Room‐Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self‐Intercalation

Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 35; no. 1; pp. e2205967 - n/a
Main Authors: Zhang, Chenhui, Liu, Chen, Zhang, Junwei, Yuan, Youyou, Wen, Yan, Li, Yan, Zheng, Dongxing, Zhang, Qiang, Hou, Zhipeng, Yin, Gen, Liu, Kai, Peng, Yong, Zhang, Xi‐Xiang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.01.2023
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. Magnetic skyrmions and large topological Hall effect are demonstrated in chromium telluride. The Curie temperature and magnetic anisotropy in Cr1+xTe2 can be controlled by the self‐intercalate concentration x. In Cr1.53Te2, which has a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy, room‐temperature skyrmions and topological Hall resistivity as large as ≈106 nΩ cm are observed.
AbstractList Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr Te with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr Te with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications. Magnetic skyrmions and large topological Hall effect are demonstrated in chromium telluride. The Curie temperature and magnetic anisotropy in Cr1+xTe2 can be controlled by the self‐intercalate concentration x. In Cr1.53Te2, which has a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy, room‐temperature skyrmions and topological Hall resistivity as large as ≈106 nΩ cm are observed.
Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr 1+ x Te 2 with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr 1.53 Te 2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Author Zheng, Dongxing
Zhang, Xi‐Xiang
Liu, Chen
Zhang, Qiang
Peng, Yong
Yuan, Youyou
Liu, Kai
Zhang, Chenhui
Li, Yan
Zhang, Junwei
Hou, Zhipeng
Yin, Gen
Wen, Yan
Author_xml – sequence: 1
  givenname: Chenhui
  orcidid: 0000-0002-0124-6315
  surname: Zhang
  fullname: Zhang, Chenhui
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Chen
  surname: Liu
  fullname: Liu, Chen
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: Lanzhou University
– sequence: 4
  givenname: Youyou
  surname: Yuan
  fullname: Yuan, Youyou
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Yan
  surname: Wen
  fullname: Wen, Yan
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Dongxing
  surname: Zheng
  fullname: Zheng, Dongxing
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: New York University Abu Dhabi
– sequence: 9
  givenname: Zhipeng
  surname: Hou
  fullname: Hou, Zhipeng
  organization: South China Normal University
– sequence: 10
  givenname: Gen
  surname: Yin
  fullname: Yin, Gen
  organization: Georgetown University
– sequence: 11
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  organization: Georgetown University
– sequence: 12
  givenname: Yong
  surname: Peng
  fullname: Peng, Yong
  email: pengy@lzu.edu.cn
  organization: Lanzhou University
– sequence: 13
  givenname: Xi‐Xiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xi‐Xiang
  email: xixiang.zhang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36245330$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCliWyxIbNBI89HsfLKARaKRUSDWvL47kTXPwT7Bmh7PoIPCNPgktakCohVt6c8_ne-52hkxADIPSyJvOaEPpW917PKaGUcNmKJ2hWc1pXDZH8BM2IZLySbbM4RWc53xBCZEvaZ-iUtbThjJEZuv0Uo_95-2MLfg9Jj1MCfKV3AUZr8PXXQ_I2hox16PFGpx3gbdxHF3fWaIcvtHN4PQxgRmwDXn1J0dvJ4y04NyXbA16HnQ0ACXrcHfA1uKH8dRlGSMXXY8l-jp4O2mV4cf-eo8_v19vVRbX5-OFytdxUhgkmqr5rKAy6AyZFJw1ddJIzYhaibqWQFDpBO6LLVp1mtJGDaHpmyCB1KzjpRcPO0Ztj7j7FbxPkUXmbTRlUB4hTVlRQ3rBFOWJBXz9Cb-KUQpmuUC0RvBasLdSre2rqPPRqn6zX6aAebluA5giYFHNOMChjx987j0lbp2qi7ipUdxWqPxUWbf5Ie0j-pyCPwnfr4PAfWi3fXS3_ur8AZkWwqA
CitedBy_id crossref_primary_10_1021_acsnano_5c10466
crossref_primary_10_1063_5_0245797
crossref_primary_10_1002_adfm_202308560
crossref_primary_10_1088_1674_1056_ad4cd8
crossref_primary_10_1063_5_0173456
crossref_primary_10_1002_adma_202508546
crossref_primary_10_1007_s10854_025_15410_w
crossref_primary_10_1002_adma_202311022
crossref_primary_10_1002_anie_202316384
crossref_primary_10_1038_s41570_024_00605_2
crossref_primary_10_1063_5_0279573
crossref_primary_10_1016_j_apmt_2024_102328
crossref_primary_10_1002_adfm_202422040
crossref_primary_10_1103_qppq_qsx7
crossref_primary_10_1002_smsc_202500028
crossref_primary_10_1016_j_physb_2024_416152
crossref_primary_10_1088_1361_6463_acf589
crossref_primary_10_1093_nsr_nwae430
crossref_primary_10_1038_s41467_025_58643_3
crossref_primary_10_1002_adfm_202425483
crossref_primary_10_1002_pssr_202300352
crossref_primary_10_1007_s11433_024_2438_9
crossref_primary_10_1103_PhysRevB_111_054423
crossref_primary_10_1103_PhysRevResearch_7_023219
crossref_primary_10_1002_adfm_202510351
crossref_primary_10_1002_adfm_202500907
crossref_primary_10_1038_s41467_024_48799_9
crossref_primary_10_1002_smll_202409189
crossref_primary_10_1021_jacs_4c09842
crossref_primary_10_1038_s41467_025_58933_w
crossref_primary_10_1038_s42005_025_02186_y
crossref_primary_10_1063_5_0277493
crossref_primary_10_1103_PhysRevMaterials_9_024407
crossref_primary_10_1007_s11467_023_1342_y
crossref_primary_10_1088_1361_6633_adef66
crossref_primary_10_1002_adfm_202505511
crossref_primary_10_1002_smtd_202402196
crossref_primary_10_1088_0256_307X_41_6_067501
crossref_primary_10_1002_advs_202401048
crossref_primary_10_1039_D4NR00048J
crossref_primary_10_1021_acsnano_5c08312
crossref_primary_10_1063_5_0226822
crossref_primary_10_1063_5_0183071
crossref_primary_10_1016_j_apsusc_2023_159057
crossref_primary_10_1002_adfm_202424841
crossref_primary_10_1016_j_mtphys_2024_101627
crossref_primary_10_1088_1402_4896_ad5ec3
crossref_primary_10_1002_adfm_202414699
crossref_primary_10_1002_aelm_202400820
crossref_primary_10_1002_ange_202316384
crossref_primary_10_1002_adfm_202302984
crossref_primary_10_1063_5_0202667
crossref_primary_10_1002_advs_202303443
Cites_doi 10.1038/s41467-020-17566-x
10.1002/adfm.202202977
10.1016/j.mattod.2022.04.011
10.1021/acsanm.1c00391
10.1126/sciadv.1600304
10.1002/adma.202107512
10.1103/RevModPhys.82.1539
10.1103/PhysRevLett.108.237204
10.1007/s12274-017-1913-8
10.1038/s43246-022-00238-2
10.1103/PhysRevB.100.134441
10.1002/cnma.202000650
10.1038/s41928-020-0385-0
10.1038/nnano.2013.174
10.1038/s42254-020-0203-7
10.1021/acs.nanolett.9b02849
10.1038/s41467-021-26009-0
10.1038/s41598-019-47265-7
10.1103/PhysRevB.102.144433
10.1063/5.0018229
10.1126/sciadv.aay8912
10.1002/adma.201603958
10.7566/JPSJ.84.104708
10.1038/s41467-018-08041-9
10.1016/j.mtphys.2021.100341
10.1016/j.physrep.2017.08.001
10.1038/s41928-022-00754-6
10.1038/ncomms9462
10.1088/0034-4885/59/11/002
10.1016/j.physb.2007.10.136
10.1038/nmat4934
10.1143/JPSJ.70.2999
10.1016/0022-3697(58)90076-3
10.1038/s41427-022-00418-z
10.1021/acs.nanolett.6b01011
10.1063/1.5143387
10.1126/sciadv.abm7103
10.1021/acsanm.9b01179
10.1103/PhysRevMaterials.5.034405
10.1103/PhysRevB.105.014426
10.1038/s41467-018-04018-w
10.1021/acs.nanolett.9b02191
10.1103/PhysRev.120.91
10.1021/acsami.0c04447
10.1063/5.0033379
10.1107/S2053229614024218
10.1021/acs.nanolett.9b03453
10.1021/acsnano.1c00488
10.1021/acsnano.1c05519
10.1021/acs.nanolett.1c02940
10.1088/1361-648X/ab5488
10.1038/nature22391
10.1038/s41467-021-21072-z
10.1002/adma.202103360
10.1021/acsnano.0c05413
10.1103/PhysRevMaterials.4.114001
10.1038/nature22060
10.1021/acs.nanolett.9b05128
10.3891/acta.chem.scand.24-3495
10.1038/s41467-021-22777-x
10.1038/natrevmats.2017.31
10.1038/s41928-019-0246-x
10.1021/acsnano.0c02712
10.1143/JPSJ.32.635
10.1103/PhysRevB.103.104410
10.1063/5.0005493
10.1021/acs.chemrev.0c00297
10.1002/adma.202204163
10.1063/1.4936078
10.1103/PhysRevLett.102.186602
10.1038/s41563-018-0204-4
10.1038/s41567-018-0307-5
10.1038/s41467-021-22976-6
10.1002/adma.202101131
10.1002/adma.202110583
10.1088/0953-8984/1/46/008
10.1126/sciadv.aaz3902
10.1103/PhysRevMaterials.3.114403
10.1103/PhysRevLett.108.267201
10.1126/science.1166767
10.1038/ncomms5704
10.1073/pnas.1118496109
10.1021/nn5065716
10.1103/PhysRevB.96.134428
10.1103/PhysRevB.103.054429
10.1021/acsnano.0c05534
10.1126/science.aau0968
10.1103/PhysRevB.102.064430
10.1002/adma.201904327
10.1103/PhysRevLett.118.027201
10.1021/acs.nanolett.1c00493
10.1103/PhysRevB.97.100404
10.1002/adma.201701144
10.1103/PhysRevLett.106.156603
10.1038/s41467-021-27834-z
10.1063/1.5046166
10.1038/nature09124
10.1051/jphys:01964002505058200
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202205967
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36245330
10_1002_adma_202205967
ADMA202205967
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
– fundername: National Science Foundation
  funderid: DMR‐2005108
– fundername: Office of Sponsored Research
  funderid: ORA‐CRG8‐2019‐4081; ORA‐CRG10‐2021‐4665
– fundername: National Natural Science Foundation of China
  funderid: 91962212; 51771085; 51801087
– fundername: National Natural Science Foundation of China
  grantid: 51771085
– fundername: National Natural Science Foundation of China
  grantid: 91962212
– fundername: National Science Foundation
  grantid: DMR-2005108
– fundername: Office of Sponsored Research
  grantid: ORA-CRG8-2019-4081
– fundername: National Natural Science Foundation of China
  grantid: 51801087
– fundername: Office of Sponsored Research
  grantid: ORA-CRG10-2021-4665
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3737-db42efabe397b9c28b9530c87169792eb72b0a245ba3249f74d3c0f9a6750d743
IEDL.DBID DRFUL
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888948200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 11:59:57 EDT 2025
Fri Jul 25 08:43:59 EDT 2025
Wed Feb 19 02:24:35 EST 2025
Sat Nov 29 07:21:31 EST 2025
Tue Nov 18 22:42:31 EST 2025
Wed Jan 22 16:21:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords chromium telluride
topological Hall effect
layered materials
self-intercalation
magnetic skyrmions
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-db42efabe397b9c28b9530c87169792eb72b0a245ba3249f74d3c0f9a6750d743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0124-6315
0000-0002-3478-6414
PMID 36245330
PQID 2760751736
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2725438967
proquest_journals_2760751736
pubmed_primary_36245330
crossref_citationtrail_10_1002_adma_202205967
crossref_primary_10_1002_adma_202205967
wiley_primary_10_1002_adma_202205967_ADMA202205967
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2017; 2
2020; 20
2015; 71
2019; 10
2010; 465
2019; 19
2020; 14
2020; 12
2020; 11
2015; 107
2021; 121
2013; 8
2019; 365
2017; 118
2020; 8
2018; 6
2018; 9
2020; 6
2014; 5
2020; 4
2020; 3
2020; 2
2021; 33
2015; 84
1960; 120
2021; 118
2022; 34
2022; 32
1995; 120
2009; 323
1958; 4
1970; 24
2001; 70
2021; 7
2019; 9
2015; 6
2021; 5
2021; 4
2019; 3
1989; 1
2019; 2
2021; 103
2008; 403
1964; 25
2017; 29
2020; 102
2020; 32
2015; 9
2016; 16
1996; 59
2019; 100
2012; 108
2012; 109
2010; 82
2017; 704
2017; 96
2021; 15
2018; 17
2021; 12
2016; 2
2011; 106
2022; 3
2022; 5
2017; 16
2021; 17
2022; 8
2022; 13
2022; 57
2020; 116
2022; 14
2020; 117
2009; 102
1972; 32
2018; 11
2018; 97
2022; 105
2018; 15
2017; 546
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_14_1
e_1_2_9_37_1
Hinatsu Y. (e_1_2_9_71_1) 1995; 120
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 704
  start-page: 1
  year: 2017
  publication-title: Phys. Rep.
– volume: 465
  start-page: 901
  year: 2010
  publication-title: Nature
– volume: 10
  start-page: 696
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3772
  year: 2015
  publication-title: ACS Nano
– volume: 17
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 4280
  year: 2021
  publication-title: Nano Lett.
– volume: 3
  start-page: 19
  year: 2022
  publication-title: Commun. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 8856
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 635
  year: 1972
  publication-title: J. Phys. Soc. Jpn.
– volume: 4
  year: 2020
  publication-title: Phys. Rev. Mater.
– volume: 5
  year: 2021
  publication-title: Phys. Rev. Mater.
– volume: 403
  start-page: 1336
  year: 2008
  publication-title: Phys. B
– volume: 2
  start-page: 182
  year: 2019
  publication-title: Nat. Electron.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 25
  start-page: 582
  year: 1964
  publication-title: J. Phys.
– volume: 15
  start-page: 9759
  year: 2021
  publication-title: ACS Nano
– volume: 5
  start-page: 224
  year: 2022
  publication-title: Nat. Electron.
– volume: 9
  start-page: 1554
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 4704
  year: 2014
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  start-page: 898
  year: 2017
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3116
  year: 2018
  publication-title: Nano Res.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 3495
  year: 1970
  publication-title: Acta Chem. Scand.
– volume: 3
  start-page: 148
  year: 2020
  publication-title: Nat. Electron.
– volume: 13
  start-page: 257
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 120
  start-page: 49
  year: 1995
  publication-title: J. Phys. Chem. Solids
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 365
  start-page: 914
  year: 2019
  publication-title: Science
– volume: 4
  start-page: 241
  year: 1958
  publication-title: J. Phys. Chem. Solids
– volume: 546
  start-page: 265
  year: 2017
  publication-title: Nature
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 8
  start-page: 723
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 7859
  year: 2019
  publication-title: Nano Lett.
– volume: 2
  start-page: 6809
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 21
  start-page: 9517
  year: 2021
  publication-title: Nano Lett.
– volume: 12
  start-page: 809
  year: 2021
  publication-title: Nat. Commun.
– volume: 20
  start-page: 868
  year: 2020
  publication-title: Nano Lett.
– volume: 57
  start-page: 66
  year: 2022
  publication-title: Mater. Today
– volume: 6
  start-page: 8462
  year: 2015
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: J. Phys.: Condens. Matter
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 3
  year: 2015
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
– volume: 12
  start-page: 5688
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  start-page: 8473
  year: 2020
  publication-title: ACS Nano
– volume: 323
  start-page: 915
  year: 2009
  publication-title: Science
– volume: 546
  start-page: 270
  year: 2017
  publication-title: Nature
– volume: 70
  start-page: 2999
  year: 2001
  publication-title: J. Phys. Soc. Jpn.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1087
  year: 2018
  publication-title: Nat. Mater.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 11
  start-page: 3860
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2018
  publication-title: APL Mater.
– volume: 4
  start-page: 4810
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 19
  start-page: 6144
  year: 2019
  publication-title: Nano Lett.
– volume: 120
  start-page: 91
  year: 1960
  publication-title: Phys. Rev.
– volume: 1
  start-page: 9141
  year: 1989
  publication-title: J. Phys.: Condens. Matter
– volume: 14
  start-page: 74
  year: 2022
  publication-title: NPG Asia Mater.
– volume: 16
  start-page: 4141
  year: 2016
  publication-title: Nano Lett.
– volume: 82
  start-page: 1539
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 84
  year: 2015
  publication-title: J. Phys. Soc. Jpn.
– volume: 105
  year: 2022
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 323
  year: 2021
  publication-title: ChemNanoMat
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 2758
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– volume: 121
  start-page: 2857
  year: 2021
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 2492
  year: 2021
  publication-title: Nat. Commun.
– volume: 20
  start-page: 3130
  year: 2020
  publication-title: Nano Lett.
– volume: 2
  start-page: 492
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 15
  start-page: 67
  year: 2018
  publication-title: Nat. Phys.
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 1409
  year: 1996
  publication-title: Rep. Prog. Phys.
– ident: e_1_2_9_20_1
  doi: 10.1038/s41467-020-17566-x
– ident: e_1_2_9_37_1
  doi: 10.1002/adfm.202202977
– ident: e_1_2_9_44_1
  doi: 10.1016/j.mattod.2022.04.011
– ident: e_1_2_9_45_1
  doi: 10.1021/acsanm.1c00391
– ident: e_1_2_9_86_1
  doi: 10.1126/sciadv.1600304
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.202107512
– ident: e_1_2_9_65_1
  doi: 10.1103/RevModPhys.82.1539
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevLett.108.237204
– ident: e_1_2_9_39_1
  doi: 10.1007/s12274-017-1913-8
– ident: e_1_2_9_91_1
  doi: 10.1038/s43246-022-00238-2
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevB.100.134441
– ident: e_1_2_9_94_1
  doi: 10.1002/cnma.202000650
– ident: e_1_2_9_79_1
  doi: 10.1038/s41928-020-0385-0
– ident: e_1_2_9_61_1
  doi: 10.1038/nnano.2013.174
– ident: e_1_2_9_2_1
  doi: 10.1038/s42254-020-0203-7
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.nanolett.9b02849
– ident: e_1_2_9_36_1
  doi: 10.1038/s41467-021-26009-0
– ident: e_1_2_9_50_1
  doi: 10.1038/s41598-019-47265-7
– volume: 120
  start-page: 49
  year: 1995
  ident: e_1_2_9_71_1
  publication-title: J. Phys. Chem. Solids
– ident: e_1_2_9_74_1
  doi: 10.1103/PhysRevB.102.144433
– ident: e_1_2_9_75_1
  doi: 10.1063/5.0018229
– ident: e_1_2_9_54_1
  doi: 10.1126/sciadv.aay8912
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201603958
– ident: e_1_2_9_92_1
  doi: 10.7566/JPSJ.84.104708
– ident: e_1_2_9_64_1
  doi: 10.1038/s41467-018-08041-9
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mtphys.2021.100341
– ident: e_1_2_9_7_1
  doi: 10.1016/j.physrep.2017.08.001
– ident: e_1_2_9_34_1
  doi: 10.1038/s41928-022-00754-6
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms9462
– ident: e_1_2_9_49_1
  doi: 10.1088/0034-4885/59/11/002
– ident: e_1_2_9_16_1
  doi: 10.1016/j.physb.2007.10.136
– ident: e_1_2_9_67_1
  doi: 10.1038/nmat4934
– ident: e_1_2_9_72_1
  doi: 10.1143/JPSJ.70.2999
– ident: e_1_2_9_5_1
  doi: 10.1016/0022-3697(58)90076-3
– ident: e_1_2_9_60_1
  doi: 10.1038/s41427-022-00418-z
– ident: e_1_2_9_14_1
  doi: 10.1021/acs.nanolett.6b01011
– ident: e_1_2_9_73_1
  doi: 10.1063/1.5143387
– ident: e_1_2_9_23_1
  doi: 10.1126/sciadv.abm7103
– ident: e_1_2_9_31_1
  doi: 10.1021/acsanm.9b01179
– ident: e_1_2_9_77_1
  doi: 10.1103/PhysRevMaterials.5.034405
– ident: e_1_2_9_22_1
  doi: 10.1103/PhysRevB.105.014426
– ident: e_1_2_9_53_1
  doi: 10.1038/s41467-018-04018-w
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.nanolett.9b02191
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRev.120.91
– ident: e_1_2_9_41_1
  doi: 10.1021/acsami.0c04447
– ident: e_1_2_9_78_1
  doi: 10.1063/5.0033379
– ident: e_1_2_9_99_1
  doi: 10.1107/S2053229614024218
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.nanolett.9b03453
– ident: e_1_2_9_38_1
  doi: 10.1021/acsnano.1c00488
– ident: e_1_2_9_42_1
  doi: 10.1021/acsnano.1c05519
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.nanolett.1c02940
– ident: e_1_2_9_80_1
  doi: 10.1088/1361-648X/ab5488
– ident: e_1_2_9_18_1
  doi: 10.1038/nature22391
– ident: e_1_2_9_35_1
  doi: 10.1038/s41467-021-21072-z
– ident: e_1_2_9_97_1
  doi: 10.1002/adma.202103360
– ident: e_1_2_9_81_1
  doi: 10.1021/acsnano.0c05413
– ident: e_1_2_9_29_1
  doi: 10.1103/PhysRevMaterials.4.114001
– ident: e_1_2_9_17_1
  doi: 10.1038/nature22060
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.nanolett.9b05128
– ident: e_1_2_9_70_1
  doi: 10.3891/acta.chem.scand.24-3495
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-021-22777-x
– ident: e_1_2_9_1_1
  doi: 10.1038/natrevmats.2017.31
– ident: e_1_2_9_83_1
  doi: 10.1038/s41928-019-0246-x
– ident: e_1_2_9_96_1
  doi: 10.1021/acsnano.0c02712
– ident: e_1_2_9_56_1
  doi: 10.1143/JPSJ.32.635
– ident: e_1_2_9_19_1
  doi: 10.1103/PhysRevB.103.104410
– ident: e_1_2_9_76_1
  doi: 10.1063/5.0005493
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.chemrev.0c00297
– ident: e_1_2_9_55_1
  doi: 10.1002/adma.202204163
– ident: e_1_2_9_59_1
  doi: 10.1063/1.4936078
– ident: e_1_2_9_88_1
  doi: 10.1103/PhysRevLett.102.186602
– ident: e_1_2_9_84_1
  doi: 10.1038/s41563-018-0204-4
– ident: e_1_2_9_85_1
  doi: 10.1038/s41567-018-0307-5
– ident: e_1_2_9_66_1
  doi: 10.1038/s41467-021-22976-6
– ident: e_1_2_9_48_1
  doi: 10.1002/adma.202101131
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.202110583
– ident: e_1_2_9_57_1
  doi: 10.1088/0953-8984/1/46/008
– ident: e_1_2_9_82_1
  doi: 10.1126/sciadv.aaz3902
– ident: e_1_2_9_98_1
  doi: 10.1103/PhysRevMaterials.3.114403
– ident: e_1_2_9_62_1
  doi: 10.1103/PhysRevLett.108.267201
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1166767
– ident: e_1_2_9_8_1
  doi: 10.1038/ncomms5704
– ident: e_1_2_9_15_1
  doi: 10.1073/pnas.1118496109
– ident: e_1_2_9_95_1
  doi: 10.1021/nn5065716
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRevB.96.134428
– ident: e_1_2_9_90_1
  doi: 10.1103/PhysRevB.103.054429
– ident: e_1_2_9_51_1
  doi: 10.1021/acsnano.0c05534
– ident: e_1_2_9_63_1
  doi: 10.1126/science.aau0968
– ident: e_1_2_9_93_1
  doi: 10.1103/PhysRevB.102.064430
– ident: e_1_2_9_58_1
  doi: 10.1002/adma.201904327
– ident: e_1_2_9_89_1
  doi: 10.1103/PhysRevLett.118.027201
– ident: e_1_2_9_43_1
  doi: 10.1021/acs.nanolett.1c00493
– ident: e_1_2_9_47_1
  doi: 10.1103/PhysRevB.97.100404
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201701144
– ident: e_1_2_9_87_1
  doi: 10.1103/PhysRevLett.106.156603
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-021-27834-z
– ident: e_1_2_9_52_1
  doi: 10.1063/1.5046166
– ident: e_1_2_9_4_1
  doi: 10.1038/nature09124
– ident: e_1_2_9_69_1
  doi: 10.1051/jphys:01964002505058200
SSID ssj0009606
Score 2.6417387
Snippet Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such...
Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2205967
SubjectTerms Chromium
chromium telluride
Crystal structure
Curie temperature
Electromagnetism
Hall effect
Hypothetical particles
Intercalation
layered materials
Low temperature
Magnetic anisotropy
magnetic skyrmions
Magnetism
Materials science
Particle theory
self‐intercalation
Tellurides
Temperature
topological Hall effect
Topology
Transition metal compounds
Title Room‐Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self‐Intercalation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205967
https://www.ncbi.nlm.nih.gov/pubmed/36245330
https://www.proquest.com/docview/2760751736
https://www.proquest.com/docview/2725438967
Volume 35
WOSCitedRecordID wos000888948200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL2CwAIWlAKFtIBcqRKrEROPM7aXUWnEIqAKQpXdyK9BEcNQJQSJHZ_AN_ZLej2eDERVVansxhq_ZJ9rH7_OBfjiJO8YyeOIWaUjpkUXx0HLI22F7iSpEEHx5seAn5-L0Uh-f_WKP-hDNBtu3jKq8dobuNLT4xfRUGUr3SD_UFSmfBlWKIKXtWDl5KJ_NXgR3k0r_5r-vC-SKRNz4caYHi_msDgx_cE2F8lrNfv037293puwUTNP0gtQeQ9LrtyC9Vd6hNvwdIE0-tfT89AhmQ5iy-RMXZf-oSO5vHlEUCBIiSotGfgb5GQYXCz4jianqihIEEMm45J41d3b8eyWDF1RzCZj68i8LGeJfiSXrsixrGpLEtNXCNmBq_634dfTqHbREJmEJzyymlGXK-2Q1mhpqNCym8TGr8Ikl9RpTnWsKOtqhcxN5pzZxMS5VLhOQUiw5AO0yrvS7QExQuTIHZzKkXI4wZBYKpPjAio3jNtu3IZo3j-ZqfXLvRuNIgvKyzTzLZs1LduGoyb-z6Dc8deY-_PuzmoLnmaUp8imOjxJ2_C5-Y225w9UVOnuZj6OlxIQVRa7ASZNUUgMmL-52wZaoeEfdch6J2e9JvTxfxJ9gjX8TsL-0D607iczdwCr5uF-PJ0cwjIficPaOn4DI50QTw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CDonxwHWDwgAjIfEULXWc2H6sGFURaYW2DO0t8i2oIstQtyLtbT-B38gv4ThOMyqEkBCPSXyT_R3n87H9HYDXTvKRkTyOmFU6YlqkOA9aHmkr9CjJhAiKN59yPp-LkxP5sTtN6O_CBH2I3uHmLaOdr72Be4f0_rVqqLKtcJC_KSozfhO2GGIpHcDWweHkOL9W3s3aAJt-wy-SGRNr5caY7m-WsPln-o1ubrLX9vczufcfGn4f7nbck4wDWB7ADdc8hDu_KBI-gqtDJNI_rr4XDul0kFsmM_W58VcdydGXS4QFwpSoxpLcnyEnRQiy4IeaTFVdkyCHTBYN8bq7p4vVKSlcXa-WC-vIui5nib4kR66usK7WKYn5W4zswPHkXfF2GnVBGiKT8IRHVjPqKqUdEhstDRVapkls_DpMckmd5lTHirJUK-RusuLMJiaupMKVCoKCJbswaM4a9wSIEaJC9uBUhaTDCYbUUpkKl1CVYdym8RCi9QCVplMw94E06jJoL9PS92zZ9-wQ3vTpvwbtjj-m3FuPd9nZ8HlJeYZ8asSTbAiv-s9ofX5LRTXubOXTeDEB0RbxOOCkrwqpAfNnd4dAWzj8pQ3l-GA27p-e_kuml3B7WszyMn8___AMtvF9ErxFezC4WK7cc7hlvl0szpcvOiP5CQR8E1c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CDU3wAGMMKIzNSEh7ipY6bmw_VpRqaF01bR3aW-QrqsiyqVuR9rafwG_kl3AcpxkVQkgTT1ES32R_x_58-w7AByd510ieJswqnTAtetgPWp5oK3Q3y4WIijdfRnw8Fmdn8qg5TRjuwkR9iHbBLVhG3V8HA3eX1u_dqYYqWwsHhZuiMucPYZXhE21zdXA8PB3dKe_mtYPNsOGXyJyJhXJjSveWU1gemf6gm8vstR5-hs_-Q8HX4WnDPUk_guU5PHDVBjz5TZHwBdweI5H-eftj4pBOR7llcqi-VuGqIzn5doOwQJgSVVkyCmfIySQ6WQhNTfZVWZIoh0ymFQm6u-fT-TmZuLKcz6bWkUVezhJ9Q05c6TGvelES49cY2YTT4afJx_2kcdKQmIxnPLGaUeeVdkhstDRUaNnLUhPmYZJL6jSnOlWU9bRC7iY9ZzYzqZcKZyoICpa9hJXqonKvgRghPLIHpzySDicYUktlPE6hvGHc9tIOJIsGKkyjYB4caZRF1F6mRajZoq3ZDuy24S-jdsdfQ24t2rtobPiqoDxHPtXlWd6B9-1vtL6wpaIqdzEPYYKYgKiTeBVx0maF1ICFs7sdoDUc_lGGoj847Ldvb-4TaQfWjgbDYvR5fPAWHuPnLC4WbcHK9Wzu3sEj8_16ejXbbmzkF3KyEtI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Magnetic+Skyrmions+and+Large+Topological+Hall+Effect+in+Chromium+Telluride+Engineered+by+Self-Intercalation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Chenhui&rft.au=Liu%2C+Chen&rft.au=Zhang%2C+Junwei&rft.au=Yuan%2C+Youyou&rft.date=2023-01-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=1&rft.spage=e2205967&rft_id=info:doi/10.1002%2Fadma.202205967&rft_id=info%3Apmid%2F36245330&rft.externalDocID=36245330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon