Localized Morphological Modulation of Ultrathin Magnetic Nanosheets via a Strategically Designed Reduction Approach
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and th...
Saved in:
| Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 6; pp. e2409657 - n/a |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
| Subjects: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.
A controlled reduction method is reported to regulate the morphology of 2D magnetic nanosheets. Through precise control of reaction conditions, nanosheets with unique sawtooth‐like edges are obtained. The synergistic effect of element doping and morphology control results in excellent electromagnetic wave absorption properties. This provides a new approach for the morphological control of 2D nanomaterials and broadens their application field. |
|---|---|
| AbstractList | 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe3O4 nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications.2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe3O4 nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. A controlled reduction method is reported to regulate the morphology of 2D magnetic nanosheets. Through precise control of reaction conditions, nanosheets with unique sawtooth‐like edges are obtained. The synergistic effect of element doping and morphology control results in excellent electromagnetic wave absorption properties. This provides a new approach for the morphological control of 2D nanomaterials and broadens their application field. 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α‐Fe2O3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe3O4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe3O4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RLmin) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents. Al-doped α-Fe O nanosheets are synthesized through a solvothermal process and subsequently reduced to Al-doped Fe O nanosheets, characterized by distinctive sawtooth-like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe O significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RL ) of -66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ -10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology‐directing agents. Al‐doped α ‐Fe 2 O 3 nanosheets are synthesized through a solvothermal process and subsequently reduced to Al‐doped Fe 3 O 4 nanosheets, characterized by distinctive sawtooth‐like edges. The incorporation of iron salts facilitates atomic rearrangement within the iron oxide lattice, wherein rapid atomic migration induces defects along the crystal facets, resulting in unique morphologies. Furthermore, the doping of aluminum elements and the resultant Fe 3 O 4 significantly enhance the electromagnetic properties of the nanosheets, yielding exceptional electromagnetic wave absorption performance. Notably, a remarkable minimum reflection loss (RL min ) of −66.1 dB is achieved at a thickness of 4.0 mm, with an effective absorption bandwidth (RL ≤ −10 dB) extending up to 3.9 GHz. This controlled reduction strategy presents a promising pathway for tailoring the morphology of 2D nanomaterials and optimizing their performance in electromagnetic wave absorption applications. |
| Author | Lu, Xianyong Liu, Xianyuan Jiang, Lei Wang, Xianghua |
| Author_xml | – sequence: 1 givenname: Xianyuan surname: Liu fullname: Liu, Xianyuan organization: Beihang University – sequence: 2 givenname: Xianghua surname: Wang fullname: Wang, Xianghua organization: Beihang University – sequence: 3 givenname: Xianyong orcidid: 0000-0002-7763-4883 surname: Lu fullname: Lu, Xianyong email: xylu@buaa.edu.cn organization: Beihang University – sequence: 4 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Beihang University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39707672$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctrGzEQh0VIiPO65lgEveRiR8-VdTRJX7BOoUnOi1Ya2zLyyl3tNrh_fWU7dSFQctKD75sZfnOOjpvYAELXlIwoIew2rUIYMcIE0YVUR-iMFpQPizHTx4c7JQN0ntKSEE6ZUKdowLUiqlDsDKUyWhP8b3B4Gtv1IoY49_knv1wfTOdjg-MMP4euNd3CN3hq5g103uIH08S0AOgS_uUNNvhxi8DODht8D8ln0uEf4Hq7qzNZr9to7OISncxMSHD1el6g58-fnu6-DsvvX77dTcqh5YqroautVWC0E3Ksx1JIZh0wbgWXpGCSK6aMKggrpBVQa6eYIcJYWdeCKq0cv0A3-7q57c8eUletfLIQgmkg9qniVGROajLO6Mc36DL2bZOny1QOVjEuWaY-vFJ9vQJXrVu_Mu2m-htnBkZ7wLYxpRZmB4SSaruvaruv6rCvLIg3gvXdLvUcpg__1_Ree_EBNu80qR6nZfnP_QOyc6sD |
| CitedBy_id | crossref_primary_10_26599_NR_2025_94907387 |
| Cites_doi | 10.1021/acsami.6b00264 10.1016/j.cej.2015.10.031 10.1002/anie.202017076 10.1039/C8CC03822H 10.1021/acs.chemmater.7b02315 10.1016/j.jmst.2024.02.031 10.1002/adma.202300659 10.1039/D0TA10942H 10.1039/D1CC06721D 10.1002/smll.202307473 10.1088/1361-6528/ab53c4 10.1016/j.jcis.2020.03.089 10.1002/smll.202103351 10.1021/acsnano.6b06950 10.1002/adfm.202213258 10.1016/j.cej.2020.126626 10.1007/s12274-024-6938-1 10.1016/j.jmst.2024.03.066 10.1002/adfm.202316691 10.1038/s41467-021-23819-0 10.1007/s10854-020-05183-9 10.1016/j.cej.2021.130940 10.1021/acsami.8b02770 10.1016/j.matdes.2020.108517 10.1038/s41467-024-45874-z 10.1107/S0909049500016964 10.1038/s41560-021-00944-0 10.1038/s41467-017-00371-4 10.1039/C7RA04796G 10.1154/1.2135313 10.1002/adfm.202000475 10.1016/j.compositesb.2021.109354 10.1016/j.jcis.2021.05.055 10.1088/0957-4484/27/29/295703 10.1002/smll.202306698 10.1002/smll.202403689 10.1021/cm103441u 10.1016/j.jcis.2019.06.058 10.1016/j.jmst.2022.06.013 10.1016/j.jssc.2022.123049 10.1007/s40820-024-01396-3 10.1016/j.cej.2017.05.155 10.1016/j.compscitech.2020.108558 10.1103/PhysRevB.58.7565 10.1016/j.chemosphere.2020.127889 10.1039/C2CE26111A 10.1016/j.jcis.2024.07.102 10.1016/j.cej.2022.135855 10.1016/j.compscitech.2022.109289 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202409657 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 39707672 10_1002_smll_202409657 SMLL202409657 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51873004 – fundername: National Natural Science Foundation of China grantid: 51873004 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 53G AAMMB AAYXX AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION LH4 31~ AANHP AASGY AAYOK ACBWZ ACRPL ACYXJ ADNMO ASPBG AVWKF AZFZN BDRZF EBD EJD EMOBN FEDTE GODZA HVGLF NPM SV3 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3737-dbcc7ea9d458985452cde23c43506253727a760265c4eb9d72a04ac5bb41797d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Wed Oct 01 14:31:34 EDT 2025 Fri Jul 25 12:14:51 EDT 2025 Thu Feb 13 03:15:48 EST 2025 Tue Nov 18 22:24:08 EST 2025 Sat Nov 29 01:42:35 EST 2025 Thu Feb 13 09:32:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | designed reduction electromagnetic wave absorption morphology control nanosheets |
| Language | English |
| License | 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3737-dbcc7ea9d458985452cde23c43506253727a760265c4eb9d72a04ac5bb41797d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7763-4883 |
| PMID | 39707672 |
| PQID | 3165772352 |
| PQPubID | 1046358 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3147975908 proquest_journals_3165772352 pubmed_primary_39707672 crossref_primary_10_1002_smll_202409657 crossref_citationtrail_10_1002_smll_202409657 wiley_primary_10_1002_smll_202409657_SMLL202409657 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2022; 310 2017; 7 2017; 8 2021; 6 2023; 35 2023; 33 2021; 202 2021; 226 2021; 600 2021; 405 2021; 263 2020; 189 2017; 29 2024; 34 2024; 15 2024; 16 2024; 17 2016; 285 2023; 20 2022; 220 2022; 440 2013; 15 2021; 32 2021; 12 2024; 676 2020; 31 2020; 30 2020; 572 2017; 11 2021; 17 2023; 132 2001; 8 2024; 195 2022; 58 2019; 553 2024; 20 2011; 23 2022; 427 2021; 60 2018; 10 2016; 27 2018; 54 2016; 8 2025; 205 2012; 20 2017; 326 1998; 58 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Wang X. (e_1_2_8_44_1) 2023; 20 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 Ungár T. (e_1_2_8_30_1) 2012; 20 e_1_2_8_33_1 |
| References_xml | – volume: 8 start-page: 307 year: 2017 publication-title: Nat. Commun. – volume: 20 year: 2023 publication-title: Small – volume: 8 start-page: 7370 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 4404 year: 2021 publication-title: J. Mater. Sci.: Mater. Electron – volume: 15 start-page: 443 year: 2013 publication-title: CrystEngComm – volume: 263 year: 2021 publication-title: Chemosphere – volume: 285 start-page: 497 year: 2016 publication-title: Chem. Eng. J. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 17 year: 2021 publication-title: Small – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 676 start-page: 217 year: 2024 publication-title: J. Colloid Interface Sci. – volume: 600 start-page: 382 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 58 start-page: 908 year: 2022 publication-title: Chem. Commun. (Camb) – volume: 12 start-page: 3563 year: 2021 publication-title: Nat. Commun. – volume: 326 start-page: 292 year: 2017 publication-title: Chem. Eng. J. – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 20 start-page: 366 year: 2012 publication-title: Powder Diffr. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 5086 year: 2021 publication-title: J. Mater. Chem. A – volume: 195 start-page: 126 year: 2024 publication-title: J. Mater. Sci. Technol. – volume: 440 year: 2022 publication-title: Chem. Eng. J. – volume: 220 year: 2022 publication-title: Compos. Sci. Technol. – volume: 54 start-page: 7342 year: 2018 publication-title: Chem. Commun. – volume: 15 start-page: 2290 year: 2024 publication-title: Nat. Commun. – volume: 405 year: 2021 publication-title: Chem. Eng. J. – volume: 202 year: 2021 publication-title: Compos. Sci. Technol. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 7794 year: 2017 publication-title: Chem. Mater. – volume: 132 start-page: 223 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 58 start-page: 7565 year: 1998 publication-title: Phys. Rev. B – volume: 16 start-page: 174 year: 2024 publication-title: Nano‐Micro Lett. – volume: 205 start-page: 258 year: 2025 publication-title: J. Mater. Sci. Technol. – volume: 553 start-page: 465 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 17 start-page: 9845 year: 2024 publication-title: Nano Res. – volume: 11 start-page: 656 year: 2017 publication-title: ACS Nano – volume: 60 year: 2021 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 322 year: 2001 publication-title: J. Synchrotron Rad. – volume: 310 year: 2022 publication-title: J. Solid State Chem. – volume: 20 year: 2024 publication-title: Small – volume: 31 year: 2020 publication-title: Nanotechnology – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 226 year: 2021 publication-title: Composites Part B – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 1587 year: 2011 publication-title: Chem. Mater. – volume: 6 start-page: 1154 year: 2021 publication-title: Nat. Energy – volume: 189 year: 2020 publication-title: Mater. Des. – volume: 572 start-page: 227 year: 2020 publication-title: J. Colloid Interface Sci. – ident: e_1_2_8_31_1 doi: 10.1021/acsami.6b00264 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2015.10.031 – ident: e_1_2_8_4_1 doi: 10.1002/anie.202017076 – ident: e_1_2_8_15_1 doi: 10.1039/C8CC03822H – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemmater.7b02315 – ident: e_1_2_8_23_1 doi: 10.1016/j.jmst.2024.02.031 – ident: e_1_2_8_49_1 doi: 10.1002/adma.202300659 – ident: e_1_2_8_26_1 doi: 10.1039/D0TA10942H – ident: e_1_2_8_12_1 doi: 10.1039/D1CC06721D – volume: 20 year: 2023 ident: e_1_2_8_44_1 publication-title: Small doi: 10.1002/smll.202307473 – ident: e_1_2_8_37_1 doi: 10.1088/1361-6528/ab53c4 – ident: e_1_2_8_34_1 doi: 10.1016/j.jcis.2020.03.089 – ident: e_1_2_8_28_1 doi: 10.1002/smll.202103351 – ident: e_1_2_8_5_1 doi: 10.1021/acsnano.6b06950 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.202213258 – ident: e_1_2_8_11_1 doi: 10.1016/j.cej.2020.126626 – ident: e_1_2_8_41_1 doi: 10.1007/s12274-024-6938-1 – ident: e_1_2_8_42_1 doi: 10.1016/j.jmst.2024.03.066 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202316691 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-021-23819-0 – ident: e_1_2_8_32_1 doi: 10.1007/s10854-020-05183-9 – ident: e_1_2_8_45_1 doi: 10.1016/j.cej.2021.130940 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.8b02770 – ident: e_1_2_8_9_1 doi: 10.1016/j.matdes.2020.108517 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-024-45874-z – ident: e_1_2_8_47_1 doi: 10.1107/S0909049500016964 – ident: e_1_2_8_20_1 doi: 10.1038/s41560-021-00944-0 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-017-00371-4 – ident: e_1_2_8_39_1 doi: 10.1039/C7RA04796G – volume: 20 start-page: 366 year: 2012 ident: e_1_2_8_30_1 publication-title: Powder Diffr. doi: 10.1154/1.2135313 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.202000475 – ident: e_1_2_8_8_1 doi: 10.1016/j.compositesb.2021.109354 – ident: e_1_2_8_33_1 doi: 10.1016/j.jcis.2021.05.055 – ident: e_1_2_8_14_1 doi: 10.1088/0957-4484/27/29/295703 – ident: e_1_2_8_27_1 doi: 10.1002/smll.202306698 – ident: e_1_2_8_46_1 doi: 10.1002/smll.202403689 – ident: e_1_2_8_7_1 doi: 10.1021/cm103441u – ident: e_1_2_8_35_1 doi: 10.1016/j.jcis.2019.06.058 – ident: e_1_2_8_25_1 doi: 10.1016/j.jmst.2022.06.013 – ident: e_1_2_8_18_1 doi: 10.1016/j.jssc.2022.123049 – ident: e_1_2_8_22_1 doi: 10.1007/s40820-024-01396-3 – ident: e_1_2_8_2_1 doi: 10.1016/j.cej.2017.05.155 – ident: e_1_2_8_21_1 doi: 10.1016/j.compscitech.2020.108558 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.58.7565 – ident: e_1_2_8_10_1 doi: 10.1016/j.chemosphere.2020.127889 – ident: e_1_2_8_17_1 doi: 10.1039/C2CE26111A – ident: e_1_2_8_29_1 doi: 10.1016/j.jcis.2024.07.102 – ident: e_1_2_8_40_1 doi: 10.1016/j.cej.2022.135855 – ident: e_1_2_8_3_1 doi: 10.1016/j.compscitech.2022.109289 |
| SSID | ssj0031247 |
| Score | 2.4709506 |
| Snippet | 2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2409657 |
| SubjectTerms | Absorption Chemical properties Crystal defects Crystal lattices designed reduction Electromagnetic properties Electromagnetic radiation electromagnetic wave absorption Iron oxides Magnetic properties Morphology morphology control Nanomaterials Nanosheets Surface energy Wave reflection |
| Title | Localized Morphological Modulation of Ultrathin Magnetic Nanosheets via a Strategically Designed Reduction Approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202409657 https://www.ncbi.nlm.nih.gov/pubmed/39707672 https://www.proquest.com/docview/3165772352 https://www.proquest.com/docview/3147975908 |
| Volume | 21 |
| WOSCitedRecordID | wos001380711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTQ_poc-0dZMGBQI9iSiSbdnH0HTpYTeUNAt7M3pts7C1S7wJtL--M34lSyiF9igkjWVpXrak7wM4kt5jVE4zvkik5xhvM56FE8l9vDBWWS9SLxqyCX1-ns3n-Zd7t_hbfIjhhxtZRuOvycCNrY_vQEPr7yvaOsCIlKeJ3oJticqbjGD77GI8m_TeWGH8aghWMGxxwt7qgRuFPN6UsBmYHmSbm8lrE33Gz_5_3M_haZd5stNWVV7Ao1C-hCf38AhfQT2hyLb8FTybVrgAvWPEku9ovli1YLMVQdpeLUs2Nd9KugXJ0ElX9VUI65rdLg0zrEe9xd6rn-ysOSeCYi8IKbaRc9qBme_CbPzp8uNn3rEycKe00txb53QwuY-TLM-Iotz5IJXDvEvgx5TChMhoIrZKXBxs7rU0IjYusZbIzrRXr2FUVmV4C8w7bRJhrHDSxLFBaVZL4VMt4zQNykfA-yUpXAdZTswZq6IFW5YFTWYxTGYEH4b2P1qwjj-23O9XuOiMti7UCdZoiSlpBIdDNZob7aGYMlQ31CbGlyCi-AjetJoxPApTO6Fx8BHIRgH-Mobi63QyGUrv_qXTHuxI4iNuTpHvw2h9fRPew2N3u17W1wewpefZQWcQvwG2ngto |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oK6gP3q2jVSMIPoWmSWYy81isS8XZRWoX-jZkkmy7sM6Uzragv95z5qaLiCA-DknOZJJzm1y-D-Ct9B6jcpLyRSw9x3ib8jTsS-71wpaq9CLxoiWbMLNZenqafe5PE9JdmA4fYlxwI8to_TUZOC1I7_1EDW2-rmjvAENSlsTmJmxr1CVU8u3D48k8H9yxwgDWMqxg3OIEvjUgNwq5tylhMzL9lm5uZq9t-Jnc_w8dfwD3-tyTHXTK8hBuhOoR3P0FkfAxNDnFtuX34Nm0xikYXCM--Z7oi9ULNl8RqO35smJTe1bRPUiGbrpuzkNYN-x6aZllA-4ttl59Y4ftSREUe0xYsa2cgx7O_AnMJx9O3h_xnpeBO2WU4b50zgSbeR2nWUok5c4HqRxmXgJ_pxSmRNYQtVXsdCgzb6QV2rq4LInuzHj1FLaqugrPgHlnbCxsKZy0WluUVhopfGKkTpKgfAR8mJPC9aDlxJ2xKjq4ZVnQYBbjYEbwbqx_0cF1_LHm7jDFRW-2TaH2scRITEojeDMWo8HRLoqtQn1FdTR-BFHFR7DTqcb4KkzuhMHORyBbDfhLH4ov0zwfn57_S6PXcPvoZJoX-cfZpxdwRxI7cXumfBe21pdX4SXcctfrZXP5qreLH21yDnA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BFiE48E0bWsBISJysprYTJ8eq2xWI7KoqrNRb5NjedqUlqZptJfj1zOSLrhBCQhwt2xPH9vhNYvs9gPfCOUTlOOGLSDiOeJvwxB8I7tTCFLJwYezCRmxCz2bJ2Vl60p0mpLswLT_E8MONPKNZr8nB_aVb7P9iDa2_rWjvACEpjSN9F7YUKcmMYGt8Opln_XIsEcAahRXELU7kWz1zYyj2Ny1sItNv4eZm9NrAz-Txf2j4E3jUxZ7ssJ0sT-GOL5_Bw1uMhM-hzgjblj-8Y9MKh6BfGjHlOqEvVi3YfEWkthfLkk3NeUn3IBku01V94f26ZjdLwwzreW-x9uo7GzcnRdDsKXHFNnYOOzrzFzCfHH89-sg7XQZupZaau8Ja7U3qVJSkCYmUW-eFtBh5hfg5JTEkMpqkrSKrfJE6LUyojI2KguTOtJMvYVRWpd8B5qw2UWiK0AqjlEFrhRahi7VQceylC4D3Y5LbjrSctDNWeUu3LHLqzHzozAA-DOUvW7qOP5bc64c479y2zuUB5miBQWkA74ZsdDjaRTGlr66pjMKXIKn4ALbbqTE8CoO7UGPjAxDNDPhLG_Iv0ywbUq_-pdJbuH8ynuTZp9nnXXggSJy4OVK-B6P11bV_DffszXpZX73p3OIn4qcN6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Morphological+Modulation+of+Ultrathin+Magnetic+Nanosheets+via+a+Strategically+Designed+Reduction+Approach&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xianyuan&rft.au=Wang%2C+Xianghua&rft.au=Lu%2C+Xianyong&rft.au=Jiang%2C+Lei&rft.date=2025-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002%2Fsmll.202409657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202409657 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |