Emergent Mid‐Infrared Nonlinear Optical Candidates With Targeted Balance Performances

Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Jg. 21; H. 6; S. e2409997 - n/a
Hauptverfasser: Huang, Junben, Abudurusuli, Ailijiang, Yang, Zhihua, Pan, Shilie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.02.2025
Schlagworte:
ISSN:1613-6810, 1613-6829, 1613-6829
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. Summarized the systems of research utilized in recent years to explore infrared nonlinear optical materials, which includes chalcogenides, metal halides, oxyhalides, heavy metal oxides, oxychalcogenides, chalcohalides, and nitrides. Remarkably, nitrides as an emergent infrared NLO candidate with wide band gap, large NLO coefficients, and high thermal conductivity deserve further study.
AbstractList Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. Summarized the systems of research utilized in recent years to explore infrared nonlinear optical materials, which includes chalcogenides, metal halides, oxyhalides, heavy metal oxides, oxychalcogenides, chalcohalides, and nitrides. Remarkably, nitrides as an emergent infrared NLO candidate with wide band gap, large NLO coefficients, and high thermal conductivity deserve further study.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP . However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (E ≥ 3.0 eV, d ≥ 0.5 × AgGaS ) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc . Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ 2 (Q = S, Se) and ZnGeP 2 . However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances ( E g ≥ 3.0 eV, d ij ≥ 0.5 × AgGaS 2 ) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Author Abudurusuli, Ailijiang
Yang, Zhihua
Huang, Junben
Pan, Shilie
Author_xml – sequence: 1
  givenname: Junben
  orcidid: 0000-0003-2647-7168
  surname: Huang
  fullname: Huang, Junben
  email: hjb5245hxu@sina.com
  organization: Xinjiang University
– sequence: 2
  givenname: Ailijiang
  surname: Abudurusuli
  fullname: Abudurusuli, Ailijiang
  organization: Xinjiang University
– sequence: 3
  givenname: Zhihua
  surname: Yang
  fullname: Yang, Zhihua
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shilie
  surname: Pan
  fullname: Pan, Shilie
  email: slpan@ms.xjb.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39711290$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoNUtK1uXcqAGzetuc1Ms9RSL1AvoOJyOJPJaCSTqUmKdOcj-Iw-iSnVCoIIgZzF9yU_5--hjm2tQmiP4CHBmB75xpghxZRjIUS-gbokI2yQjajorGeCt1HP-2eMGaE830LbTOSEUIG76GHSKPeobEgudfXx9n5hawdOVclVa422ClxyPQtagknGYCtdQVA-edDhKbmDKIaInoABK1Vyo1zdumY5-x20WYPxavfr7qP708nd-HwwvT67GB9PB5LlLB_IHFJeAatxyUsiJQeRUU4hozJG5EDTUVVTXpMRJ2WZLgcMjFMZT4p5xvrocPXuzLUvc-VD0WgvlYmJVDv3BSN8xEWWEhLRg1_oczt3NqaLVJbmOWUxUx_tf1HzslFVMXO6AbcovlcWgeEKkK713ql6jRBcLDsplp0U606iwH8JUgcIurXBgTZ_a2KlvWqjFv98UtxeTqc_7idpEKCn
CitedBy_id crossref_primary_10_1021_acs_inorgchem_5c02460
crossref_primary_10_1021_acs_cgd_5c00416
crossref_primary_10_3390_nano15020147
crossref_primary_10_1039_D5CE00708A
Cites_doi 10.1021/cm401737s
10.1039/D2SC03760B
10.1002/chem.202203597
10.1016/j.ccr.2019.213152
10.1039/D2SC00099G
10.1021/jacs.9b03858
10.1021/acs.chemmater.0c04772
10.1039/D1NJ02565A
10.1016/j.jssc.2010.09.017
10.1002/smll.202302088
10.1002/anie.201803392
10.1093/nsr/nwac110
10.1039/D1DT04317J
10.1016/j.matt.2023.02.005
10.1021/acs.chemmater.1c01133
10.1364/AO.16.001798
10.1016/j.ccr.2016.11.012
10.1016/j.ccr.2015.12.008
10.1021/acs.chemmater.2c02578
10.1016/j.ccr.2024.215664
10.1021/acs.inorgchem.2c02149
10.1016/0030-4018(74)90183-7
10.1016/j.ccr.2021.214328
10.1002/adom.202102123
10.1016/0022-4596(78)90064-6
10.1039/D2QI01263D
10.1021/acs.chemmater.1c03728
10.1016/j.mtphys.2023.100987
10.1109/3.83367
10.1039/D2CC07084G
10.1021/acs.inorgchem.8b02113
10.1002/adom.202301735
10.1002/anie.202112844
10.1021/acsami.2c12001
10.1039/C9DT02780G
10.1039/D2MH00060A
10.1021/acs.inorgchem.0c00431
10.1021/jacs.0c04738
10.1021/acsami.2c11199
10.1021/acs.chemmater.8b03310
10.1021/acs.chemmater.2c01051
10.1021/acs.chemmater.9b03214
10.1016/j.ccr.2019.213045
10.1039/D2QI01569B
10.1021/acsomega.1c00736
10.1002/asia.202100935
10.1016/j.cclet.2023.109108
10.1002/anie.202319121
10.1002/anie.201708231
10.1016/j.ccr.2021.213916
10.1021/jacs.9b08851
10.1002/smll.202305711
10.1016/j.ccr.2022.214950
10.1016/j.optmat.2008.01.018
10.1007/s40843-018-9390-2
10.1021/cm5006955
10.1002/anie.202006671
10.1021/acs.chemmater.0c02929
10.1002/advs.202204755
10.1002/anie.202300581
10.1039/D1TC05436H
10.1002/anie.202205587
10.1039/D2QI01689C
10.1039/D2SC03771H
10.1002/anie.201911324
10.1039/D3QI01502E
10.1021/acs.chemmater.0c02011
10.1002/sstr.202300274
10.1021/acs.chemmater.8b01470
10.1002/adom.202100563
10.1002/anie.202201616
10.1021/acs.inorgchem.8b01437
10.1021/acs.inorgchem.2c02861
10.1007/s00340-009-3554-4
10.1021/acs.inorgchem.9b00094
10.1002/ejic.202200419
10.1039/D2QM00621A
10.1016/j.jallcom.2021.159112
10.1021/acs.jpcc.2c01095
10.1021/acs.chemmater.8b03642
10.1002/adma.202309675
10.1002/chem.202003606
10.1021/jacs.7b05943
10.1016/j.ccr.2020.213379
10.1039/D1SC07121A
10.1039/C9SC00028C
10.1002/zaac.19432520101
10.1021/jacs.5b03986
10.1016/j.mtphys.2023.101127
10.1016/j.cclet.2022.107838
10.1002/smll.202305828
10.1039/D3QM00657C
10.1021/jacs.5b07920
10.1016/j.ccr.2022.214443
10.1021/acs.inorgchem.6b00517
10.1002/anie.201802058
10.1016/j.ccr.2019.213150
10.1002/anie.201912416
10.1002/smll.202308806
10.1016/j.ccr.2023.215059
10.1039/D3QI00048F
10.1038/457953a
10.1002/smll.202300248
10.1016/j.jcrysgro.2007.11.201
10.1016/j.ccr.2018.09.002
10.1007/s40843-022-2417-2
10.1002/anie.202103657
10.1021/acs.cgd.1c01298
10.1007/s40843-020-1604-0
10.1021/jacs.0c00060
10.1021/acs.inorgchem.2c02798
10.1016/j.jallcom.2018.05.109
10.1021/jacs.8b08803
10.1021/jacs.8b01263
10.1016/j.jssc.2021.122226
10.1021/acs.chemmater.1c01399
10.1063/1.93615
10.1039/D1MH00562F
10.1021/cg800054x
10.1021/acs.inorgchem.8b00531
10.1002/anie.202115669
10.1021/ja3037299
10.1016/j.ccr.2021.214380
10.1039/C9DT00269C
10.1002/zaac.19663440306
10.1021/acsami.2c04422
10.1103/PhysRevLett.7.118
10.1039/D3TC00154G
10.1109/JQE.1972.1076900
10.1021/ja209276a
10.1002/adom.202202147
10.1039/D0QI01318H
10.1021/acs.chemmater.0c00150
10.1364/JOSAB.6.000616
10.1002/anie.202218048
10.1021/acs.inorgchem.9b02481
10.1039/C4TC02992E
10.1039/C7TC04857B
10.1021/acs.chemmater.0c00609
10.1039/C9DT04710G
10.1021/jacs.1c06061
10.1002/anie.202108978
10.1039/D1CC01275D
10.1002/anie.201805759
10.1007/s40843-019-1201-5
10.1039/D1SC06849K
10.1016/j.mtphys.2021.100569
10.1002/smll.202302819
10.1063/1.3257728
10.1039/D1MH01434J
10.1016/j.mtphys.2023.101243
10.1021/acs.cgd.7b00214
10.1002/cjoc.202200357
10.1002/adom.202301634
10.1021/cm034397s
10.1002/pssa.2210900115
10.1038/s41566-023-01228-7
10.1107/S0567740882002994
10.1016/j.ccr.2023.215617
10.1063/1.2969059
10.1002/smll.202303847
10.1016/j.inoche.2020.107852
10.1016/j.jallcom.2021.163384
10.1016/S0030-4018(98)00397-6
10.1021/acs.chemmater.3c00291
10.1021/ja400500m
10.1021/cg8010579
10.1039/D0QM01109F
10.1021/acs.chemmater.0c03008
10.1002/anie.201700540
10.1016/0025-5408(91)90078-Z
10.1039/C9TC06999B
10.1002/anie.201712168
10.1021/acs.inorgchem.2c02765
10.1038/s41377-022-00941-2
10.1039/D2MH01200F
10.1063/1.1653673
10.1002/anie.201905558
10.1021/acsami.1c23843
10.1021/acs.inorgchem.1c02555
10.1016/j.jssc.2013.03.046
10.1021/acs.chemmater.8b02223
10.1002/anie.202002291
10.1007/s40843-022-2181-4
10.1002/smll.202302797
10.1002/anie.201903976
10.1016/j.ccr.2021.214154
10.1016/j.mtphys.2023.101033
10.1021/acs.accounts.8b00649
10.1021/acs.cgd.7b00677
10.1021/acsami.0c15728
10.1002/anie.202107613
10.1021/acs.chemmater.1c04296
10.1021/ic1008297
10.1021/acs.inorgchem.0c01111
10.1002/smll.202304563
10.1016/j.ccr.2022.214706
10.1016/j.ccr.2018.09.011
10.1021/acsmaterialslett.2c00485
10.1021/acs.chemmater.2c00385
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202409997
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39711290
10_1002_smll_202409997
SMLL202409997
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Tianchi Talent Youth Doctoral Program
  funderid: 5105240151e
– fundername: Xinjiang Major Science and Technology Project
  funderid: 2021A01001
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  funderid: 2024D01C235; 2024D01C260
– fundername: National Natural Science Foundation of China
  funderid: 22335007; 22361132544
– fundername: Tianchi Talent Youth Doctoral Program
  grantid: 5105240151e
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2024D01C235
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2024D01C260
– fundername: National Natural Science Foundation of China
  grantid: 22335007
– fundername: National Natural Science Foundation of China
  grantid: 22361132544
– fundername: Xinjiang Major Science and Technology Project
  grantid: 2021A01001
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
53G
AAMMB
AAYXX
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
31~
AANHP
AASGY
AAYOK
ACBWZ
ACRPL
ACYXJ
ADNMO
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-c7a54da3f0b4b1cc4a96242a62c9714a258df24f1841bb54f180a342c42c50463
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381605900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Sun Nov 09 14:38:19 EST 2025
Tue Jul 15 08:47:57 EDT 2025
Thu Feb 13 03:15:48 EST 2025
Sat Nov 29 01:42:35 EST 2025
Tue Nov 18 22:40:05 EST 2025
Thu Feb 13 09:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords structure‐property survey
nonlinear optics
targeted balance performances
emergent infrared NLO candidates
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-c7a54da3f0b4b1cc4a96242a62c9714a258df24f1841bb54f180a342c42c50463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2647-7168
PMID 39711290
PQID 3165772337
PQPubID 1046358
PageCount 25
ParticipantIDs proquest_miscellaneous_3148496511
proquest_journals_3165772337
pubmed_primary_39711290
crossref_primary_10_1002_smll_202409997
crossref_citationtrail_10_1002_smll_202409997
wiley_primary_10_1002_smll_202409997_SMLL202409997
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1985; 28
2018 2022; 6 13
2019; 10
2020; 12
2024; 35
2008; 31
2024; 36
2020 2021 2022 2022 2021 2021; 59 64 61 61 60 6
2018 2018 2019 2022 2023 2022; 30 30 141 14 35 9
2023; 62
2009; 95
2023; 66
2012; 134
2009; 97
2015; 137
1971; 18
2022; 40
2022 2022 2021 2023 2023; 34 126 33 7 62
1985; 90
2024; 20
2018; 30
2018 2018 2021; 57 57 60
2024 2022 2021 2022 2019 2021; 505 459 5 11 62 8
2021; 45
2021; 300
2019; 31
2020; 142
1989; 6
1998
2018 2023; 57 6
2024; 12
2020; 32
2021; 143
2023 2022 2023 2020 2023 2024; 477 470 481 406 35 502
2009; 457
2017; 139
2021; 57
2022; 4
1982; 41
2022; 9
2019; 48
2017; 56
2013 2015 2017 2017 2022 2021; 26 137 333 17 453 448
2022; 13
2022; 14
2021; 60
1982 2003 2010 2010 1991 1943; B38 15 183 49 26 252
2009 2022 2022 2014 2015 2023; 9 9 10 26 3 66
2023; 31
2021; 21
1974; 11
2023; 34
2023; 38
2013; 203
2020 2022; 421 2022
2019; 58
2018 2020; 57 142
2020; 59
2017 2019 2021; 17 141 439
2008; 8
2022 2024 2022; 459 63 61
2020; 8
2022 2022 2022; 14 34 13
2023 2023; 11 59
2019 2022 2022; 48 61 22
2020; 2
2018 2020; 140 32
2021; 33
1978; 23
2023; 29
1961; 7
2022 2021; 901 16
2018; 377
2020; 49
2008; 310
2018 2022 2019; 140 34 58
2011 2020; 133 26
2021; 9
2021; 8
2021; 868
2023; 10
2017 2024 2022 2019; 56 63 61 58
2019 2022; 380 34
1998 1972; 155 8
2023; 11
2023; 17
2022 2022; 6 34
2022; 51
2019 2016 2013; 52 323 135
2023; 19
2008; 93
2016; 55
1991; 27
2021; 10
2019 2023 2022; 400 4 13
2022; 61
1965
2020; 115
2020 2019 2018; 407 62 758
1976; 16
2023 1968 1966; 33 357 344
2018; 57
e_1_2_6_114_1
e_1_2_6_114_2
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_114_3
e_1_2_6_30_2
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_38_3
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_41_3
e_1_2_6_41_2
e_1_2_6_41_1
e_1_2_6_102_1
Chen C. T. (e_1_2_6_4_1) 1985; 28
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_41_5
e_1_2_6_41_4
e_1_2_6_26_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_113_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_3
e_1_2_6_6_2
e_1_2_6_6_1
Jarchow O. (e_1_2_6_103_2) 1968; 357
e_1_2_6_27_3
e_1_2_6_27_2
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_112_1
Zhang J. (e_1_2_6_92_1) 1998
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_36_2
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_3_6
e_1_2_6_3_3
e_1_2_6_3_2
e_1_2_6_3_5
e_1_2_6_3_4
e_1_2_6_24_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_111_2
e_1_2_6_111_3
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_37_2
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_40_2
e_1_2_6_40_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_3
e_1_2_6_34_3
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_34_6
e_1_2_6_34_5
e_1_2_6_57_1
e_1_2_6_34_4
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_9_1
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_117_2
e_1_2_6_50_1
e_1_2_6_132_1
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_105_2
e_1_2_6_105_3
e_1_2_6_105_4
e_1_2_6_105_5
e_1_2_6_61_1
e_1_2_6_105_6
e_1_2_6_120_1
e_1_2_6_23_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_116_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
Zhou H. (e_1_2_6_11_2) 2024; 63
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_20_2
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_7_1
e_1_2_6_43_6
e_1_2_6_20_4
e_1_2_6_20_3
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_43_3
e_1_2_6_43_4
e_1_2_6_43_5
e_1_2_6_115_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_130_1
Bloembergen N. (e_1_2_6_2_1) 1965
e_1_2_6_10_4
e_1_2_6_33_4
e_1_2_6_10_5
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_10_3
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_10_6
e_1_2_6_33_6
e_1_2_6_33_5
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_103_3
e_1_2_6_126_2
e_1_2_6_21_1
Liu B. W. (e_1_2_6_122_1) 2020; 2
e_1_2_6_82_1
e_1_2_6_8_2
e_1_2_6_8_1
e_1_2_6_8_3
e_1_2_6_21_5
e_1_2_6_21_4
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_21_6
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 868
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 6 34
  start-page: 3054 4375
  year: 2022 2022
  publication-title: Mater. Chem. Front. Chem. Mater.
– volume: 9
  start-page: 5932
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 17
  start-page: 694
  year: 2023
  publication-title: Nat. Photonics
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2330
  year: 2021
  publication-title: Mater. Horiz.
– volume: 32
  start-page: 8947
  year: 2020
  publication-title: Chem. Mater.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Phys.
– start-page: 1
  year: 1998
  end-page: 3
– volume: 6 13
  start-page: 2435 3942
  year: 2018 2022
  publication-title: J. Mater. Chem. C Chem. Sci.
– volume: 9
  year: 2021
  publication-title: Adv. Optical Mater.
– volume: 7
  start-page: 118
  year: 1961
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: 2150
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 26 137 333 17 453 448
  start-page: 849 57 2254
  year: 2013 2015 2017 2017 2022 2021
  publication-title: Chem. Mater. J. Am. Chem. Soc. Coord. Chem. Rev. Cryst. Growth Des. Coord. Chem. Rev. Coord. Chem. Rev.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 9979
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  year: 2024
  publication-title: Chinese Chem. Lett.
– volume: 11
  start-page: 285
  year: 1974
  publication-title: Opt. Commun.
– volume: 8
  start-page: 3688
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 203
  start-page: 31
  year: 2013
  publication-title: J. Solid State Chem.
– volume: 300
  year: 2021
  publication-title: J. Solid State Chem.
– volume: 155 8
  start-page: 307 900
  year: 1998 1972
  publication-title: Opt. Commun. IEEE J. Quantum Electron
– volume: 23
  start-page: 187
  year: 1978
  publication-title: J. Solid State Chem.
– volume: 56 63 61 58
  start-page: 3916
  year: 2017 2024 2022 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 58
  start-page: 3990
  year: 2019
  publication-title: Inorg. Chem.
– volume: 66
  start-page: 740
  year: 2023
  publication-title: Sci. China Mater.
– volume: 11 59
  start-page: 4439 3309
  year: 2023 2023
  publication-title: J. Mater. Chem. C Chem. Commun.
– volume: 30 30 141 14 35 9
  start-page: 5397 7823 8093 5281
  year: 2018 2018 2019 2022 2023 2022
  publication-title: Chem. Mater. Chem. Mater. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Chem. Mater. Natl. Sci. Rev.
– volume: 9
  start-page: 4632
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 58
  year: 2019
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 235
  year: 1985
  publication-title: Sci. Sin. B
– volume: 34 126 33 7 62
  start-page: 7047 1462 5744
  year: 2022 2022 2021 2023 2023
  publication-title: Chem. Mater. J. Phys. Chem. C Chem. Mater. Mater. Chem. Front. Angew. Chem., Int. Ed.
– volume: 33
  start-page: 6012
  year: 2021
  publication-title: Chem. Mater.
– volume: 901 16
  start-page: 3299
  year: 2022 2021
  publication-title: J. Alloys Compd. Chem. Asian J.
– volume: 10
  year: 2021
  publication-title: Adv. Optical Mater.
– volume: 59
  start-page: 5674
  year: 2020
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 6253
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 421 2022
  year: 2020 2022
  publication-title: Coord. Chem. Rev. Eur. J. Inorg. Chem.
– volume: 2
  start-page: 964
  year: 2020
  publication-title: CCS Chem
– volume: 51
  start-page: 4522
  year: 2022
  publication-title: Dalton Trans.
– volume: 10
  start-page: 2045
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 4856
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Chem. Mater.
– volume: 12
  year: 2024
  publication-title: Adv. Optical Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1975
  year: 2020
  publication-title: Dalton Trans.
– volume: 33 357 344
  start-page: 345 157
  year: 2023 1968 1966
  publication-title: Mater. Today Phys. Z. Anorg. Allg. Chem. Z. Anorg. Allg. Chem.
– volume: 459 63 61
  year: 2022 2024 2022
  publication-title: Coord. Chem. Rev. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 59
  start-page: 9944
  year: 2020
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 6554
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 29
  year: 2023
  publication-title: Chem. ‐ Eur. J.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 16
  start-page: 1798
  year: 1976
  publication-title: Appl. Opt.
– volume: 57 142
  start-page: 9828 6472
  year: 2018 2020
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 18
  start-page: 301
  year: 1971
  publication-title: Appl. Phys. Lett.
– volume: 400 4 13
  year: 2019 2023 2022
  publication-title: Coord. Chem. Rev. Small Struct. Chem. Sci.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 38
  year: 2023
  publication-title: Mater. Today Phys
– volume: 57 6
  start-page: 6577 1188
  year: 2018 2023
  publication-title: Angew. Chem., Int. Ed. Matter
– volume: 31
  start-page: 110
  year: 2008
  publication-title: Opt. Mater.
– volume: 45
  year: 2021
  publication-title: New J. Chem.
– volume: 33
  start-page: 4225
  year: 2021
  publication-title: Chem. Mater.
– volume: 8
  start-page: 3394
  year: 2021
  publication-title: Mater. Horiz.
– volume: 61
  year: 2022
  publication-title: Inorg. Chem.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 9446
  year: 2018
  publication-title: Inorg. Chem.
– volume: 115
  year: 2020
  publication-title: Inorg. Chem. Commun.
– volume: 30
  start-page: 3901
  year: 2018
  publication-title: Chem. Mater.
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 13
  start-page: 2640
  year: 2022
  publication-title: Chem. Sci.
– volume: 9 9 10 26 3 66
  start-page: 1186 4632 96 2743 3060 2795
  year: 2009 2022 2022 2014 2015 2023
  publication-title: Gryst. Growth Des. Inorg. Chem. Front. J. Mater. Chem. C Chem. Mater. J. Mater. Chem. C Sci. China Mater.
– volume: 380 34
  start-page: 83 5301
  year: 2019 2022
  publication-title: Coord. Chem. Rev. Chem. Mater.
– volume: 57
  start-page: 5175
  year: 2021
  publication-title: Chem. Commun.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 310
  start-page: 1954
  year: 2008
  publication-title: J. Cryst. Growth
– volume: 11
  year: 2023
  publication-title: Adv. Optical Mater.
– volume: 140 32
  start-page: 3884 2172
  year: 2018 2020
  publication-title: J. Am. Chem. Soc. Chem. Mater.
– volume: 14 34 13
  start-page: 3853 5305
  year: 2022 2022 2022
  publication-title: ACS Appl. Mater. Interfaces Chem. Mater. Chem. Sci.
– volume: 6
  start-page: 616
  year: 1989
  publication-title: J. Opt. Soc. Am. B
– volume: 59 64 61 61 60 6
  start-page: 2008 9263
  year: 2020 2021 2022 2022 2021 2021
  publication-title: Angew. Chem., Int. Ed. Sci. China Mater. Inorg. Chem. Inorg. Chem. Inorg. Chem. ACS Omega
– year: 1965
– volume: 133 26
  year: 2011 2020
  publication-title: J. Am. Chem. Soc. Chem. ‐ Eur. J.
– volume: 40
  start-page: 2407
  year: 2022
  publication-title: Chin. J. Chem.
– volume: 55
  start-page: 3724
  year: 2016
  publication-title: Inorg. Chem.
– volume: 48 61 22
  start-page: 1500
  year: 2019 2022 2022
  publication-title: Dalton Trans. Inorg. Chem. Cryst. Growth Des.
– volume: 97
  start-page: 9
  year: 2009
  publication-title: Appl. Phys. B
– volume: 13
  year: 2022
  publication-title: Chem. Sci.
– volume: 10
  start-page: 3963
  year: 2019
  publication-title: Chem. Sci.
– volume: 377
  start-page: 191
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 457
  start-page: 953
  year: 2009
  publication-title: Nature
– volume: 407 62 758
  start-page: 1023 85
  year: 2020 2019 2018
  publication-title: Coord. Chem. Rev. Sci. China Mater. J. Alloys Compd.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 477 470 481 406 35 502
  year: 2023 2022 2023 2020 2023 2024
  publication-title: Coord. Chem. Rev. Coord. Chem. Rev. Coord. Chem. Rev. Coord. Chem. Rev. Mater. Today Phys Coord. Chem. Rev.
– volume: 57 57 60
  start-page: 4820 6095
  year: 2018 2018 2021
  publication-title: Inorg. Chem. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 10
  start-page: 619
  year: 2023
  publication-title: Mater. Horiz.
– volume: 137
  start-page: 8360
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2023
  publication-title: Mater. Today Phys.
– volume: 8
  start-page: 2946
  year: 2008
  publication-title: Cryst. Growth Des.
– volume: 32
  start-page: 5890
  year: 2020
  publication-title: Chem. Mater.
– volume: 41
  start-page: 607
  year: 1982
  publication-title: Appl. Phys. Lett.
– volume: 48
  start-page: 4484
  year: 2019
  publication-title: Dalton Trans.
– volume: 90
  start-page: 167
  year: 1985
  publication-title: Phys. Stat. Sol.
– volume: B38 15 183 49 26 252
  start-page: 368 3406 2759 6986 973 2
  year: 1982 2003 2010 2010 1991 1943
  publication-title: Acta Crystallogr. Chem. Mater. J. Solid State Chem. Inorg. Chem. Mater. Res. Bull. Z. Anorg. Allg. Chem.
– volume: 59
  start-page: 7514
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 1137
  year: 1991
  publication-title: IEEE J. Quantum Electron.
– volume: 32
  start-page: 8012
  year: 2020
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1513
  year: 2022
  publication-title: Mater. Horiz.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 4352
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1593
  year: 2022
  publication-title: ACS Materials Lett
– volume: 52 323 135
  start-page: 791 15 4215
  year: 2019 2016 2013
  publication-title: Acc. Chem. Res. Coord. Chem. Rev. J. Am. Chem. Soc.
– volume: 505 459 5 11 62 8
  start-page: 3507 252 1798 1588
  year: 2024 2022 2021 2022 2019 2021
  publication-title: Coord. Chem. Rev. Coord. Chem. Rev. Mater. Chem. Front. Light Sci. Appl. Sci. China Mater. Inorg. Chem. Front.
– volume: 32
  start-page: 3288
  year: 2020
  publication-title: Chem. Mater.
– volume: 30
  start-page: 7428
  year: 2018
  publication-title: Chem. Mater.
– volume: 17 141 439
  start-page: 4015
  year: 2017 2019 2021
  publication-title: Cryst. Growth Des. J. Am. Chem. Soc. Coord. Chem. Rev.
– volume: 140 34 58
  start-page: 399
  year: 2018 2022 2019
  publication-title: J. Am. Chem. Soc. Chem. Mater. Angew. Chem., Int. Ed.
– ident: e_1_2_6_33_1
  doi: 10.1021/cm401737s
– ident: e_1_2_6_75_1
  doi: 10.1039/D2SC03760B
– ident: e_1_2_6_39_1
  doi: 10.1002/chem.202203597
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ccr.2019.213152
– ident: e_1_2_6_111_3
  doi: 10.1039/D2SC00099G
– ident: e_1_2_6_21_3
  doi: 10.1021/jacs.9b03858
– ident: e_1_2_6_41_3
  doi: 10.1021/acs.chemmater.0c04772
– ident: e_1_2_6_72_1
  doi: 10.1039/D1NJ02565A
– ident: e_1_2_6_105_3
  doi: 10.1016/j.jssc.2010.09.017
– ident: e_1_2_6_81_1
  doi: 10.1002/smll.202302088
– ident: e_1_2_6_24_1
  doi: 10.1002/anie.201803392
– start-page: 1
  volume-title: Electro‐Optic and 2nd Harmonic Generation Materials, Devices, and Applications
  year: 1998
  ident: e_1_2_6_92_1
– ident: e_1_2_6_21_6
  doi: 10.1093/nsr/nwac110
– ident: e_1_2_6_76_1
  doi: 10.1039/D1DT04317J
– ident: e_1_2_6_24_2
  doi: 10.1016/j.matt.2023.02.005
– ident: e_1_2_6_62_1
  doi: 10.1021/acs.chemmater.1c01133
– ident: e_1_2_6_13_1
  doi: 10.1364/AO.16.001798
– ident: e_1_2_6_33_3
  doi: 10.1016/j.ccr.2016.11.012
– volume-title: Nonlinear optics
  year: 1965
  ident: e_1_2_6_2_1
– ident: e_1_2_6_8_2
  doi: 10.1016/j.ccr.2015.12.008
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.chemmater.2c02578
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ccr.2024.215664
– ident: e_1_2_6_10_4
  doi: 10.1021/acs.inorgchem.2c02149
– ident: e_1_2_6_17_1
  doi: 10.1016/0030-4018(74)90183-7
– ident: e_1_2_6_33_5
  doi: 10.1016/j.ccr.2021.214328
– ident: e_1_2_6_60_1
  doi: 10.1002/adom.202102123
– ident: e_1_2_6_91_1
  doi: 10.1016/0022-4596(78)90064-6
– ident: e_1_2_6_43_2
  doi: 10.1039/D2QI01263D
– ident: e_1_2_6_38_2
  doi: 10.1021/acs.chemmater.1c03728
– ident: e_1_2_6_70_1
  doi: 10.1016/j.mtphys.2023.100987
– ident: e_1_2_6_14_1
  doi: 10.1109/3.83367
– ident: e_1_2_6_126_2
  doi: 10.1039/D2CC07084G
– ident: e_1_2_6_44_1
  doi: 10.1021/acs.inorgchem.8b02113
– ident: e_1_2_6_88_1
  doi: 10.1002/adom.202301735
– ident: e_1_2_6_11_3
  doi: 10.1002/anie.202112844
– ident: e_1_2_6_21_4
  doi: 10.1021/acsami.2c12001
– ident: e_1_2_6_114_1
  doi: 10.1039/C9DT02780G
– ident: e_1_2_6_125_1
  doi: 10.1039/D2MH00060A
– ident: e_1_2_6_67_1
  doi: 10.1021/acs.inorgchem.0c00431
– ident: e_1_2_6_121_1
  doi: 10.1021/jacs.0c04738
– ident: e_1_2_6_119_1
  doi: 10.1021/acsami.2c11199
– ident: e_1_2_6_21_2
  doi: 10.1021/acs.chemmater.8b03310
– ident: e_1_2_6_36_2
  doi: 10.1021/acs.chemmater.2c01051
– ident: e_1_2_6_99_1
  doi: 10.1021/acs.chemmater.9b03214
– ident: e_1_2_6_7_1
  doi: 10.1016/j.ccr.2019.213045
– ident: e_1_2_6_55_1
  doi: 10.1039/D2QI01569B
– ident: e_1_2_6_10_6
  doi: 10.1021/acsomega.1c00736
– ident: e_1_2_6_35_2
  doi: 10.1002/asia.202100935
– ident: e_1_2_6_90_1
  doi: 10.1016/j.cclet.2023.109108
– ident: e_1_2_6_20_2
  doi: 10.1002/anie.202319121
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201708231
– ident: e_1_2_6_6_3
  doi: 10.1016/j.ccr.2021.213916
– volume: 2
  start-page: 964
  year: 2020
  ident: e_1_2_6_122_1
  publication-title: CCS Chem
– ident: e_1_2_6_6_2
  doi: 10.1021/jacs.9b08851
– ident: e_1_2_6_124_1
  doi: 10.1002/smll.202305711
– ident: e_1_2_6_34_1
  doi: 10.1016/j.ccr.2022.214950
– ident: e_1_2_6_94_1
  doi: 10.1016/j.optmat.2008.01.018
– ident: e_1_2_6_9_2
  doi: 10.1007/s40843-018-9390-2
– ident: e_1_2_6_43_4
  doi: 10.1021/cm5006955
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.202006671
– ident: e_1_2_6_77_1
  doi: 10.1021/acs.chemmater.0c02929
– ident: e_1_2_6_112_1
  doi: 10.1002/advs.202204755
– ident: e_1_2_6_41_5
  doi: 10.1002/anie.202300581
– ident: e_1_2_6_43_3
  doi: 10.1039/D1TC05436H
– ident: e_1_2_6_74_1
  doi: 10.1002/anie.202205587
– ident: e_1_2_6_127_1
  doi: 10.1039/D2QI01689C
– ident: e_1_2_6_7_3
  doi: 10.1039/D2SC03771H
– ident: e_1_2_6_38_3
  doi: 10.1002/anie.201911324
– ident: e_1_2_6_85_1
  doi: 10.1039/D3QI01502E
– ident: e_1_2_6_113_1
  doi: 10.1021/acs.chemmater.0c02011
– ident: e_1_2_6_7_2
  doi: 10.1002/sstr.202300274
– ident: e_1_2_6_69_1
  doi: 10.1021/acs.chemmater.8b01470
– ident: e_1_2_6_131_1
  doi: 10.1002/adom.202100563
– ident: e_1_2_6_115_1
  doi: 10.1002/anie.202201616
– ident: e_1_2_6_59_1
  doi: 10.1021/acs.inorgchem.8b01437
– volume: 63
  year: 2024
  ident: e_1_2_6_11_2
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_6_10_3
  doi: 10.1021/acs.inorgchem.2c02861
– ident: e_1_2_6_19_1
  doi: 10.1007/s00340-009-3554-4
– ident: e_1_2_6_51_1
  doi: 10.1021/acs.inorgchem.9b00094
– ident: e_1_2_6_40_2
  doi: 10.1002/ejic.202200419
– ident: e_1_2_6_117_1
  doi: 10.1039/D2QM00621A
– ident: e_1_2_6_57_1
  doi: 10.1016/j.jallcom.2021.159112
– ident: e_1_2_6_41_2
  doi: 10.1021/acs.jpcc.2c01095
– ident: e_1_2_6_53_1
  doi: 10.1021/acs.chemmater.8b03642
– ident: e_1_2_6_134_1
  doi: 10.1002/adma.202309675
– ident: e_1_2_6_22_2
  doi: 10.1002/chem.202003606
– ident: e_1_2_6_23_1
  doi: 10.1021/jacs.7b05943
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ccr.2020.213379
– ident: e_1_2_6_37_2
  doi: 10.1039/D1SC07121A
– ident: e_1_2_6_47_1
  doi: 10.1039/C9SC00028C
– ident: e_1_2_6_105_6
  doi: 10.1002/zaac.19432520101
– ident: e_1_2_6_104_1
  doi: 10.1021/jacs.5b03986
– ident: e_1_2_6_34_5
  doi: 10.1016/j.mtphys.2023.101127
– ident: e_1_2_6_80_1
  doi: 10.1016/j.cclet.2022.107838
– ident: e_1_2_6_86_1
  doi: 10.1002/smll.202305828
– ident: e_1_2_6_41_4
  doi: 10.1039/D3QM00657C
– ident: e_1_2_6_33_2
  doi: 10.1021/jacs.5b07920
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ccr.2022.214443
– ident: e_1_2_6_45_1
  doi: 10.1021/acs.inorgchem.6b00517
– ident: e_1_2_6_27_2
  doi: 10.1002/anie.201802058
– ident: e_1_2_6_34_4
  doi: 10.1016/j.ccr.2019.213150
– ident: e_1_2_6_128_1
  doi: 10.1002/anie.201912416
– ident: e_1_2_6_132_1
  doi: 10.1002/smll.202308806
– ident: e_1_2_6_34_3
  doi: 10.1016/j.ccr.2023.215059
– ident: e_1_2_6_82_1
  doi: 10.1039/D3QI00048F
– ident: e_1_2_6_18_1
  doi: 10.1038/457953a
– ident: e_1_2_6_120_1
  doi: 10.1002/smll.202300248
– ident: e_1_2_6_42_1
  doi: 10.1016/j.jcrysgro.2007.11.201
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ccr.2018.09.002
– ident: e_1_2_6_43_6
  doi: 10.1007/s40843-022-2417-2
– ident: e_1_2_6_27_3
  doi: 10.1002/anie.202103657
– ident: e_1_2_6_114_3
  doi: 10.1021/acs.cgd.1c01298
– ident: e_1_2_6_10_2
  doi: 10.1007/s40843-020-1604-0
– ident: e_1_2_6_12_2
  doi: 10.1021/jacs.0c00060
– ident: e_1_2_6_114_2
  doi: 10.1021/acs.inorgchem.2c02798
– ident: e_1_2_6_9_3
  doi: 10.1016/j.jallcom.2018.05.109
– ident: e_1_2_6_38_1
  doi: 10.1021/jacs.8b08803
– ident: e_1_2_6_28_1
  doi: 10.1021/jacs.8b01263
– ident: e_1_2_6_50_1
  doi: 10.1016/j.jssc.2021.122226
– ident: e_1_2_6_109_1
  doi: 10.1021/acs.chemmater.1c01399
– ident: e_1_2_6_16_1
  doi: 10.1063/1.93615
– ident: e_1_2_6_61_1
  doi: 10.1039/D1MH00562F
– ident: e_1_2_6_96_1
  doi: 10.1021/cg800054x
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.inorgchem.8b00531
– ident: e_1_2_6_20_3
  doi: 10.1002/anie.202115669
– ident: e_1_2_6_97_1
  doi: 10.1021/ja3037299
– ident: e_1_2_6_3_2
  doi: 10.1016/j.ccr.2021.214380
– ident: e_1_2_6_65_1
  doi: 10.1039/C9DT00269C
– ident: e_1_2_6_103_3
  doi: 10.1002/zaac.19663440306
– ident: e_1_2_6_111_1
  doi: 10.1021/acsami.2c04422
– ident: e_1_2_6_1_1
  doi: 10.1103/PhysRevLett.7.118
– ident: e_1_2_6_126_1
  doi: 10.1039/D3TC00154G
– ident: e_1_2_6_30_2
  doi: 10.1109/JQE.1972.1076900
– ident: e_1_2_6_22_1
  doi: 10.1021/ja209276a
– ident: e_1_2_6_49_1
  doi: 10.1002/adom.202202147
– ident: e_1_2_6_3_6
  doi: 10.1039/D0QI01318H
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.chemmater.0c00150
– ident: e_1_2_6_5_1
  doi: 10.1364/JOSAB.6.000616
– ident: e_1_2_6_71_1
  doi: 10.1002/anie.202218048
– ident: e_1_2_6_84_1
  doi: 10.1021/acs.inorgchem.9b02481
– ident: e_1_2_6_43_5
  doi: 10.1039/C4TC02992E
– ident: e_1_2_6_37_1
  doi: 10.1039/C7TC04857B
– ident: e_1_2_6_56_1
  doi: 10.1021/acs.chemmater.0c00609
– ident: e_1_2_6_64_1
  doi: 10.1039/C9DT04710G
– ident: e_1_2_6_101_1
  doi: 10.1021/jacs.1c06061
– ident: e_1_2_6_106_1
  doi: 10.1002/anie.202108978
– ident: e_1_2_6_48_1
  doi: 10.1039/D1CC01275D
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.201805759
– ident: e_1_2_6_3_5
  doi: 10.1007/s40843-019-1201-5
– ident: e_1_2_6_58_1
  doi: 10.1039/D1SC06849K
– ident: e_1_2_6_98_1
  doi: 10.1016/j.mtphys.2021.100569
– ident: e_1_2_6_83_1
  doi: 10.1002/smll.202302819
– ident: e_1_2_6_93_1
  doi: 10.1063/1.3257728
– ident: e_1_2_6_46_1
  doi: 10.1039/D1MH01434J
– ident: e_1_2_6_87_1
  doi: 10.1016/j.mtphys.2023.101243
– ident: e_1_2_6_33_4
  doi: 10.1021/acs.cgd.7b00214
– ident: e_1_2_6_110_1
  doi: 10.1002/cjoc.202200357
– ident: e_1_2_6_129_1
  doi: 10.1002/adom.202301634
– ident: e_1_2_6_105_2
  doi: 10.1021/cm034397s
– volume: 28
  start-page: 235
  year: 1985
  ident: e_1_2_6_4_1
  publication-title: Sci. Sin. B
– ident: e_1_2_6_15_1
  doi: 10.1002/pssa.2210900115
– ident: e_1_2_6_29_1
  doi: 10.1038/s41566-023-01228-7
– ident: e_1_2_6_105_1
  doi: 10.1107/S0567740882002994
– ident: e_1_2_6_34_6
  doi: 10.1016/j.ccr.2023.215617
– ident: e_1_2_6_95_1
  doi: 10.1063/1.2969059
– ident: e_1_2_6_130_1
  doi: 10.1002/smll.202303847
– ident: e_1_2_6_68_1
  doi: 10.1016/j.inoche.2020.107852
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jallcom.2021.163384
– ident: e_1_2_6_30_1
  doi: 10.1016/S0030-4018(98)00397-6
– ident: e_1_2_6_21_5
  doi: 10.1021/acs.chemmater.3c00291
– ident: e_1_2_6_8_3
  doi: 10.1021/ja400500m
– ident: e_1_2_6_43_1
  doi: 10.1021/cg8010579
– ident: e_1_2_6_3_3
  doi: 10.1039/D0QM01109F
– volume: 357
  start-page: 345
  year: 1968
  ident: e_1_2_6_103_2
  publication-title: Z. Anorg. Allg. Chem.
– ident: e_1_2_6_123_1
  doi: 10.1021/acs.chemmater.0c03008
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201700540
– ident: e_1_2_6_105_5
  doi: 10.1016/0025-5408(91)90078-Z
– ident: e_1_2_6_52_1
  doi: 10.1039/C9TC06999B
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201712168
– ident: e_1_2_6_102_1
  doi: 10.1021/acs.inorgchem.2c02765
– ident: e_1_2_6_3_4
  doi: 10.1038/s41377-022-00941-2
– ident: e_1_2_6_73_1
  doi: 10.1039/D2MH01200F
– ident: e_1_2_6_31_1
  doi: 10.1063/1.1653673
– ident: e_1_2_6_20_4
  doi: 10.1002/anie.201905558
– ident: e_1_2_6_54_1
  doi: 10.1021/acsami.1c23843
– ident: e_1_2_6_10_5
  doi: 10.1021/acs.inorgchem.1c02555
– ident: e_1_2_6_133_1
  doi: 10.1016/j.jssc.2013.03.046
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.chemmater.8b02223
– ident: e_1_2_6_100_1
  doi: 10.1002/anie.202002291
– ident: e_1_2_6_79_1
  doi: 10.1007/s40843-022-2181-4
– ident: e_1_2_6_108_1
  doi: 10.1002/smll.202302797
– ident: e_1_2_6_63_1
  doi: 10.1002/anie.201903976
– ident: e_1_2_6_33_6
  doi: 10.1016/j.ccr.2021.214154
– ident: e_1_2_6_103_1
  doi: 10.1016/j.mtphys.2023.101033
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.accounts.8b00649
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.cgd.7b00677
– ident: e_1_2_6_107_1
  doi: 10.1021/acsami.0c15728
– ident: e_1_2_6_66_1
  doi: 10.1002/anie.202107613
– ident: e_1_2_6_117_2
  doi: 10.1021/acs.chemmater.1c04296
– ident: e_1_2_6_105_4
  doi: 10.1021/ic1008297
– ident: e_1_2_6_116_1
  doi: 10.1021/acs.inorgchem.0c01111
– ident: e_1_2_6_78_1
  doi: 10.1039/D2QI01263D
– ident: e_1_2_6_89_1
  doi: 10.1002/smll.202304563
– ident: e_1_2_6_34_2
  doi: 10.1016/j.ccr.2022.214706
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ccr.2018.09.011
– ident: e_1_2_6_118_1
  doi: 10.1021/acsmaterialslett.2c00485
– ident: e_1_2_6_111_2
  doi: 10.1021/acs.chemmater.2c00385
SSID ssj0031247
Score 2.505504
SecondaryResourceType review_article
Snippet Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2409997
SubjectTerms Chalcogenides
Crystal structure
emergent infrared NLO candidates
Energy gap
Group 5A compounds
Heavy metal oxides
Heavy metals
Infrared lasers
Laser damage
Laser guidance
Lasers
Literature reviews
Medical materials
Metal halides
Metal oxides
Nitrides
Nonlinear optics
Oxyhalides
Silver gallium sulfide
structure‐property survey
targeted balance performances
Title Emergent Mid‐Infrared Nonlinear Optical Candidates With Targeted Balance Performances
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202409997
https://www.ncbi.nlm.nih.gov/pubmed/39711290
https://www.proquest.com/docview/3165772337
https://www.proquest.com/docview/3148496511
Volume 21
WOSCitedRecordID wos001381605900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-Nsgf2APsDrKNDnjRpTxGJ7dTO4yhUm1Q6tIHoW-Q_sagEATVlz_sIfEY-CT4nDVRoQtqkPCTKJbZ8Pt-dffc7gM-SGqu0d1P70ml0UHSUCVZEMtPM0tibADpweiTGYzmZZMePsvhrfIh2ww0lI6zXKOBKV3sPoKHV5QUeHXiN5G0csQKr1E9e3oHVg5_D09FiNWZef4UCK15tRYi9tQBujOne8h-WFdMTa3PZeA3aZ7jx__1-DeuN5Um-1lPlDbwoyrfw6hEe4Ts4O6yTMefkaGrv_tx-L90MA9TJuG5YzciP67D5TQaYDoO7BRU5m87PyUmIKPek-xgraQpy_JCRUG3C6fDwZPAtaiovRIYJJiIjVMqtYi7WXCfGcJVhHonqU5OJhCuaSusod949TLRO8SZWjFPjrxQxyLagU16VxXsgQjoVlhVXCO4czWzfUhvbQknve1rehWgx7LlpYMmxOsZFXgMq0xwHLG8HrAtfWvrrGpDjr5S9BRfzRjCrnCX91DsUjPnXn9rXXqTwnESVxdUN0nCJMPpJ0oXtmvttU958Qws17gINTH6mD_mvo9GoffrwLx_twBrFmsMhUrwHnfnspvgIL83v-bSa7cKKmMjdZtLfA9zCATk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RpVLhAH3wWEpbV0LqKSKxnXVypJQVqNktKovgFvkRi5UgoM3CmZ_Q39hfgsfJhq4qVAlVyiFRJrHl8XgenvkMsJNQbaRybmovsQodFBWkghVBkipmaOhMAOU5nYnhMDk_T4-bbEKshanxIdqAG0qGX69RwDEgvfuIGlpdXeLegVNJzsgRL2CRu7kUd2Dx28_-aTZbjplTYP6EFae3AgTfmiE3hnR3_g_zmukvc3PeevXqp7_6Hzr-GlYa25Ps1ZPlDSwU5VtY_gOR8B2cHdTlmFMyGJvf97-OSjvBFHUyrFuWE_Ljxoe_yT4WxGC8oCJn4-kFGfmcckf6FbMldUGOH2sSqjU47R-M9g-D5uyFQDPBRKCFjLmRzIaKq0hrLlOsJJE9qlMRcUnjxFjKrXMQI6VivAkl41S7K0YUsnXolNdlsQlEJFb6hcUWgltLU9Mz1ISmkInzPg3vQjAb91w3wOR4PsZlXkMq0xwHLG8HrAtfWvqbGpLjScrtGRvzRjSrnEW92LkUjLnXn9vXTqhwp0SWxfUt0vAEgfSjqAsbNfvbppwBhzZq2AXqufyPPuQngyxrn7ae89EneHU4GmR5djT8_h6WKJ5A7PPGt6EzndwWH-ClvpuOq8nHZu4_ADmBBEE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VFiE4UH7LQgFXQuIUNbGdODlC2xVV02VVWrW3yL9ipTZdbbaceQSekSfB42TTrlCFhCrlkMiT2PJkPDP2zDcAH3KqjVTeTc1yp9BBUVEhmI3yQjFDY28CqMDpUoxG-dlZMe6iCTEXpsWH6DfcUDLCeo0CbqfGbV-jhjYX53h24FWSN3LEPVjjaZF52VzbPRqelIvlmHkFFiqseL0VIfjWArkxptvLX1jWTH-Zm8vWa1A_w_U7GPgTeNzZnuRT-7M8hRVbP4NHNxAJn8PpXpuOOSeHE_P756_92s0wRJ2M2p7ljHydhu1vsoMJMbhf0JDTyfw7OQ4x5Z70M0ZLakvG1zkJzQs4Ge4d73yJutoLkWaCiUgLmXIjmYsVV4nWXBaYSSIzqguRcEnT3DjKnXcQE6VSvIkl41T7K0UUspewWl_W9hUQkTsZFhZnBXeOFiYz1MTGytx7n4YPIFrMe6U7YHKsj3FetZDKtMIJq_oJG8DHnn7aQnLcSrm5YGPViWZTsSRLvUvBmG_e6pu9UOFJiazt5RXS8ByB9JNkABst-_uuvAGHNmo8ABq4_I8xVN8Oy7J_ev0_L72HB-PdYVXujw7ewEOKBYhD2PgmrM5nV_Yt3Nc_5pNm9q779f8AvWEDvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+Mid-Infrared+Nonlinear+Optical+Candidates+With+Targeted+Balance+Performances&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Junben&rft.au=Abudurusuli%2C+Ailijiang&rft.au=Yang%2C+Zhihua&rft.au=Pan%2C+Shilie&rft.date=2025-02-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=6&rft.spage=e2409997&rft_id=info:doi/10.1002%2Fsmll.202409997&rft_id=info%3Apmid%2F39711290&rft.externalDocID=39711290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon