Room‐Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self‐Intercalation
Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 35; číslo 1; s. e2205967 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.01.2023
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Magnetic skyrmions and large topological Hall effect are demonstrated in chromium telluride. The Curie temperature and magnetic anisotropy in Cr1+xTe2 can be controlled by the self‐intercalate concentration x. In Cr1.53Te2, which has a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy, room‐temperature skyrmions and topological Hall resistivity as large as ≈106 nΩ cm are observed. |
|---|---|
| AbstractList | Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Magnetic skyrmions and large topological Hall effect are demonstrated in chromium telluride. The Curie temperature and magnetic anisotropy in Cr1+xTe2 can be controlled by the self‐intercalate concentration x. In Cr1.53Te2, which has a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy, room‐temperature skyrmions and topological Hall resistivity as large as ≈106 nΩ cm are observed. Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr 1+ x Te 2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr 1.53 Te 2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr Te with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr Te with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. |
| Author | Zheng, Dongxing Zhang, Xi‐Xiang Liu, Chen Zhang, Qiang Peng, Yong Yuan, Youyou Liu, Kai Zhang, Chenhui Li, Yan Zhang, Junwei Hou, Zhipeng Yin, Gen Wen, Yan |
| Author_xml | – sequence: 1 givenname: Chenhui orcidid: 0000-0002-0124-6315 surname: Zhang fullname: Zhang, Chenhui organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Chen surname: Liu fullname: Liu, Chen organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: Lanzhou University – sequence: 4 givenname: Youyou surname: Yuan fullname: Yuan, Youyou organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Yan surname: Wen fullname: Wen, Yan organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Yan surname: Li fullname: Li, Yan organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Dongxing surname: Zheng fullname: Zheng, Dongxing organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: New York University Abu Dhabi – sequence: 9 givenname: Zhipeng surname: Hou fullname: Hou, Zhipeng organization: South China Normal University – sequence: 10 givenname: Gen surname: Yin fullname: Yin, Gen organization: Georgetown University – sequence: 11 givenname: Kai surname: Liu fullname: Liu, Kai organization: Georgetown University – sequence: 12 givenname: Yong surname: Peng fullname: Peng, Yong email: pengy@lzu.edu.cn organization: Lanzhou University – sequence: 13 givenname: Xi‐Xiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xi‐Xiang email: xixiang.zhang@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36245330$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEURi1URNPCliWyxIbNBI89HsfLKARaKRUSDWvL47kTXPwT7Bmh7PoIPCNPgktakCohVt6c8_ne-52hkxADIPSyJvOaEPpW917PKaGUcNmKJ2hWc1pXDZH8BM2IZLySbbM4RWc53xBCZEvaZ-iUtbThjJEZuv0Uo_95-2MLfg9Jj1MCfKV3AUZr8PXXQ_I2hox16PFGpx3gbdxHF3fWaIcvtHN4PQxgRmwDXn1J0dvJ4y04NyXbA16HnQ0ACXrcHfA1uKH8dRlGSMXXY8l-jp4O2mV4cf-eo8_v19vVRbX5-OFytdxUhgkmqr5rKAy6AyZFJw1ddJIzYhaibqWQFDpBO6LLVp1mtJGDaHpmyCB1KzjpRcPO0Ztj7j7FbxPkUXmbTRlUB4hTVlRQ3rBFOWJBXz9Cb-KUQpmuUC0RvBasLdSre2rqPPRqn6zX6aAebluA5giYFHNOMChjx987j0lbp2qi7ipUdxWqPxUWbf5Ie0j-pyCPwnfr4PAfWi3fXS3_ur8AZkWwqA |
| CitedBy_id | crossref_primary_10_1021_acsnano_5c10466 crossref_primary_10_1063_5_0245797 crossref_primary_10_1002_adfm_202308560 crossref_primary_10_1088_1674_1056_ad4cd8 crossref_primary_10_1063_5_0173456 crossref_primary_10_1002_adma_202508546 crossref_primary_10_1007_s10854_025_15410_w crossref_primary_10_1002_adma_202311022 crossref_primary_10_1002_anie_202316384 crossref_primary_10_1038_s41570_024_00605_2 crossref_primary_10_1063_5_0279573 crossref_primary_10_1016_j_apmt_2024_102328 crossref_primary_10_1002_adfm_202422040 crossref_primary_10_1103_qppq_qsx7 crossref_primary_10_1002_smsc_202500028 crossref_primary_10_1016_j_physb_2024_416152 crossref_primary_10_1088_1361_6463_acf589 crossref_primary_10_1093_nsr_nwae430 crossref_primary_10_1038_s41467_025_58643_3 crossref_primary_10_1002_adfm_202425483 crossref_primary_10_1002_pssr_202300352 crossref_primary_10_1007_s11433_024_2438_9 crossref_primary_10_1103_PhysRevB_111_054423 crossref_primary_10_1103_PhysRevResearch_7_023219 crossref_primary_10_1002_adfm_202510351 crossref_primary_10_1002_adfm_202500907 crossref_primary_10_1038_s41467_024_48799_9 crossref_primary_10_1002_smll_202409189 crossref_primary_10_1021_jacs_4c09842 crossref_primary_10_1038_s41467_025_58933_w crossref_primary_10_1038_s42005_025_02186_y crossref_primary_10_1063_5_0277493 crossref_primary_10_1103_PhysRevMaterials_9_024407 crossref_primary_10_1007_s11467_023_1342_y crossref_primary_10_1088_1361_6633_adef66 crossref_primary_10_1002_adfm_202505511 crossref_primary_10_1002_smtd_202402196 crossref_primary_10_1088_0256_307X_41_6_067501 crossref_primary_10_1002_advs_202401048 crossref_primary_10_1039_D4NR00048J crossref_primary_10_1021_acsnano_5c08312 crossref_primary_10_1063_5_0226822 crossref_primary_10_1063_5_0183071 crossref_primary_10_1016_j_apsusc_2023_159057 crossref_primary_10_1002_adfm_202424841 crossref_primary_10_1016_j_mtphys_2024_101627 crossref_primary_10_1088_1402_4896_ad5ec3 crossref_primary_10_1002_adfm_202414699 crossref_primary_10_1002_aelm_202400820 crossref_primary_10_1002_ange_202316384 crossref_primary_10_1002_adfm_202302984 crossref_primary_10_1063_5_0202667 crossref_primary_10_1002_advs_202303443 |
| Cites_doi | 10.1038/s41467-020-17566-x 10.1002/adfm.202202977 10.1016/j.mattod.2022.04.011 10.1021/acsanm.1c00391 10.1126/sciadv.1600304 10.1002/adma.202107512 10.1103/RevModPhys.82.1539 10.1103/PhysRevLett.108.237204 10.1007/s12274-017-1913-8 10.1038/s43246-022-00238-2 10.1103/PhysRevB.100.134441 10.1002/cnma.202000650 10.1038/s41928-020-0385-0 10.1038/nnano.2013.174 10.1038/s42254-020-0203-7 10.1021/acs.nanolett.9b02849 10.1038/s41467-021-26009-0 10.1038/s41598-019-47265-7 10.1103/PhysRevB.102.144433 10.1063/5.0018229 10.1126/sciadv.aay8912 10.1002/adma.201603958 10.7566/JPSJ.84.104708 10.1038/s41467-018-08041-9 10.1016/j.mtphys.2021.100341 10.1016/j.physrep.2017.08.001 10.1038/s41928-022-00754-6 10.1038/ncomms9462 10.1088/0034-4885/59/11/002 10.1016/j.physb.2007.10.136 10.1038/nmat4934 10.1143/JPSJ.70.2999 10.1016/0022-3697(58)90076-3 10.1038/s41427-022-00418-z 10.1021/acs.nanolett.6b01011 10.1063/1.5143387 10.1126/sciadv.abm7103 10.1021/acsanm.9b01179 10.1103/PhysRevMaterials.5.034405 10.1103/PhysRevB.105.014426 10.1038/s41467-018-04018-w 10.1021/acs.nanolett.9b02191 10.1103/PhysRev.120.91 10.1021/acsami.0c04447 10.1063/5.0033379 10.1107/S2053229614024218 10.1021/acs.nanolett.9b03453 10.1021/acsnano.1c00488 10.1021/acsnano.1c05519 10.1021/acs.nanolett.1c02940 10.1088/1361-648X/ab5488 10.1038/nature22391 10.1038/s41467-021-21072-z 10.1002/adma.202103360 10.1021/acsnano.0c05413 10.1103/PhysRevMaterials.4.114001 10.1038/nature22060 10.1021/acs.nanolett.9b05128 10.3891/acta.chem.scand.24-3495 10.1038/s41467-021-22777-x 10.1038/natrevmats.2017.31 10.1038/s41928-019-0246-x 10.1021/acsnano.0c02712 10.1143/JPSJ.32.635 10.1103/PhysRevB.103.104410 10.1063/5.0005493 10.1021/acs.chemrev.0c00297 10.1002/adma.202204163 10.1063/1.4936078 10.1103/PhysRevLett.102.186602 10.1038/s41563-018-0204-4 10.1038/s41567-018-0307-5 10.1038/s41467-021-22976-6 10.1002/adma.202101131 10.1002/adma.202110583 10.1088/0953-8984/1/46/008 10.1126/sciadv.aaz3902 10.1103/PhysRevMaterials.3.114403 10.1103/PhysRevLett.108.267201 10.1126/science.1166767 10.1038/ncomms5704 10.1073/pnas.1118496109 10.1021/nn5065716 10.1103/PhysRevB.96.134428 10.1103/PhysRevB.103.054429 10.1021/acsnano.0c05534 10.1126/science.aau0968 10.1103/PhysRevB.102.064430 10.1002/adma.201904327 10.1103/PhysRevLett.118.027201 10.1021/acs.nanolett.1c00493 10.1103/PhysRevB.97.100404 10.1002/adma.201701144 10.1103/PhysRevLett.106.156603 10.1038/s41467-021-27834-z 10.1063/1.5046166 10.1038/nature09124 10.1051/jphys:01964002505058200 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202205967 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 36245330 10_1002_adma_202205967 ADMA202205967 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: King Abdullah University of Science and Technology – fundername: National Science Foundation funderid: DMR‐2005108 – fundername: Office of Sponsored Research funderid: ORA‐CRG8‐2019‐4081; ORA‐CRG10‐2021‐4665 – fundername: National Natural Science Foundation of China funderid: 91962212; 51771085; 51801087 – fundername: National Natural Science Foundation of China grantid: 51771085 – fundername: National Natural Science Foundation of China grantid: 91962212 – fundername: National Science Foundation grantid: DMR-2005108 – fundername: Office of Sponsored Research grantid: ORA-CRG8-2019-4081 – fundername: National Natural Science Foundation of China grantid: 51801087 – fundername: Office of Sponsored Research grantid: ORA-CRG10-2021-4665 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3737-db42efabe397b9c28b9530c87169792eb72b0a245ba3249f74d3c0f9a6750d743 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888948200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 11:59:57 EDT 2025 Fri Jul 25 08:43:59 EDT 2025 Wed Feb 19 02:24:35 EST 2025 Sat Nov 29 07:21:31 EST 2025 Tue Nov 18 22:42:31 EST 2025 Wed Jan 22 16:21:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | chromium telluride topological Hall effect layered materials self-intercalation magnetic skyrmions |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3737-db42efabe397b9c28b9530c87169792eb72b0a245ba3249f74d3c0f9a6750d743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0124-6315 0000-0002-3478-6414 |
| PMID | 36245330 |
| PQID | 2760751736 |
| PQPubID | 2045203 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2725438967 proquest_journals_2760751736 pubmed_primary_36245330 crossref_citationtrail_10_1002_adma_202205967 crossref_primary_10_1002_adma_202205967 wiley_primary_10_1002_adma_202205967_ADMA202205967 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 21 2017; 2 2020; 20 2015; 71 2019; 10 2010; 465 2019; 19 2020; 14 2020; 12 2020; 11 2015; 107 2021; 121 2013; 8 2019; 365 2017; 118 2020; 8 2018; 6 2018; 9 2020; 6 2014; 5 2020; 4 2020; 3 2020; 2 2021; 33 2015; 84 1960; 120 2021; 118 2022; 34 2022; 32 1995; 120 2009; 323 1958; 4 1970; 24 2001; 70 2021; 7 2019; 9 2015; 6 2021; 5 2021; 4 2019; 3 1989; 1 2019; 2 2021; 103 2008; 403 1964; 25 2017; 29 2020; 102 2020; 32 2015; 9 2016; 16 1996; 59 2019; 100 2012; 108 2012; 109 2010; 82 2017; 704 2017; 96 2021; 15 2018; 17 2021; 12 2016; 2 2011; 106 2022; 3 2022; 5 2017; 16 2021; 17 2022; 8 2022; 13 2022; 57 2020; 116 2022; 14 2020; 117 2009; 102 1972; 32 2018; 11 2018; 97 2022; 105 2018; 15 2017; 546 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_14_1 e_1_2_9_37_1 Hinatsu Y. (e_1_2_9_71_1) 1995; 120 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 704 start-page: 1 year: 2017 publication-title: Phys. Rep. – volume: 465 start-page: 901 year: 2010 publication-title: Nature – volume: 10 start-page: 696 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 3772 year: 2015 publication-title: ACS Nano – volume: 17 year: 2021 publication-title: Mater. Today Phys. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 4280 year: 2021 publication-title: Nano Lett. – volume: 3 start-page: 19 year: 2022 publication-title: Commun. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 8856 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 32 start-page: 635 year: 1972 publication-title: J. Phys. Soc. Jpn. – volume: 4 year: 2020 publication-title: Phys. Rev. Mater. – volume: 5 year: 2021 publication-title: Phys. Rev. Mater. – volume: 403 start-page: 1336 year: 2008 publication-title: Phys. B – volume: 2 start-page: 182 year: 2019 publication-title: Nat. Electron. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 25 start-page: 582 year: 1964 publication-title: J. Phys. – volume: 15 start-page: 9759 year: 2021 publication-title: ACS Nano – volume: 5 start-page: 224 year: 2022 publication-title: Nat. Electron. – volume: 9 start-page: 1554 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 4704 year: 2014 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 16 start-page: 898 year: 2017 publication-title: Nat. Mater. – volume: 11 start-page: 3116 year: 2018 publication-title: Nano Res. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 3495 year: 1970 publication-title: Acta Chem. Scand. – volume: 3 start-page: 148 year: 2020 publication-title: Nat. Electron. – volume: 13 start-page: 257 year: 2022 publication-title: Nat. Commun. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 120 start-page: 49 year: 1995 publication-title: J. Phys. Chem. Solids – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 365 start-page: 914 year: 2019 publication-title: Science – volume: 4 start-page: 241 year: 1958 publication-title: J. Phys. Chem. Solids – volume: 546 start-page: 265 year: 2017 publication-title: Nature – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 8 start-page: 723 year: 2013 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 7859 year: 2019 publication-title: Nano Lett. – volume: 2 start-page: 6809 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 21 start-page: 9517 year: 2021 publication-title: Nano Lett. – volume: 12 start-page: 809 year: 2021 publication-title: Nat. Commun. – volume: 20 start-page: 868 year: 2020 publication-title: Nano Lett. – volume: 57 start-page: 66 year: 2022 publication-title: Mater. Today – volume: 6 start-page: 8462 year: 2015 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: J. Phys.: Condens. Matter – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 71 start-page: 3 year: 2015 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. – volume: 12 start-page: 5688 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 8473 year: 2020 publication-title: ACS Nano – volume: 323 start-page: 915 year: 2009 publication-title: Science – volume: 546 start-page: 270 year: 2017 publication-title: Nature – volume: 70 start-page: 2999 year: 2001 publication-title: J. Phys. Soc. Jpn. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 1087 year: 2018 publication-title: Nat. Mater. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 15 year: 2021 publication-title: ACS Nano – volume: 11 start-page: 3860 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2018 publication-title: APL Mater. – volume: 4 start-page: 4810 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 19 start-page: 6144 year: 2019 publication-title: Nano Lett. – volume: 120 start-page: 91 year: 1960 publication-title: Phys. Rev. – volume: 1 start-page: 9141 year: 1989 publication-title: J. Phys.: Condens. Matter – volume: 14 start-page: 74 year: 2022 publication-title: NPG Asia Mater. – volume: 16 start-page: 4141 year: 2016 publication-title: Nano Lett. – volume: 82 start-page: 1539 year: 2010 publication-title: Rev. Mod. Phys. – volume: 84 year: 2015 publication-title: J. Phys. Soc. Jpn. – volume: 105 year: 2022 publication-title: Phys. Rev. B – volume: 7 start-page: 323 year: 2021 publication-title: ChemNanoMat – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 2758 year: 2021 publication-title: Nat. Commun. – volume: 8 year: 2020 publication-title: APL Mater. – volume: 121 start-page: 2857 year: 2021 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 2492 year: 2021 publication-title: Nat. Commun. – volume: 20 start-page: 3130 year: 2020 publication-title: Nano Lett. – volume: 2 start-page: 492 year: 2020 publication-title: Nat. Rev. Phys. – volume: 15 start-page: 67 year: 2018 publication-title: Nat. Phys. – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 59 start-page: 1409 year: 1996 publication-title: Rep. Prog. Phys. – ident: e_1_2_9_20_1 doi: 10.1038/s41467-020-17566-x – ident: e_1_2_9_37_1 doi: 10.1002/adfm.202202977 – ident: e_1_2_9_44_1 doi: 10.1016/j.mattod.2022.04.011 – ident: e_1_2_9_45_1 doi: 10.1021/acsanm.1c00391 – ident: e_1_2_9_86_1 doi: 10.1126/sciadv.1600304 – ident: e_1_2_9_33_1 doi: 10.1002/adma.202107512 – ident: e_1_2_9_65_1 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevLett.108.237204 – ident: e_1_2_9_39_1 doi: 10.1007/s12274-017-1913-8 – ident: e_1_2_9_91_1 doi: 10.1038/s43246-022-00238-2 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevB.100.134441 – ident: e_1_2_9_94_1 doi: 10.1002/cnma.202000650 – ident: e_1_2_9_79_1 doi: 10.1038/s41928-020-0385-0 – ident: e_1_2_9_61_1 doi: 10.1038/nnano.2013.174 – ident: e_1_2_9_2_1 doi: 10.1038/s42254-020-0203-7 – ident: e_1_2_9_21_1 doi: 10.1021/acs.nanolett.9b02849 – ident: e_1_2_9_36_1 doi: 10.1038/s41467-021-26009-0 – ident: e_1_2_9_50_1 doi: 10.1038/s41598-019-47265-7 – volume: 120 start-page: 49 year: 1995 ident: e_1_2_9_71_1 publication-title: J. Phys. Chem. Solids – ident: e_1_2_9_74_1 doi: 10.1103/PhysRevB.102.144433 – ident: e_1_2_9_75_1 doi: 10.1063/5.0018229 – ident: e_1_2_9_54_1 doi: 10.1126/sciadv.aay8912 – ident: e_1_2_9_11_1 doi: 10.1002/adma.201603958 – ident: e_1_2_9_92_1 doi: 10.7566/JPSJ.84.104708 – ident: e_1_2_9_64_1 doi: 10.1038/s41467-018-08041-9 – ident: e_1_2_9_12_1 doi: 10.1016/j.mtphys.2021.100341 – ident: e_1_2_9_7_1 doi: 10.1016/j.physrep.2017.08.001 – ident: e_1_2_9_34_1 doi: 10.1038/s41928-022-00754-6 – ident: e_1_2_9_9_1 doi: 10.1038/ncomms9462 – ident: e_1_2_9_49_1 doi: 10.1088/0034-4885/59/11/002 – ident: e_1_2_9_16_1 doi: 10.1016/j.physb.2007.10.136 – ident: e_1_2_9_67_1 doi: 10.1038/nmat4934 – ident: e_1_2_9_72_1 doi: 10.1143/JPSJ.70.2999 – ident: e_1_2_9_5_1 doi: 10.1016/0022-3697(58)90076-3 – ident: e_1_2_9_60_1 doi: 10.1038/s41427-022-00418-z – ident: e_1_2_9_14_1 doi: 10.1021/acs.nanolett.6b01011 – ident: e_1_2_9_73_1 doi: 10.1063/1.5143387 – ident: e_1_2_9_23_1 doi: 10.1126/sciadv.abm7103 – ident: e_1_2_9_31_1 doi: 10.1021/acsanm.9b01179 – ident: e_1_2_9_77_1 doi: 10.1103/PhysRevMaterials.5.034405 – ident: e_1_2_9_22_1 doi: 10.1103/PhysRevB.105.014426 – ident: e_1_2_9_53_1 doi: 10.1038/s41467-018-04018-w – ident: e_1_2_9_40_1 doi: 10.1021/acs.nanolett.9b02191 – ident: e_1_2_9_6_1 doi: 10.1103/PhysRev.120.91 – ident: e_1_2_9_41_1 doi: 10.1021/acsami.0c04447 – ident: e_1_2_9_78_1 doi: 10.1063/5.0033379 – ident: e_1_2_9_99_1 doi: 10.1107/S2053229614024218 – ident: e_1_2_9_13_1 doi: 10.1021/acs.nanolett.9b03453 – ident: e_1_2_9_38_1 doi: 10.1021/acsnano.1c00488 – ident: e_1_2_9_42_1 doi: 10.1021/acsnano.1c05519 – ident: e_1_2_9_30_1 doi: 10.1021/acs.nanolett.1c02940 – ident: e_1_2_9_80_1 doi: 10.1088/1361-648X/ab5488 – ident: e_1_2_9_18_1 doi: 10.1038/nature22391 – ident: e_1_2_9_35_1 doi: 10.1038/s41467-021-21072-z – ident: e_1_2_9_97_1 doi: 10.1002/adma.202103360 – ident: e_1_2_9_81_1 doi: 10.1021/acsnano.0c05413 – ident: e_1_2_9_29_1 doi: 10.1103/PhysRevMaterials.4.114001 – ident: e_1_2_9_17_1 doi: 10.1038/nature22060 – ident: e_1_2_9_32_1 doi: 10.1021/acs.nanolett.9b05128 – ident: e_1_2_9_70_1 doi: 10.3891/acta.chem.scand.24-3495 – ident: e_1_2_9_27_1 doi: 10.1038/s41467-021-22777-x – ident: e_1_2_9_1_1 doi: 10.1038/natrevmats.2017.31 – ident: e_1_2_9_83_1 doi: 10.1038/s41928-019-0246-x – ident: e_1_2_9_96_1 doi: 10.1021/acsnano.0c02712 – ident: e_1_2_9_56_1 doi: 10.1143/JPSJ.32.635 – ident: e_1_2_9_19_1 doi: 10.1103/PhysRevB.103.104410 – ident: e_1_2_9_76_1 doi: 10.1063/5.0005493 – ident: e_1_2_9_68_1 doi: 10.1021/acs.chemrev.0c00297 – ident: e_1_2_9_55_1 doi: 10.1002/adma.202204163 – ident: e_1_2_9_59_1 doi: 10.1063/1.4936078 – ident: e_1_2_9_88_1 doi: 10.1103/PhysRevLett.102.186602 – ident: e_1_2_9_84_1 doi: 10.1038/s41563-018-0204-4 – ident: e_1_2_9_85_1 doi: 10.1038/s41567-018-0307-5 – ident: e_1_2_9_66_1 doi: 10.1038/s41467-021-22976-6 – ident: e_1_2_9_48_1 doi: 10.1002/adma.202101131 – ident: e_1_2_9_26_1 doi: 10.1002/adma.202110583 – ident: e_1_2_9_57_1 doi: 10.1088/0953-8984/1/46/008 – ident: e_1_2_9_82_1 doi: 10.1126/sciadv.aaz3902 – ident: e_1_2_9_98_1 doi: 10.1103/PhysRevMaterials.3.114403 – ident: e_1_2_9_62_1 doi: 10.1103/PhysRevLett.108.267201 – ident: e_1_2_9_3_1 doi: 10.1126/science.1166767 – ident: e_1_2_9_8_1 doi: 10.1038/ncomms5704 – ident: e_1_2_9_15_1 doi: 10.1073/pnas.1118496109 – ident: e_1_2_9_95_1 doi: 10.1021/nn5065716 – ident: e_1_2_9_24_1 doi: 10.1103/PhysRevB.96.134428 – ident: e_1_2_9_90_1 doi: 10.1103/PhysRevB.103.054429 – ident: e_1_2_9_51_1 doi: 10.1021/acsnano.0c05534 – ident: e_1_2_9_63_1 doi: 10.1126/science.aau0968 – ident: e_1_2_9_93_1 doi: 10.1103/PhysRevB.102.064430 – ident: e_1_2_9_58_1 doi: 10.1002/adma.201904327 – ident: e_1_2_9_89_1 doi: 10.1103/PhysRevLett.118.027201 – ident: e_1_2_9_43_1 doi: 10.1021/acs.nanolett.1c00493 – ident: e_1_2_9_47_1 doi: 10.1103/PhysRevB.97.100404 – ident: e_1_2_9_10_1 doi: 10.1002/adma.201701144 – ident: e_1_2_9_87_1 doi: 10.1103/PhysRevLett.106.156603 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-021-27834-z – ident: e_1_2_9_52_1 doi: 10.1063/1.5046166 – ident: e_1_2_9_4_1 doi: 10.1038/nature09124 – ident: e_1_2_9_69_1 doi: 10.1051/jphys:01964002505058200 |
| SSID | ssj0009606 |
| Score | 2.6416888 |
| Snippet | Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such... Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2205967 |
| SubjectTerms | Chromium chromium telluride Crystal structure Curie temperature Electromagnetism Hall effect Hypothetical particles Intercalation layered materials Low temperature Magnetic anisotropy magnetic skyrmions Magnetism Materials science Particle theory self‐intercalation Tellurides Temperature topological Hall effect Topology Transition metal compounds |
| Title | Room‐Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self‐Intercalation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205967 https://www.ncbi.nlm.nih.gov/pubmed/36245330 https://www.proquest.com/docview/2760751736 https://www.proquest.com/docview/2725438967 |
| Volume | 35 |
| WOSCitedRecordID | wos000888948200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7B0kN7KNCWdvmTK1XqKSJ1nDg-rqArDoAQLNLeIjueVKuGgHbZStx4hD5jn6RjOxtYVVWlcksU_8kzk_k8tr8B-EQeXZOjqqLUKBkJY2Sk4lKRuZc5GlVmEoVPNiHPzvLxWJ0_ucUf-CG6gJuzDP-_dgauzezgkTRUW88b5C6Kqkyuwhon5RU9WDu6GF6dPBLvZj6_ptvvi1Qm8gVxY8wPlltYdkx_oM1l8Oq9z3D9-ePegNct8mSDoCqbsILNG3j1hI_wLTxcEIz-9fBzhASmA9kyO9XfGnfRkV1-vyelICVlurHsxJ0gZ6OQYsEJmh3rumaBDJlNGuZYd68n82s2wrqeTycW2aIvtMzcs0usK-rLhySpvteQd3A1_Do6PI7aFA1RmchERtYIjpU2SLCGJMtzo9IkLt0qTEnF0UhuYs1FajQhN1VJYZMyrpSmdUpsCb1sQa-5afADsCSVVicStUhjoSW5TRQWU6uUERJT04doIZ-ibPnLXRqNugjMy7xwM1t0M9uHz13528Dc8deSuwtxF60FzwouM0JTX2SS9eFj95lsz22o6AZv5q6MoxLIfRPvg5p0XREwEO7kbh-414Z_jKEYHJ0Ourft_6m0Ay_pOQnxoV3o3U3nuAcvyh93k9l0H1blON9vreM3xtoQgg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFoly4P1YKGAkJE5Rg-PE8XFFWS1id4XaVOotsuNJtSJNq20Xqbf-BH4jv4SxnU1ZIYSEOCbxS56ZzOex_Q3AW_LomhxVHaVGyUgYIyMVV4rMvcrRqCqTKHyyCTmf50dH6kt3mtDdhQn8EH3AzVmG_187A3cB6d1r1lBtPXGQuymqMnkTtgTpUjqArb398eH0mnk38wk23YZfpDKRr5kbY7672cKmZ_oNbm6iV-9-xvf-w8Dvw90Oe7JRUJYHcAPbh3DnF0bCR3C1T0D6x9X3AglOB7plNtPHrbvqyA6-XpJakJoy3Vo2dWfIWRGSLDhRs4luGhbokNmiZY5392SxOmEFNs1qubDI1n2hZeaSHWBTU18-KEn1vY48hsPxx-LDJOqSNERVIhMZWSM41togARuSLc-NSpO4cuswJRVHI7mJNRep0YTdVC2FTaq4VppWKrEl_PIEBu1pi8-AJam0OpGoRRoLLclxorCYWqWMkJiaIURrAZVVx2DuEmk0ZeBe5qWb2bKf2SG868ufBe6OP5bcWcu77Gz4vOQyIzz1XibZEN70n8n63JaKbvF05co4MoHcN_E06EnfFUED4c7uDoF7dfjLGMrR3mzUPz3_l0qv4fakmE3L6af55xewTe-TEC3agcHFcoUv4Vb17WJxvnzVGclPqU8Tig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7UVsQ-aL1UV6sdQfApNJ1MMpnHxXWpuF1Ku4W-hZnMSVlM07LtCn3rT-hv9Jd4ZiabuogUxKeQzJU55-R8c_sOwEfy6JocVRWlRslIGCMjFZeKzL3M0agykyh8sAk5HucnJ-qgPU3o7sIEfohuwc1Zhv9fOwPHC1vt3LGGauuJg9xNUZXJB7Am6Em2uTY4HB6P7ph3Mx9g0234RSoT-YK5MeY7yzUse6Y_4OYyevXuZ_j0P3R8A5602JP1g7I8gxVsnsP6b4yEL-DmkID0z5vbCRKcDnTLbF-fNu6qIzv6fk1qQWrKdGPZyJ0hZ5MQZMGJmu3pumaBDplNG-Z4d8-m8zM2wbqez6YW2aIttMxcsyOsK2rLL0pSea8jL-F4-GXyeS9qgzREZSITGVkjOFbaIAEbki3PjUqTuHTzMCUVRyO5iTUXqdGE3VQlhU3KuFKaZiqxJfyyCavNeYOvgSWptDqRqEUaCy3JcaKwmFqljJCYmh5ECwEVZctg7gJp1EXgXuaFG9miG9kefOryXwTujr_m3FrIu2ht-LLgMiM8tSuTrAcfumSyPrelohs8n7s8jkwg91W8CnrSNUXQQLizuz3gXh3u6UPRH-z3u7c3_1JoGx4dDIbF6Ov421t4TJ-TsFi0BatXszm-g4flj6vp5ex9ayO_ABdhEwU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature+Magnetic+Skyrmions+and+Large+Topological+Hall+Effect+in+Chromium+Telluride+Engineered+by+Self%E2%80%90Intercalation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Chenhui&rft.au=Liu%2C+Chen&rft.au=Zhang%2C+Junwei&rft.au=Yuan%2C+Youyou&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fadma.202205967&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |