_56_1) 2017; 6
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
Rafiei S. (e_1_2_9_45_2) 2014; 48
e_1_2_9_180_1
e_1_2_9_63_2
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_63_5
e_1_2_9_63_4
e_1_2_9_63_3
e_1_2_9_86_1
e_1_2_9_3_5
e_1_2_9_3_4
e_1_2_9_3_2
e_1_2_9_3_1
Forsberg K. (e_1_2_9_1_1) 2020
Beglou M. (e_1_2_9_48_3) 2008; 42
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_48_2
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_48_4
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 129
  start-page: 764
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 2012 26
  year: 2012 2014
  publication-title: J. Nanomater. Nanotechnology
– volume: 21
  start-page: 954
  year: 2020
  publication-title: Fibers Polym.
– volume: 46 13
  start-page: 2889 940
  year: 2005 2021
  end-page: 943
  publication-title: Polymer ACS Appl. Mater. Interfaces
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  year: 2018
  publication-title: J. Appl. Polym. Sci.
– start-page: 89
  year: 2016
  end-page: 154
– volume: 1 3
  start-page: 459 81
  year: 1970 1971
  publication-title: Thermochim. Acta Thermochim. Acta
– volume: 14
  year: 2018
  publication-title: Small
– volume: 2
  start-page: 5949
  year: 2019
  publication-title: ACS Appl. Bio Mater.
– volume: 76
  start-page: 219
  year: 2006
  publication-title: J. Biomed. Mater. Res., Part B
– volume: 13
  start-page: 1007
  year: 2012
  publication-title: Fibers Polym.
– year: 2014
– volume: 6
  start-page: 3120
  year: 2018
  publication-title: J. Mater. Chem. C
– start-page: 3
  year: 2007
  end-page: 21
– volume: 54 22
  start-page: 1404 23
  year: 2015 2013
  publication-title: J. Macromol. Sci., Part B: Phys. System
– volume: 41
  start-page: 982
  year: 2001
  publication-title: Polym. Eng. Sci.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 16
  start-page: 1151
  year: 2004
  publication-title: Adv. Mater.
– volume: 353
  start-page: 1019
  year: 2016
  publication-title: Science
– volume: 592
  start-page: 310
  year: 2021
  publication-title: J. Colloid Interface Sci.
– start-page: 105
  year: 2012 2012
  end-page: 132
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 378
  year: 2008
  publication-title: Polym. Rev.
– volume: 12
  start-page: 57
  year: 2011
  publication-title: Fibers Polym.
– volume: 103
  start-page: 3105
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– year: 2008
– volume: 116
  start-page: 4438
  year: 2004
  publication-title: Angew. Chem.
– volume: 25
  year: 2021
  publication-title: Compos. Commun.
– volume: 46
  start-page: 3372
  year: 2005
  publication-title: Polymer
– volume: 6
  start-page: 20
  year: 2017
  publication-title: Int. J. Cheminf. Chem. Eng.
– volume: 49
  start-page: 271
  year: 2006
  publication-title: Sep. Purif. Technol.
– volume: 15 3
  start-page: 365
  year: 2015 2017
  publication-title: Nano Lett. Sci. Adv.
– volume: 63
  start-page: 2223
  year: 2003
  publication-title: Compos. Sci. Technol.
– volume: 86
  start-page: 345
  year: 2011
  publication-title: Colloids Surf., B
– volume: 17 2
  start-page: 2775 40
  year: 2007 2017 2018
  publication-title: J. Mater. Chem. Fibres Text.
– volume: 39 375 463
  start-page: 683 1 145
  year: 2014 2011 2014
  publication-title: Prog. Polym. Sci. J. Membr. Sci. J. Membr. Sci.
– volume: 136
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 525
  start-page: 57
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 13
  start-page: 1060
  year: 2018
  publication-title: ACS Nano
– volume: 90
  start-page: 4836
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 47
  start-page: 1166
  year: 2018
  publication-title: J. Ind. Text.
– volume: 12
  year: 2020
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 42 9 42
  start-page: 261 40 441 33
  year: 2001 2006 2008 2017
  publication-title: Polymer Mater. Today Cellul. Chem. Technol.
– volume: 99 5 20
  start-page: 523
  year: 2020 2020 2020
  publication-title: Medicine Stroke Vasc. Neurol. Lancet Infect. Dis.
– volume: 2
  start-page: 110
  year: 2019
  publication-title: Adv. Ind. Eng. Polym. Res.
– volume: 43 102
  start-page: 174 1019
  year: 2013 2011
  publication-title: J. Ind. Text. J. Text. Inst.
– volume: 167
  start-page: 283
  year: 2005
  publication-title: J. Mater. Process. Technol.
– volume: 17
  start-page: 624
  year: 2016
  publication-title: Fibers Polym.
– volume: 158
  start-page: 53
  year: 2016
  publication-title: Sep. Purif. Technol.
– volume: 471
  year: 2015
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 402
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 58 61 10
  start-page: 1173 67
  year: 2013 2016 2020
  publication-title: Prog. Mater. Sci. Prog. Polym. Sci. Adv. Energy Mater.
– volume: 15
  start-page: 5307
  year: 2021
  publication-title: ACS Nano
– volume: 93
  start-page: 79
  year: 2012
  publication-title: Transp. Porous Media
– volume: 13
  start-page: 286
  year: 2021
  publication-title: Pharmaceutics
– volume: 3
  start-page: 2551
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 38 294 35 274
  start-page: 499 157
  year: 1999 2021 2010 2020
  publication-title: Polym.‐Plast. Technol. Eng. J. Environ. Manage. Landscape Res. J. Cleaner Prod.
– volume: 13 48 92 47
  start-page: 2201 401 323 277
  year: 2001 2014 2020 2013 2017
  end-page: 301
  publication-title: Phys. Fluids Cellul. Chem. Technol. Rev. Mod. Phys. Cellul. Chem. Technol.
– volume: 313
  start-page: 453
  year: 1969
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 14
  start-page: 1003
  year: 2020
  publication-title: eXPRESS Polym. Lett.
– volume: 602
  start-page: 105
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 41 126
  start-page: 2559 232
  year: 2005 2012
  publication-title: Eur. Polym. J. J. Appl. Polym. Sci.
– volume: 25
  start-page: 5540
  year: 2020
  publication-title: Molecules
– volume: 8
  start-page: 4794
  year: 2018
  publication-title: RSC Adv.
– volume: 305
  year: 2020
  publication-title: Macromol. Mater. Eng.
– volume: 59
  start-page: 4447
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 516
  start-page: 2495
  year: 2008
  publication-title: Thin Solid Films
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  start-page: 65
  year: 2000
  publication-title: J. Aerosol Sci.
– volume: 5
  start-page: 686
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– year: 2020
  publication-title: J. Ind. Text.
– volume: 46
  start-page: 3890
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 39
  start-page: 1085
  year: 2002
  publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 47
  start-page: 1645
  year: 2018
  publication-title: J. Ind. Text.
– volume: 49 290 132 92
  start-page: 301 1097 1416
  year: 2012 2005 2015 2013
  publication-title: Mater. Plast. Macromol. Mater. Eng. J. Appl. Polym. Sci. Carbohydr. Polym.
– volume: 56
  start-page: 116
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 75
  start-page: 187
  year: 2006
  publication-title: J. Food Eng.
– volume: 5
  year: 2011
  publication-title: Biomicrofluidics
– volume: 15
  start-page: 40
  year: 2019
  publication-title: Compos. Commun.
– volume: 56 91
  start-page: 4 541
  year: 2013 2018
  publication-title: Tekstilec Mater. Sci. Eng., C
– volume: 109 156 79
  start-page: 406 46 469
  year: 2008 2015 2015
  publication-title: J. Appl. Polym. Sci. Mater. Lett. Int. J. Biol. Macromol.
– volume: 14
  start-page: 184
  year: 1882
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci.
– start-page: 195
  year: 1982
  end-page: 273
– volume: 8 348 349
  start-page: 2510 109 113
  year: 2012 2010 2010
  publication-title: J. Appl. Sci. Res. J. Membr. Sci. J. Membr. Sci.
– year: 2021
– volume: 41
  start-page: 1572
  year: 2003
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 58
  start-page: 1381
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 439
  start-page: 589
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 37 8 27 28 74
  start-page: 2743 2509 340 428 91
  year: 2018 2008 2010 2011 2016
  publication-title: Adv. Polym. Technol. J. Nanosci. Nanotechnol. Korean J. Chem. Eng. Korean J. Chem. Eng. Eur. Polym. J.
– volume: 10
  start-page: 1
  year: 1917
  publication-title: Phys. Rev.
– volume: 35
  start-page: 419
  year: 2016
  publication-title: Adv. Polym. Technol.
– volume: 17 41
  start-page: R89 59
  year: 2005 2006 2009
  publication-title: Nanotechnology Text. Prog.
– volume: 32
  start-page: 1037
  year: 2012
  publication-title: Mater. Sci. Eng., C
– volume: 27 37 36
  start-page: 613 181 775
  year: 2004 2009 2008
  publication-title: Biomass Bioenergy Energy Policy Energy Policy
– volume: 18 2 22 29
  start-page: 330 1209 326 1989
  year: 2018 2014 2011 2008
  publication-title: Sensors J. Mater. Chem. C Polym. Adv. Tecnnol. Biomaterials
– volume: 8
  start-page: 564
  year: 2007
  publication-title: Fibers Polym.
– volume: 47 30
  start-page: 1791
  year: 2018 2018
  publication-title: J. Ind. Text. Adv. Mater.
– volume: 7
  start-page: 216
  year: 1996
  publication-title: Nanotechnology
– volume: 424 306
  year: 2021 2021
  publication-title: J. Hazard. Mater. Macromol. Mater. Eng.
– volume: 102
  start-page: 1023
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– start-page: 31
  year: 2001
  publication-title: Monatsh. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– start-page: 3
  year: 2012
  end-page: 16
– volume: 4
  start-page: 933
  year: 2004
  publication-title: Nano Lett.
– volume: 4
  year: 2020
  publication-title: Adv. Sustainable Syst.
– volume: 565
  start-page: 426
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 67
  start-page: 30
  year: 2014
  publication-title: Composites, Part B
– volume: 549
  start-page: 332
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 508
  start-page: 508
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 36
  start-page: 71
  year: 1971
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 1
  year: 2008
  publication-title: Des. Monomers Polym.
– volume: 49
  start-page: 245
  year: 2002
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 52
  start-page: 1250
  year: 2013
  publication-title: J. Macromol. Sci., Part B: Phys.
– volume: 6
  start-page: 63
  year: 2017
  publication-title: Compos. Commun.
– volume: 13
  start-page: 16
  year: 2010
  publication-title: Mater. Today
– volume: 53
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 13 104 38 47 31
  start-page: 104 844 4262 239
  year: 2011 2020 2015 2012 2019
  publication-title: J. Manuf. Process. J. Electrost. Chem. Eng. Technol. J. Mater. Sci. Neural Comput. Appl.
– volume: 20
  start-page: 859
  year: 2021
  publication-title: Nat. Mater.
– volume: 23 29 87 14 6 10 405 29 16
  start-page: 221 27 4531 3912 243 590 131
  year: 1996 1997 2000 2002 2005 2012 2000 2013 2020
  publication-title: Int. J. Numer. Methods Fluids Annu. Rev. Fluid Mech. J. Appl. Phys. Phys. Fluids Int. J. Nonlinear Sci. Numer. Simul. Adv. Sci. Lett. J. Fluid Mech. Langmuir Small
– volume: 138
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 132
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– volume: 35
  start-page: 1173
  year: 2020
  publication-title: J. Mater. Res.
– volume: 17
  start-page: 5151
  year: 2006
  publication-title: Nanotechnology
– volume: 22 44 25 6 49
  start-page: 1 404 97
  year: 1992 2006 1994 2019 2019
  publication-title: Text. Prog. Ind. Health Adv. Mater. Interfaces J. Ind. Text.
– volume: 48
  start-page: 6064
  year: 2007
  publication-title: Polymer
– volume: 577
  start-page: 207
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 96
  start-page: 557
  year: 2020 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 268 10 48 38
  start-page: 114 2026 362 241
  year: 2019 2018 2001 2016
  publication-title: Adv. Colloid Interface Sci. ACS Appl. Mater. Interfaces Mater. Lett. Tribol. Ind.
– volume: 280
  start-page: 383
  year: 1964
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 131
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 21
  start-page: 1444
  year: 2020
  publication-title: Fibers Polym.
– volume: 43
  start-page: 5210
  year: 2004
  publication-title: Angew. Chem., Int Ed.
– volume: 64
  start-page: 1517
  year: 2010
  publication-title: Mater. Lett.
– volume: 516
  start-page: 349
  year: 2004
  publication-title: J. Fluid Mech.
– volume: 111
  start-page: 408
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– year: 2012
– volume: 56
  start-page: 36
  year: 2018
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 30
  start-page: 3603
  year: 2020
  publication-title: Eur. Radiol.
– volume: 18
  start-page: 245
  year: 2015
  publication-title: J. Porous Media
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  year: 2007
  publication-title: J. Phys.: Condens. Matter
– volume: 45
  start-page: 483
  year: 2019 2016
  publication-title: J. Ind. Text.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 8 18 119
  start-page: 312 180 1008
  year: 1979 1989 1993
  publication-title: Coated Fabr. Coated Fabr. Arch. Otolaryngol., Head Neck Surg.
– volume: 363 30
  start-page: 619
  year: 2019 2020
  publication-title: Science Adv. Funct. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 750
  year: 2019
  publication-title: Nano Energy
– volume: 35
  start-page: 417
  year: 1971
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 393
  year: 2007
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 349
  start-page: 1341
  year: 1997
  publication-title: Lancet
– volume: 36
  start-page: 341
  year: 2017
  publication-title: Nano Energy
– volume: 13
  start-page: 2081
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 459
  year: 2004
  publication-title: Nano Lett.
– volume: 15 15
  start-page: 40 115
  year: 1985 1985
  publication-title: Coated Fabr. Coated Fabr.
– volume: 20
  start-page: 682
  year: 2020
  publication-title: e‐Polymers
– volume: 302
  year: 2017
  publication-title: Macromol. Mater. Eng.
– volume: 556
  start-page: 541
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 8
  year: 2013
  publication-title: Open Nanosci. J.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59
  start-page: 1384
  year: 2007
  publication-title: Adv. Drug Delivery Rev.
– ident: e_1_2_9_174_1
  doi: 10.1016/j.seppur.2015.11.046
– ident: e_1_2_9_11_2
  doi: 10.1177/152808378501500205
– ident: e_1_2_9_141_1
  doi: 10.1039/C7RA04843B
– ident: e_1_2_9_103_1
  doi: 10.1021/nl5036572
– ident: e_1_2_9_47_4
  doi: 10.1063/1.1510664
– ident: e_1_2_9_76_3
  doi: 10.1016/j.memsci.2014.03.055
– ident: e_1_2_9_79_1
  doi: 10.1002/adfm.201903633
– ident: e_1_2_9_47_7
  doi: 10.1017/S0022112099007223
– ident: e_1_2_9_8_1
  doi: 10.3390/s18020330
– ident: e_1_2_9_99_1
  doi: 10.1177/1528083717705622
– ident: e_1_2_9_38_1
  doi: 10.1063/1.1408260
– ident: e_1_2_9_91_1
  doi: 10.1016/j.cej.2021.130925
– ident: e_1_2_9_96_1
  doi: 10.1007/s11242-012-9945-8
– ident: e_1_2_9_179_1
  doi: 10.1016/j.jcis.2021.02.048
– volume: 38
  start-page: 241
  year: 2016
  ident: e_1_2_9_16_4
  publication-title: Tribol. Ind.
– ident: e_1_2_9_32_1
  doi: 10.1016/S0266-3538(03)00178-7
– ident: e_1_2_9_46_1
  doi: 10.1016/j.polymer.2005.03.011
– ident: e_1_2_9_76_2
  doi: 10.1016/j.memsci.2011.03.014
– ident: e_1_2_9_7_4
  doi: 10.1016/j.jclepro.2020.122739
– ident: e_1_2_9_109_1
  doi: 10.1039/C4RA09129A
– ident: e_1_2_9_12_1
  doi: 10.1039/b703447b
– ident: e_1_2_9_86_1
  doi: 10.1016/j.nanoen.2019.02.010
– ident: e_1_2_9_129_3
  doi: 10.1016/j.elstat.2020.103425
– ident: e_1_2_9_178_1
  doi: 10.1021/acsami.0c00846
– ident: e_1_2_9_92_1
  doi: 10.1021/acsami.7b08885
– ident: e_1_2_9_115_2
  doi: 10.1002/mame.202100371
– ident: e_1_2_9_70_1
  doi: 10.1155/2012/725950
– ident: e_1_2_9_4_1
  doi: 10.1021/acsnano.0c05537
– volume-title: Waterproof and Water Repellent Textiles and Clothing
  year: 2017
  ident: e_1_2_9_12_2
– ident: e_1_2_9_55_2
  doi: 10.1177/1528083714537101
– ident: e_1_2_9_70_2
  doi: 10.1088/0957-4484/26/2/025301
– ident: e_1_2_9_80_1
  doi: 10.1021/acsnano.0c10817
– ident: e_1_2_9_137_1
  doi: 10.1557/jmr.2020.88
– ident: e_1_2_9_111_1
  doi: 10.1002/admi.201700062
– ident: e_1_2_9_172_1
  doi: 10.1016/j.coco.2019.06.002
– ident: e_1_2_9_113_1
  doi: 10.1016/j.eurpolymj.2005.05.008
– ident: e_1_2_9_60_3
  doi: 10.1016/j.memsci.2009.11.031
– ident: e_1_2_9_15_3
  doi: 10.1001/archotol.1993.01880210098013
– ident: e_1_2_9_182_1
  doi: 10.1007/978-94-007-3840-9
– ident: e_1_2_9_105_1
  doi: 10.1002/app.28067
– ident: e_1_2_9_176_1
  doi: 10.1002/app.41515
– ident: e_1_2_9_81_1
  doi: 10.1002/polb.10511
– ident: e_1_2_9_73_1
  doi: 10.3390/molecules25235540
– ident: e_1_2_9_123_1
  doi: 10.1016/j.cej.2020.126222
– ident: e_1_2_9_129_1
  doi: 10.1016/j.jmapro.2011.01.003
– ident: e_1_2_9_185_1
  doi: 10.1002/adma.201908496
– ident: e_1_2_9_37_1
  doi: 10.1016/S0021-8502(99)00034-8
– ident: e_1_2_9_136_1
  doi: 10.1021/acsami.6b09392
– ident: e_1_2_9_159_1
  doi: 10.1177/1528083720904675
– ident: e_1_2_9_48_2
  doi: 10.1016/S1369-7021(06)71389-X
– ident: e_1_2_9_61_1
  doi: 10.2174/1874140101307010008
– volume: 471
  year: 2015
  ident: e_1_2_9_44_1
  publication-title: Proc. R. Soc. London, Ser. A
– ident: e_1_2_9_60_2
  doi: 10.1016/j.memsci.2009.10.047
– ident: e_1_2_9_31_1
  doi: 10.1142/5894
– ident: e_1_2_9_104_2
  doi: 10.1002/adfm.202005033
– ident: e_1_2_9_13_1
  doi: 10.1007/s00330-020-06850-5
– ident: e_1_2_9_62_1
  doi: 10.1016/j.seppur.2005.10.010
– ident: e_1_2_9_98_1
  doi: 10.1007/s12221-012-1007-x
– ident: e_1_2_9_164_1
  doi: 10.1002/app.46342
– ident: e_1_2_9_166_1
  doi: 10.1002/adsu.202000105
– ident: e_1_2_9_6_2
  doi: 10.1080/00405000.2010.529285
– ident: e_1_2_9_128_1
  doi: 10.1016/j.coco.2021.100720
– ident: e_1_2_9_45_3
  doi: 10.1103/RevModPhys.92.035004
– ident: e_1_2_9_148_1
  doi: 10.1016/j.msec.2012.02.019
– ident: e_1_2_9_105_3
  doi: 10.1016/j.ijbiomac.2015.05.014
– ident: e_1_2_9_183_1
  doi: 10.1021/acsami.8b07393
– ident: e_1_2_9_143_1
  doi: 10.1021/nl049590f
– ident: e_1_2_9_119_1
  doi: 10.1021/acssuschemeng.9b05092
– ident: e_1_2_9_161_1
  doi: 10.1007/s12221-011-0057-9
– ident: e_1_2_9_8_4
  doi: 10.1016/j.biomaterials.2008.01.011
– volume: 8
  start-page: 2510
  year: 2012
  ident: e_1_2_9_60_1
  publication-title: J. Appl. Sci. Res.
– ident: e_1_2_9_49_1
  doi: 10.1039/C7RA13444D
– ident: e_1_2_9_18_2
  doi: 10.1016/j.progpolymsci.2016.06.006
– ident: e_1_2_9_3_2
  doi: 10.2486/indhealth.44.404
– ident: e_1_2_9_10_1
  doi: 10.1002/pen.10799
– ident: e_1_2_9_7_3
  doi: 10.1080/01426390903560414
– ident: e_1_2_9_31_3
  doi: 10.1080/00405160902904641
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cis.2019.03.006
– ident: e_1_2_9_24_1
– ident: e_1_2_9_3_4
  doi: 10.1002/admi.201900622
– ident: e_1_2_9_47_8
  doi: 10.1021/la403111m
– ident: e_1_2_9_7_1
  doi: 10.1080/03602559909351596
– ident: e_1_2_9_47_3
  doi: 10.1063/1.373532
– ident: e_1_2_9_48_1
  doi: 10.1016/S0032-3861(00)00250-0
– ident: e_1_2_9_107_1
  doi: 10.1016/j.jcis.2020.01.063
– ident: e_1_2_9_129_2
  doi: 10.1063/1.5109517
– ident: e_1_2_9_134_1
  doi: 10.1201/b12160
– ident: e_1_2_9_16_3
  doi: 10.1016/S0167-577X(00)00328-1
– ident: e_1_2_9_7_2
  doi: 10.1016/j.jenvman.2021.113043
– ident: e_1_2_9_63_4
  doi: 10.1007/s11814-010-0376-3
– ident: e_1_2_9_170_1
  doi: 10.1016/j.coco.2017.10.002
– volume: 22
  start-page: 23
  year: 2013
  ident: e_1_2_9_65_2
  publication-title: System
– ident: e_1_2_9_158_1
  doi: 10.1002/app.50391
– ident: e_1_2_9_14_1
– volume-title: Protective Clothing Systems and Materials
  year: 1994
  ident: e_1_2_9_3_3
– ident: e_1_2_9_118_1
  doi: 10.1080/15583720802022281
– ident: e_1_2_9_145_1
  doi: 10.1021/acsnano.8b08242
– ident: e_1_2_9_68_2
  doi: 10.1109/ICPADM.2006.284332
– ident: e_1_2_9_162_1
  doi: 10.1016/j.jcis.2017.08.055
– ident: e_1_2_9_6_1
  doi: 10.1177/1528083712450742
– ident: e_1_2_9_152_1
  doi: 10.1515/IJNSNS.2007.8.3.393
– ident: e_1_2_9_18_3
  doi: 10.1002/aenm.201903921
– ident: e_1_2_9_157_1
  doi: 10.1088/1361-6463/ab7562
– ident: e_1_2_9_59_1
  doi: 10.1002/app.24123
– ident: e_1_2_9_17_2
  doi: 10.1136/svn-2020-000382
– ident: e_1_2_9_41_1
  doi: 10.1016/0021-9797(71)90141-X
– ident: e_1_2_9_125_1
  doi: 10.1016/j.tsf.2007.04.086
– ident: e_1_2_9_64_2
  doi: 10.1002/mame.200500215
– ident: e_1_2_9_132_1
  doi: 10.1088/0953-8984/19/35/356002
– ident: e_1_2_9_68_3
  doi: 10.1021/acsami.1c08798
– start-page: 105
  volume-title: Advances in Selected Plant Physiology Aspects
  year: 2012
  ident: e_1_2_9_182_2
– ident: e_1_2_9_63_3
  doi: 10.1007/s11814-009-0309-1
– ident: e_1_2_9_103_2
  doi: 10.1126/sciadv.1700895
– volume: 48
  start-page: 401
  year: 2014
  ident: e_1_2_9_45_2
  publication-title: Cellul. Chem. Technol.
– ident: e_1_2_9_36_1
  doi: 10.1016/j.polymer.2007.08.002
– ident: e_1_2_9_117_1
  doi: 10.1016/j.compositesb.2014.06.025
– ident: e_1_2_9_181_1
  doi: 10.1002/adfm.202002437
– ident: e_1_2_9_30_1
  doi: 10.1088/0957-4484/7/3/009
– ident: e_1_2_9_47_5
  doi: 10.1515/IJNSNS.2005.6.3.243
– ident: e_1_2_9_169_1
  doi: 10.1016/j.jcis.2019.08.092
– ident: e_1_2_9_51_1
  doi: 10.1002/jbm.b.30336
– ident: e_1_2_9_74_1
  doi: 10.1016/j.progpolymsci.2016.01.001
– ident: e_1_2_9_168_1
  doi: 10.1002/adv.21568
– ident: e_1_2_9_28_1
  doi: 10.1098/rspa.1964.0151
– ident: e_1_2_9_42_1
  doi: 10.1098/rspa.1969.0205
– ident: e_1_2_9_187_1
  doi: 10.1039/C8TC00002F
– volume-title: Quick Selection Guide to Chemical Protective Clothing
  year: 2020
  ident: e_1_2_9_1_1
– ident: e_1_2_9_177_1
  doi: 10.1177/1528083716682920
– ident: e_1_2_9_184_1
  doi: 10.1002/adma.202070064
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.1c03658
– ident: e_1_2_9_65_1
  doi: 10.1080/00222348.2015.1090654
– ident: e_1_2_9_147_1
  doi: 10.1021/ja068165g
– ident: e_1_2_9_173_1
  doi: 10.1021/acsami.7b02594
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-319-39715-3_4
– ident: e_1_2_9_18_1
  doi: 10.1016/j.pmatsci.2013.05.001
– volume: 131
  year: 2014
  ident: e_1_2_9_75_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40515
– ident: e_1_2_9_84_1
  doi: 10.1002/app.47125
– ident: e_1_2_9_149_1
  doi: 10.1007/s12221-016-5730-6
– ident: e_1_2_9_77_1
  doi: 10.1007/978-94-009-7343-5_5
– ident: e_1_2_9_116_1
  doi: 10.1021/acs.iecr.9b05617
– ident: e_1_2_9_126_1
  doi: 10.1016/j.matlet.2010.04.008
– ident: e_1_2_9_151_1
  doi: 10.1088/0957-4484/17/20/019
– ident: e_1_2_9_63_5
  doi: 10.1016/j.eurpolymj.2015.11.014
– ident: e_1_2_9_188_1
  doi: 10.1021/acssuschemeng.5b00749
– ident: e_1_2_9_83_1
  doi: 10.1080/00222348.2013.763569
– ident: e_1_2_9_5_2
  doi: 10.1016/j.enpol.2008.08.016
– ident: e_1_2_9_102_1
  doi: 10.1126/science.aaf5471
– ident: e_1_2_9_154_1
  doi: 10.1002/adfm.202105587
– ident: e_1_2_9_156_1
  doi: 10.1002/polb.24534
– ident: e_1_2_9_76_1
  doi: 10.1016/j.progpolymsci.2013.07.006
– ident: e_1_2_9_31_2
  doi: 10.1088/0957-4484/17/14/R01
– ident: e_1_2_9_17_1
  doi: 10.1097/MD.0000000000020603
– ident: e_1_2_9_64_4
  doi: 10.1016/j.carbpol.2012.09.026
– ident: e_1_2_9_23_1
  doi: 10.1080/14786448208628425
– volume: 2
  start-page: 40
  year: 2018
  ident: e_1_2_9_12_3
  publication-title: Fibres Text.
– ident: e_1_2_9_3_1
  doi: 10.1080/00405169208688856
– ident: e_1_2_9_100_1
  doi: 10.1016/j.jcis.2021.05.171
– ident: e_1_2_9_22_1
– ident: e_1_2_9_71_2
  doi: 10.1016/j.msec.2018.05.076
– ident: e_1_2_9_160_1
  doi: 10.1007/s12221-020-9860-5
– ident: e_1_2_9_45_1
  doi: 10.1063/1.1383791
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jmatprotec.2005.06.053
– ident: e_1_2_9_58_1
  doi: 10.3144/expresspolymlett.2020.82
– ident: e_1_2_9_146_1
  doi: 10.1002/anie.200461092
– ident: e_1_2_9_108_1
  doi: 10.1081/MA-120014836
– ident: e_1_2_9_11_1
  doi: 10.1177/152808378501500105
– ident: e_1_2_9_57_1
  doi: 10.1002/app.25464
– ident: e_1_2_9_133_1
  doi: 10.1007/s007060170142
– volume: 6
  start-page: 20
  year: 2017
  ident: e_1_2_9_56_1
  publication-title: Int. J. Cheminf. Chem. Eng.
– ident: e_1_2_9_163_1
  doi: 10.1007/s12221-020-9562-z
– ident: e_1_2_9_2_1
  doi: 10.1016/S0140-6736(96)12338-2
– ident: e_1_2_9_129_5
  doi: 10.1007/s10853-012-6276-7
– ident: e_1_2_9_33_1
  doi: 10.1016/S1369-7021(10)70200-5
– ident: e_1_2_9_129_6
  doi: 10.1007/s00521-017-2996-6
– ident: e_1_2_9_39_1
  doi: 10.1533/9781845693732.1.3
– ident: e_1_2_9_94_1
  doi: 10.1021/acsami.5b02848
– ident: e_1_2_9_5_3
  doi: 10.1016/j.enpol.2007.11.002
– ident: e_1_2_9_97_1
  doi: 10.1615/JPorMedia.v18.i3.50
– ident: e_1_2_9_127_1
  doi: 10.1021/acsami.0c20172
– ident: e_1_2_9_3_5
  doi: 10.1177/1528083718779426
– ident: e_1_2_9_67_1
  doi: 10.3390/pharmaceutics13020286
– ident: e_1_2_9_106_1
  doi: 10.1016/0040-6031(70)85016-X
– ident: e_1_2_9_167_1
  doi: 10.1021/acsami.8b10408
– ident: e_1_2_9_48_4
  doi: 10.1201/9781315365701-3
– ident: e_1_2_9_5_1
  doi: 10.1016/j.biombioe.2003.07.005
– ident: e_1_2_9_113_2
  doi: 10.1002/app.36774
– ident: e_1_2_9_155_1
  doi: 10.1016/j.memsci.2017.12.032
– start-page: 3
  volume-title: Polyurethane
  year: 2012
  ident: e_1_2_9_88_1
  doi: 10.5772/2416
– ident: e_1_2_9_9_1
  doi: 10.1039/C7TC03058D
– ident: e_1_2_9_52_1
  doi: 10.1007/s10853-011-5310-5
– ident: e_1_2_9_138_1
  doi: 10.1002/pen.24726
– ident: e_1_2_9_71_1
  doi: 10.14502/Tekstilec2013.56.4-12
– ident: e_1_2_9_29_1
  doi: 10.1016/0021-9797(71)90241-4
– volume-title: Electrospinning of Nanofibers in Textiles
  year: 2019
  ident: e_1_2_9_55_1
– ident: e_1_2_9_66_1
  doi: 10.1002/wnan.1611
– ident: e_1_2_9_106_2
  doi: 10.1016/0040-6031(71)80001-1
– ident: e_1_2_9_142_1
  doi: 10.1002/ange.200460333
– ident: e_1_2_9_78_1
  doi: 10.1021/acsami.8b08191
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRev.10.1
– ident: e_1_2_9_93_1
  doi: 10.1007/BF02875881
– ident: e_1_2_9_85_1
  doi: 10.1016/j.nanoen.2017.04.035
– ident: e_1_2_9_120_1
  doi: 10.1002/mame.202000370
– ident: e_1_2_9_129_4
  doi: 10.1002/ceat.201400323
– ident: e_1_2_9_1_2
  doi: 10.1002/app.21481
– ident: e_1_2_9_180_1
  doi: 10.1002/adma.202100140
– ident: e_1_2_9_114_1
  doi: 10.1021/acsami.0c22670
– ident: e_1_2_9_150_2
  doi: 10.1002/adma.201704765
– ident: e_1_2_9_53_1
  doi: 10.1002/app.28994
– volume-title: Electrospun Nanofibres and their Applications
  year: 2008
  ident: e_1_2_9_54_1
– ident: e_1_2_9_69_1
– ident: e_1_2_9_15_2
  doi: 10.1177/152808378901800304
– ident: e_1_2_9_110_1
  doi: 10.1039/C5RA27913E
– ident: e_1_2_9_105_2
  doi: 10.1016/j.matlet.2015.04.119
– ident: e_1_2_9_19_1
  doi: 10.1016/j.addr.2007.04.020
– ident: e_1_2_9_27_1
– ident: e_1_2_9_90_1
  doi: 10.1016/S0964-8305(02)00051-3
– ident: e_1_2_9_112_1
  doi: 10.1002/adfm.202008705
– ident: e_1_2_9_8_3
  doi: 10.1002/pat.1839
– ident: e_1_2_9_130_1
  doi: 10.1021/jz402762h
– ident: e_1_2_9_45_5
  doi: 10.1016/B978-0-08-100907-9.00012-X
– ident: e_1_2_9_72_1
  doi: 10.1016/j.aiepr.2019.06.002
– ident: e_1_2_9_150_1
  doi: 10.1177/1528083717710711
– ident: e_1_2_9_95_1
  doi: 10.1002/smll.201801527
– ident: e_1_2_9_8_2
  doi: 10.1039/C3TC31680G
– ident: e_1_2_9_16_2
  doi: 10.1021/acsami.7b16422
– ident: e_1_2_9_34_1
  doi: 10.1016/j.colsurfb.2011.04.018
– ident: e_1_2_9_122_1
  doi: 10.1038/s41563-020-00902-3
– ident: e_1_2_9_87_1
  doi: 10.1007/978-3-642-54160-5
– volume-title: Classical Electromagnetic Radiation
  year: 2012
  ident: e_1_2_9_186_1
– volume: 42
  start-page: 441
  year: 2008
  ident: e_1_2_9_48_3
  publication-title: Cellul. Chem. Technol.
– ident: e_1_2_9_153_1
  doi: 10.1021/acsami.0c04486
– ident: e_1_2_9_17_3
  doi: 10.1016/S1473-3099(20)30152-3
– ident: e_1_2_9_140_1
  doi: 10.1016/j.jcis.2020.05.062
– volume: 47
  start-page: 323
  year: 2013
  ident: e_1_2_9_45_4
  publication-title: Cellul. Chem. Technol.
– ident: e_1_2_9_47_2
  doi: 10.1146/annurev.fluid.29.1.27
– ident: e_1_2_9_15_1
  doi: 10.1177/152808377900800408
– ident: e_1_2_9_40_1
  doi: 10.1063/1.3567097
– ident: e_1_2_9_124_1
  doi: 10.1016/j.memsci.2016.10.028
– ident: e_1_2_9_63_2
  doi: 10.1166/jnn.2008.536
– ident: e_1_2_9_89_1
  doi: 10.1163/156855508X292383
– ident: e_1_2_9_139_1
  doi: 10.1002/admi.201600036
– ident: e_1_2_9_175_1
  doi: 10.1021/acsabm.9b00875
– ident: e_1_2_9_64_3
  doi: 10.1002/app.41388
– ident: e_1_2_9_171_1
  doi: 10.1002/app.46360
– ident: e_1_2_9_131_1
  doi: 10.1016/j.jfoodeng.2005.04.007
– ident: e_1_2_9_47_1
  doi: 10.1002/(SICI)1097-0363(19960815)23:3<221::AID-FLD419>3.0.CO;2-0
– ident: e_1_2_9_135_1
  doi: 10.1002/admi.201600516
– ident: e_1_2_9_47_9
  doi: 10.1002/smll.202000397
– ident: e_1_2_9_21_1
  doi: 10.1515/epoly-2020-0068
– volume: 49
  start-page: 301
  year: 2012
  ident: e_1_2_9_64_1
  publication-title: Mater. Plast.
– ident: e_1_2_9_115_1
  doi: 10.1016/j.jhazmat.2021.127602
– ident: e_1_2_9_144_1
  doi: 10.1002/adma.201904113
– ident: e_1_2_9_47_6
  doi: 10.1166/asl.2012.3360
– ident: e_1_2_9_121_1
  doi: 10.1021/nl035135s
– ident: e_1_2_9_63_1
  doi: 10.1002/adv.21947
– ident: e_1_2_9_26_1
– ident: e_1_2_9_43_1
  doi: 10.1017/S0022112004000679
– ident: e_1_2_9_82_1
  doi: 10.1002/mame.201600272
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.200400719
– ident: e_1_2_9_68_1
  doi: 10.1016/j.polymer.2005.01.054
– ident: e_1_2_9_104_1
  doi: 10.1126/science.aau1217
– ident: e_1_2_9_165_1
  doi: 10.1016/j.apsusc.2017.12.267
SSID ssj0009606
Score 2.7185717
SecondaryResourceType review_article
Snippet Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107938
SubjectTerms Anti-Bacterial Agents
Biomimetic materials
breathability
Electromagnetic shielding
Electrospinning
Hydrophobic and Hydrophilic Interactions
Hydrostatic pressure
Intelligent manufacturing systems
Materials science
Membranes
Membranes, Artificial
Nanofibers
Nanofibers - chemistry
protective membranes
unidirectional transmission
Water vapor
waterproofing
Title Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107938
https://www.ncbi.nlm.nih.gov/pubmed/34969155
https://www.proquest.com/docview/2655498105
https://www.proquest.com/docview/2615918528
Volume 34
WOSCitedRecordID wos000767506700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4ahQd4YBuwUcaQJyHxQkTqtE7CWxhEe1gR2kDqW-T4IkWiKaKFn8Fv5hw7Da0QQtreYsWJLfvcfDnfB3CobDwQfd0LUm0iojBLgxQj54Dz0GibJEL2rSObiC8vk9EovVrI4vf4EO2GG2mGs9ek4LKcnryAhkrtcINwyYIilqzAKkfhHXRg9fxPfvP7BXhXOH5NOu8LUtFP5sCNIT9Z_sOyY3oVbS4Hr8775B__v9-fYLOJPFnmReUzfDD1Fmws4BFuwxMGkeiE2BVd2kITyKqanmfeKLKhGWPDaBtZLktHL2Q0e6wku_BcOtO7yhEgnbKsuVnAhnLmRfyYnVWTcTWmnEn214HWPmATx0zWmuXoXP2eJMsWDtR34Dq_uP75K2gIGwJFAElo0iMtVE8oSag86PlKHgrDUyG15bFSPIwiI2NpjTCRUDHHEtcDLcK4lFxGX6BTT2qzCwztsE1sqEoUJVyB2tRyKy2RuAtc0EvThWA-WYVqwMyJU-O28DDMvKBhLtph7sJRW__Ow3i8WXN_PvdFo87TgguMutIEY9Eu_GhfoyLS6QqO--SB6mBkSKno-IuvXmbapgiVn4D4u8CdaLzThyI7H2Ztae9fPvoG65wSNdwdo33o4Lya77CmHmfV9P4AVuJRctCoyjN5ShQM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD54KagPalu1W22dQqEvBuNknSS-xUtQ3F2kbsG3MDsXCLhZ6a7-DH9zz5nJRhcRofiWIZPMMHNucznfB_BT2fhQtPVBkGoTEYVZGqQYOQech0bbJBGybR3ZRNzrJTc36VV9m5ByYTw-RLPhRprh7DUpOG1I7z-hhkrtgINwzYIylszDYhtlCYV88fR3_qfzhLwrHMEmHfgFqWgnU-TGkO_P_mHWM70IN2ejV-d-8rV36Pg6rNaxJ8u8sHyEOVN9gpVniISf4RHDSHRD7IqubaERZGVFzxNvFlnXDLFltI4slwNHMGQ0eyglO_NsOuO70lEgHbGsvlvAunLihXyPHZejYTmkrEl27WBr77GJPSYrzXJ0r35XkmXPjtQ3oJ-f9U_Og5qyIVAEkYRGPdJCHQglCZcHfd-Ah8LwVEhteawUD6PIyFhaI0wkVMyxxPWhFmE8kFxGm7BQjSrzBRhaYpvYUA1QmHANalPLrbRE4y5wSS9NC4LpbBWqhjMnVo3bwgMx84KGuWiGuQW_mvp3Hsjj1Zo708kvaoUeF1xg3JUmGI224EfzGlWRzldw3Ef3VAdjQ0pGx19seaFpmiJcfoLibwF3svFGH4rstJs1pa__89EuLJ33u52ic9G73IZlTmkb7sbRDizgHJtv8EE9TMrx3--1xvwDffIXFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6s6Sjdwy69LWu3aVDoS01dOZXtvnlLzcaaENYW-mYUXcDQOKFJ8zP2m3eO5LgJZQzK3iwsW0I6N13O9wEcKhufiY4-DVJtIqIwS4MUI-eA89BomyRCdqwjm4j7_eT2Nh3UtwkpF8bjQzQbbqQZzl6TgpuJtiePqKFSO-AgXLOgjCVrsN4hJpkWrHd_5TeXj8i7whFs0oFfkIpOskBuDPnJ6h9WPdOTcHM1enXuJ3_zHzr-Fl7XsSfLvLC8gxem2oJXS4iE2_Abw0h0Q2xA17bQCLKyoueZN4usZ0bYMlpHlsuhIxgyms1LyS48m850UjoKpHOW1XcLWE_OvJAfs6_leFSOKGuSXTnY2gds4pjJSrMc3avflWTZ0pH6DlznF9ffvgc1ZUOgCCIJjXqkhToVShIuD_q-IQ-F4amQ2vJYKR5GkZGxtEaYSKiYY4nrMy3CeCi5jHahVY0r8x4YWmKb2FANUZhwDWpTy620ROMucEkvTRuCxWwVqoYzJ1aNu8IDMfOChrlohrkNR039iQfy-GvNg8XkF7VCTwsuMO5KE4xG2_CleY2qSOcrOO7jB6qDsSElo-Mv9rzQNE0RLj9B8beBO9n4Rx-KrNvLmtKH53z0GTYG3by4_NH_uQ-bnLI23IWjA2jhFJuP8FLNZ-X0_lOtMH8A5lgWjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Protective+Membranes+Fabricated+via+Electrospinning%3A+Advanced+Materials%2C+Biomimetic+Structures%2C+and+Functional+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Shuo&rft.au=Si%2C+Yifan&rft.au=Han%2C+Yanting&rft.au=Wu%2C+Ting&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202107938&rft.externalDBID=10.1002%252Fadma.202107938&rft.externalDocID=ADMA202107938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon