Localized Morphological Modulation of Ultrathin Magnetic Nanosheets via a Strategically Designed Reduction Approach

2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Small (Weinheim an der Bergstrasse, Germany) Ročník 21; číslo 6; s. e2409657 - n/a
Hlavní autoři: Liu, Xianyuan, Wang, Xianghua, Lu, Xianyong, Jiang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.02.2025
Témata:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. A controlled reduction method is reported to regulate the morphology of 2D magnetic nanosheets. Through precise control of reaction conditions, nanosheets with unique sawtooth‐like edges are obtained. The synergistic effect of element doping and morphology control results in excellent electromagnetic wave absorption properties. This provides a new approach for the morphological control of 2D nanomaterials and broadens their application field.
AbstractList 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe3O4 nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe3O4 nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. A controlled reduction method is reported to regulate the morphology of 2D magnetic nanosheets. Through precise control of reaction conditions, nanosheets with unique sawtooth‐like edges are obtained. The synergistic effect of element doping and morphology control results in excellent electromagnetic wave absorption properties. This provides a new approach for the morphological control of 2D nanomaterials and broadens their application field.
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe O nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe O nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe O significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RL ) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α ‐Fe 2 O 3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe 3 O 4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe 3 O 4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RL min ) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.
Author Lu, Xianyong
Liu, Xianyuan
Jiang, Lei
Wang, Xianghua
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Liu
  fullname: Liu, Xianyuan
  organization: Beihang University
– sequence: 2
  givenname: Xianghua
  surname: Wang
  fullname: Wang, Xianghua
  organization: Beihang University
– sequence: 3
  givenname: Xianyong
  orcidid: 0000-0002-7763-4883
  surname: Lu
  fullname: Lu, Xianyong
  email: xylu@buaa.edu.cn
  organization: Beihang University
– sequence: 4
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39707672$$D View this record in MEDLINE/PubMed
BookMark eNqFkctrGzEQh0VIiPO65lgEveRiR8-VdTRJX7BOoUnOi1Ya2zLyyl3tNrh_fWU7dSFQctKD75sZfnOOjpvYAELXlIwoIew2rUIYMcIE0YVUR-iMFpQPizHTx4c7JQN0ntKSEE6ZUKdowLUiqlDsDKUyWhP8b3B4Gtv1IoY49_knv1wfTOdjg-MMP4euNd3CN3hq5g103uIH08S0AOgS_uUNNvhxi8DODht8D8ln0uEf4Hq7qzNZr9to7OISncxMSHD1el6g58-fnu6-DsvvX77dTcqh5YqroautVWC0E3Ksx1JIZh0wbgWXpGCSK6aMKggrpBVQa6eYIcJYWdeCKq0cv0A3-7q57c8eUletfLIQgmkg9qniVGROajLO6Mc36DL2bZOny1QOVjEuWaY-vFJ9vQJXrVu_Mu2m-htnBkZ7wLYxpRZmB4SSaruvaruv6rCvLIg3gvXdLvUcpg__1_Ree_EBNu80qR6nZfnP_QOyc6sD
CitedBy_id crossref_primary_10_26599_NR_2025_94907387
Cites_doi 10.1021/acsami.6b00264
10.1016/j.cej.2015.10.031
10.1002/anie.202017076
10.1039/C8CC03822H
10.1021/acs.chemmater.7b02315
10.1016/j.jmst.2024.02.031
10.1002/adma.202300659
10.1039/D0TA10942H
10.1039/D1CC06721D
10.1002/smll.202307473
10.1088/1361-6528/ab53c4
10.1016/j.jcis.2020.03.089
10.1002/smll.202103351
10.1021/acsnano.6b06950
10.1002/adfm.202213258
10.1016/j.cej.2020.126626
10.1007/s12274-024-6938-1
10.1016/j.jmst.2024.03.066
10.1002/adfm.202316691
10.1038/s41467-021-23819-0
10.1007/s10854-020-05183-9
10.1016/j.cej.2021.130940
10.1021/acsami.8b02770
10.1016/j.matdes.2020.108517
10.1038/s41467-024-45874-z
10.1107/S0909049500016964
10.1038/s41560-021-00944-0
10.1038/s41467-017-00371-4
10.1039/C7RA04796G
10.1154/1.2135313
10.1002/adfm.202000475
10.1016/j.compositesb.2021.109354
10.1016/j.jcis.2021.05.055
10.1088/0957-4484/27/29/295703
10.1002/smll.202306698
10.1002/smll.202403689
10.1021/cm103441u
10.1016/j.jcis.2019.06.058
10.1016/j.jmst.2022.06.013
10.1016/j.jssc.2022.123049
10.1007/s40820-024-01396-3
10.1016/j.cej.2017.05.155
10.1016/j.compscitech.2020.108558
10.1103/PhysRevB.58.7565
10.1016/j.chemosphere.2020.127889
10.1039/C2CE26111A
10.1016/j.jcis.2024.07.102
10.1016/j.cej.2022.135855
10.1016/j.compscitech.2022.109289
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202409657
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39707672
10_1002_smll_202409657
SMLL202409657
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51873004
– fundername: National Natural Science Foundation of China
  grantid: 51873004
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
53G
AAMMB
AAYXX
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
31~
AANHP
AASGY
AAYOK
ACBWZ
ACRPL
ACYXJ
ADNMO
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-dbcc7ea9d458985452cde23c43506253727a760265c4eb9d72a04ac5bb41797d3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Wed Oct 01 14:31:34 EDT 2025
Fri Jul 25 12:14:51 EDT 2025
Thu Feb 13 03:15:48 EST 2025
Tue Nov 18 22:24:08 EST 2025
Sat Nov 29 01:42:35 EST 2025
Thu Feb 13 09:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords designed reduction
electromagnetic wave absorption
morphology control
nanosheets
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-dbcc7ea9d458985452cde23c43506253727a760265c4eb9d72a04ac5bb41797d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7763-4883
PMID 39707672
PQID 3165772352
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_3147975908
proquest_journals_3165772352
pubmed_primary_39707672
crossref_primary_10_1002_smll_202409657
crossref_citationtrail_10_1002_smll_202409657
wiley_primary_10_1002_smll_202409657_SMLL202409657
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2022; 310
2017; 7
2017; 8
2021; 6
2023; 35
2023; 33
2021; 202
2021; 226
2021; 600
2021; 405
2021; 263
2020; 189
2017; 29
2024; 34
2024; 15
2024; 16
2024; 17
2016; 285
2023; 20
2022; 220
2022; 440
2013; 15
2021; 32
2021; 12
2024; 676
2020; 31
2020; 30
2020; 572
2017; 11
2021; 17
2023; 132
2001; 8
2024; 195
2022; 58
2019; 553
2024; 20
2011; 23
2022; 427
2021; 60
2018; 10
2016; 27
2018; 54
2016; 8
2025; 205
2012; 20
2017; 326
1998; 58
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Wang X. (e_1_2_8_44_1) 2023; 20
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
Ungár T. (e_1_2_8_30_1) 2012; 20
e_1_2_8_33_1
References_xml – volume: 8
  start-page: 307
  year: 2017
  publication-title: Nat. Commun.
– volume: 20
  year: 2023
  publication-title: Small
– volume: 8
  start-page: 7370
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 4404
  year: 2021
  publication-title: J. Mater. Sci.: Mater. Electron
– volume: 15
  start-page: 443
  year: 2013
  publication-title: CrystEngComm
– volume: 263
  year: 2021
  publication-title: Chemosphere
– volume: 285
  start-page: 497
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 676
  start-page: 217
  year: 2024
  publication-title: J. Colloid Interface Sci.
– volume: 600
  start-page: 382
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 58
  start-page: 908
  year: 2022
  publication-title: Chem. Commun. (Camb)
– volume: 12
  start-page: 3563
  year: 2021
  publication-title: Nat. Commun.
– volume: 326
  start-page: 292
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 20
  start-page: 366
  year: 2012
  publication-title: Powder Diffr.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 5086
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 195
  start-page: 126
  year: 2024
  publication-title: J. Mater. Sci. Technol.
– volume: 440
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 220
  year: 2022
  publication-title: Compos. Sci. Technol.
– volume: 54
  start-page: 7342
  year: 2018
  publication-title: Chem. Commun.
– volume: 15
  start-page: 2290
  year: 2024
  publication-title: Nat. Commun.
– volume: 405
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 202
  year: 2021
  publication-title: Compos. Sci. Technol.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 7794
  year: 2017
  publication-title: Chem. Mater.
– volume: 132
  start-page: 223
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 58
  start-page: 7565
  year: 1998
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 174
  year: 2024
  publication-title: Nano‐Micro Lett.
– volume: 205
  start-page: 258
  year: 2025
  publication-title: J. Mater. Sci. Technol.
– volume: 553
  start-page: 465
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 17
  start-page: 9845
  year: 2024
  publication-title: Nano Res.
– volume: 11
  start-page: 656
  year: 2017
  publication-title: ACS Nano
– volume: 60
  year: 2021
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 322
  year: 2001
  publication-title: J. Synchrotron Rad.
– volume: 310
  year: 2022
  publication-title: J. Solid State Chem.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 226
  year: 2021
  publication-title: Composites Part B
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 1587
  year: 2011
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1154
  year: 2021
  publication-title: Nat. Energy
– volume: 189
  year: 2020
  publication-title: Mater. Des.
– volume: 572
  start-page: 227
  year: 2020
  publication-title: J. Colloid Interface Sci.
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.6b00264
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2015.10.031
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.202017076
– ident: e_1_2_8_15_1
  doi: 10.1039/C8CC03822H
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemmater.7b02315
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jmst.2024.02.031
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.202300659
– ident: e_1_2_8_26_1
  doi: 10.1039/D0TA10942H
– ident: e_1_2_8_12_1
  doi: 10.1039/D1CC06721D
– volume: 20
  year: 2023
  ident: e_1_2_8_44_1
  publication-title: Small
  doi: 10.1002/smll.202307473
– ident: e_1_2_8_37_1
  doi: 10.1088/1361-6528/ab53c4
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jcis.2020.03.089
– ident: e_1_2_8_28_1
  doi: 10.1002/smll.202103351
– ident: e_1_2_8_5_1
  doi: 10.1021/acsnano.6b06950
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.202213258
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cej.2020.126626
– ident: e_1_2_8_41_1
  doi: 10.1007/s12274-024-6938-1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jmst.2024.03.066
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202316691
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-021-23819-0
– ident: e_1_2_8_32_1
  doi: 10.1007/s10854-020-05183-9
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cej.2021.130940
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.8b02770
– ident: e_1_2_8_9_1
  doi: 10.1016/j.matdes.2020.108517
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-024-45874-z
– ident: e_1_2_8_47_1
  doi: 10.1107/S0909049500016964
– ident: e_1_2_8_20_1
  doi: 10.1038/s41560-021-00944-0
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-017-00371-4
– ident: e_1_2_8_39_1
  doi: 10.1039/C7RA04796G
– volume: 20
  start-page: 366
  year: 2012
  ident: e_1_2_8_30_1
  publication-title: Powder Diffr.
  doi: 10.1154/1.2135313
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.202000475
– ident: e_1_2_8_8_1
  doi: 10.1016/j.compositesb.2021.109354
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jcis.2021.05.055
– ident: e_1_2_8_14_1
  doi: 10.1088/0957-4484/27/29/295703
– ident: e_1_2_8_27_1
  doi: 10.1002/smll.202306698
– ident: e_1_2_8_46_1
  doi: 10.1002/smll.202403689
– ident: e_1_2_8_7_1
  doi: 10.1021/cm103441u
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jcis.2019.06.058
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jmst.2022.06.013
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jssc.2022.123049
– ident: e_1_2_8_22_1
  doi: 10.1007/s40820-024-01396-3
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cej.2017.05.155
– ident: e_1_2_8_21_1
  doi: 10.1016/j.compscitech.2020.108558
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.58.7565
– ident: e_1_2_8_10_1
  doi: 10.1016/j.chemosphere.2020.127889
– ident: e_1_2_8_17_1
  doi: 10.1039/C2CE26111A
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jcis.2024.07.102
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cej.2022.135855
– ident: e_1_2_8_3_1
  doi: 10.1016/j.compscitech.2022.109289
SSID ssj0031247
Score 2.4709506
Snippet 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2409657
SubjectTerms Absorption
Chemical properties
Crystal defects
Crystal lattices
designed reduction
Electromagnetic properties
Electromagnetic radiation
electromagnetic wave absorption
Iron oxides
Magnetic properties
Morphology
morphology control
Nanomaterials
Nanosheets
Surface energy
Wave reflection
Title Localized Morphological Modulation of Ultrathin Magnetic Nanosheets via a Strategically Designed Reduction Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202409657
https://www.ncbi.nlm.nih.gov/pubmed/39707672
https://www.proquest.com/docview/3165772352
https://www.proquest.com/docview/3147975908
Volume 21
WOSCitedRecordID wos001380711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQd64E27pVRGQuJkNes4sXOsWlYcditUWGlvkV-hKy1J1Wwrwa9nJi-6QggJjpEfcewZzxc_vg_gXUgDKRpbnmonubRB8swEzTHYR8Eb6VLrG7EJdXGhl8vs071b_C0_xLDgRp7RzNfk4MbWJ79IQ-tva9o6wIiUpYnagV2BxpuMYPf8crqY9bNxjPGrEVjBsMWJe6snbozEyXYN24HpN7S5DV6b6DN98v_tfgqPO-TJTltTeQYPQvkc9u7xEb6AekaRbfUjeDavcAD6iRGffCfzxaqCLdZEaXu1KtncfC3pFiTDSbqqr0LY1OxuZZhhPestll5_Z-fNORGs9pKYYpt6Tjsy85ewmH74cvaRd6oM3MUqVtxb51QwmZeJzjRJlDsfROwQd0X4MxUjIDKKhK0SJ4PNvBImksYl1pLYmfLxKxiVVRkOgEknJkVhZeS8l4WIjXYTWpZNCj1B2KnHwPshyV1HWU7KGeu8JVsWOXVmPnTmGN4P-a9bso4_5jzqRzjvnLbO4wmmKIGQdAxvh2R0N9pDMWWobimPxI8gofgx7LeWMbwKoV2kUoWlRWMAf2lD_nk-mw1Ph_9S6DU8EqRH3JwiP4LR5uY2vIGH7m6zqm-OYUct9XHnED8BQs0L0g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD5s6WDrw27d2mxdp0JhT6KOLFv2Y1gXOuqE0TbQNyNLchvI7FKnhe3X7xzftlDGoOzR6GJZOkfnsy7fB3DgQkeKxhkPIyO5zJzksXYRx2DvOaulCTNbi02o2Sy6uIi_tacJ6S5Mww_RL7iRZ9TzNTk4LUgf_mYNrb4vae8AQ1IcBuoxbEi0JTTyjaPTyTzppmMfA1itsIJxixP5Vsfc6InD9RrWI9M9uLmOXuvwM3nxHxr-Ep632JONG2N5BY9c8Ro2_2Ak3IIqodi2-Oksm5Y4BN3UiE-2FfpiZc7mSyK1vVoUbKovC7oHyXCaLqsr51YVu1toplnHe4ullz_YUX1SBKs9Ja7Yup5xS2f-BuaTL-efj3mry8CNr3zFbWaMcjq2MojiiETKjXXCN4i8PPyd8hESaUXSVoGRLoutEtqT2gRZRnJnyvpvYVCUhdsBJo0Y5XkmPWOtzIWvIzOihdkgj0YIPKMh8G5MUtOSlpN2xjJt6JZFSp2Z9p05hE99_uuGruOvOXe7IU5bt61Sf4QpSiAoHcJ-n4wOR7sounDlLeWR-BEkFT-E7cY0-lchuPNUqLC0qC3gH21Iz6ZJ0j-9e0ihj_D0-HyapMnX2cl7eCZInbg-U74Lg9XNrfsAT8zdalHd7LV-8Qv89g7a
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD506RjbQ7tLt6XtNg0GexJ1ZNmyH8vS0DInlG6BvhlZkttAapc6LWy_fuf4toVRCmOPRhfLks45n3X5PoBPLnSkaJzxMDKSy8xJHmsXcQz2nrNamjCztdiEms2i8_P4tD1NSHdhGn6IfsGNLKP212Tg7trmB79ZQ6urJe0dYEiKw0A9gk1JSjID2ByfTeZJ5459DGC1wgrGLU7kWx1zoycO1mtYj0x_wc119FqHn8n2f2j4c9hqsSc7bCbLC9hwxUt49gcj4SuoEopti5_OsmmJQ9C5RnyyrdAXK3M2XxKp7eWiYFN9UdA9SIZuuqwunVtV7G6hmWYd7y2WXv5g4_qkCFZ7RlyxdT2HLZ35DswnR9-_HPNWl4EbX_mK28wY5XRsZRDFEYmUG-uEbxB5efg75SMk0oqkrQIjXRZbJbQntQmyjOTOlPVfw6AoC_cWmDRilOeZ9Iy1Mhe-jsyIFmaDPBoh8IyGwLsxSU1LWk7aGcu0oVsWKXVm2nfmED73-a8buo57c-53Q5y2Zlul_ghTlEBQOoSPfTIaHO2i6MKVt5RH4keQVPwQ3jRTo38VgjtPhQpLi3oGPNCG9Ns0Sfqn3X8p9AGenI4naXIy-7oHTwWJE9dHyvdhsLq5de_gsblbLaqb961Z_AJx0A5V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Morphological+Modulation+of+Ultrathin+Magnetic+Nanosheets+via+a+Strategically+Designed+Reduction+Approach&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xianyuan&rft.au=Wang%2C+Xianghua&rft.au=Lu%2C+Xianyong&rft.au=Jiang%2C+Lei&rft.date=2025-02-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2409657&rft_id=info:doi/10.1002%2Fsmll.202409657&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon