Emergent Mid‐Infrared Nonlinear Optical Candidates With Targeted Balance Performances
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like str...
Gespeichert in:
| Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Jg. 21; H. 6; S. e2409997 - n/a |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
| Schlagworte: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Summarized the systems of research utilized in recent years to explore infrared nonlinear optical materials, which includes chalcogenides, metal halides, oxyhalides, heavy metal oxides, oxychalcogenides, chalcohalides, and nitrides. Remarkably, nitrides as an emergent infrared NLO candidate with wide band gap, large NLO coefficients, and high thermal conductivity deserve further study. |
|---|---|
| AbstractList | Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.
Summarized the systems of research utilized in recent years to explore infrared nonlinear optical materials, which includes chalcogenides, metal halides, oxyhalides, heavy metal oxides, oxychalcogenides, chalcohalides, and nitrides. Remarkably, nitrides as an emergent infrared NLO candidate with wide band gap, large NLO coefficients, and high thermal conductivity deserve further study. Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP . However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (E ≥ 3.0 eV, d ≥ 0.5 × AgGaS ) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties.Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure-property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc . Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ 2 (Q = S, Se) and ZnGeP 2 . However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances ( E g ≥ 3.0 eV, d ij ≥ 0.5 × AgGaS 2 ) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long‐distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond‐like structural crystals AgGaQ2 (Q = S, Se) and ZnGeP2. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps. Therefore, exploring novel infrared NLO materials with excellent performances is urgent. At present, candidate systems for exploring infrared NLO materials mainly are chalcogenides, pnictides, metal halides for popular systems, and chalcohalides, oxyhalides, heavy metal oxides, oxychalcogenides, nitrides for emergent systems. Notably, among them, pnictides generally exhibited a stronger NLO performance than other systems, but a narrower band gap. Accordingly, after the detailed literature survey, to the best knowledge, ≈139 compounds achieve balanced performances (Eg ≥ 3.0 eV, dij ≥ 0.5 × AgGaS2) in the remaining systems, in which there are 2 metal halides, 9 oxyhalides, 10 heavy metal oxides, 17 nitrides, 19 oxychalcogenides, 22 chalcohalides, and 60 chalcogenides. Thus, the structure‐property survey of these compounds produces the practical design strategy to explore emergent infrared NLO crystal materials with balanced properties. |
| Author | Abudurusuli, Ailijiang Yang, Zhihua Huang, Junben Pan, Shilie |
| Author_xml | – sequence: 1 givenname: Junben orcidid: 0000-0003-2647-7168 surname: Huang fullname: Huang, Junben email: hjb5245hxu@sina.com organization: Xinjiang University – sequence: 2 givenname: Ailijiang surname: Abudurusuli fullname: Abudurusuli, Ailijiang organization: Xinjiang University – sequence: 3 givenname: Zhihua surname: Yang fullname: Yang, Zhihua organization: Chinese Academy of Sciences – sequence: 4 givenname: Shilie surname: Pan fullname: Pan, Shilie email: slpan@ms.xjb.ac.cn organization: Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39711290$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctKAzEUhoNUtK1uXcqAGzetuc1Ms9RSL1AvoOJyOJPJaCSTqUmKdOcj-Iw-iSnVCoIIgZzF9yU_5--hjm2tQmiP4CHBmB75xpghxZRjIUS-gbokI2yQjajorGeCt1HP-2eMGaE830LbTOSEUIG76GHSKPeobEgudfXx9n5hawdOVclVa422ClxyPQtagknGYCtdQVA-edDhKbmDKIaInoABK1Vyo1zdumY5-x20WYPxavfr7qP708nd-HwwvT67GB9PB5LlLB_IHFJeAatxyUsiJQeRUU4hozJG5EDTUVVTXpMRJ2WZLgcMjFMZT4p5xvrocPXuzLUvc-VD0WgvlYmJVDv3BSN8xEWWEhLRg1_oczt3NqaLVJbmOWUxUx_tf1HzslFVMXO6AbcovlcWgeEKkK713ql6jRBcLDsplp0U606iwH8JUgcIurXBgTZ_a2KlvWqjFv98UtxeTqc_7idpEKCn |
| CitedBy_id | crossref_primary_10_1021_acs_inorgchem_5c02460 crossref_primary_10_1021_acs_cgd_5c00416 crossref_primary_10_3390_nano15020147 crossref_primary_10_1039_D5CE00708A |
| Cites_doi | 10.1021/cm401737s 10.1039/D2SC03760B 10.1002/chem.202203597 10.1016/j.ccr.2019.213152 10.1039/D2SC00099G 10.1021/jacs.9b03858 10.1021/acs.chemmater.0c04772 10.1039/D1NJ02565A 10.1016/j.jssc.2010.09.017 10.1002/smll.202302088 10.1002/anie.201803392 10.1093/nsr/nwac110 10.1039/D1DT04317J 10.1016/j.matt.2023.02.005 10.1021/acs.chemmater.1c01133 10.1364/AO.16.001798 10.1016/j.ccr.2016.11.012 10.1016/j.ccr.2015.12.008 10.1021/acs.chemmater.2c02578 10.1016/j.ccr.2024.215664 10.1021/acs.inorgchem.2c02149 10.1016/0030-4018(74)90183-7 10.1016/j.ccr.2021.214328 10.1002/adom.202102123 10.1016/0022-4596(78)90064-6 10.1039/D2QI01263D 10.1021/acs.chemmater.1c03728 10.1016/j.mtphys.2023.100987 10.1109/3.83367 10.1039/D2CC07084G 10.1021/acs.inorgchem.8b02113 10.1002/adom.202301735 10.1002/anie.202112844 10.1021/acsami.2c12001 10.1039/C9DT02780G 10.1039/D2MH00060A 10.1021/acs.inorgchem.0c00431 10.1021/jacs.0c04738 10.1021/acsami.2c11199 10.1021/acs.chemmater.8b03310 10.1021/acs.chemmater.2c01051 10.1021/acs.chemmater.9b03214 10.1016/j.ccr.2019.213045 10.1039/D2QI01569B 10.1021/acsomega.1c00736 10.1002/asia.202100935 10.1016/j.cclet.2023.109108 10.1002/anie.202319121 10.1002/anie.201708231 10.1016/j.ccr.2021.213916 10.1021/jacs.9b08851 10.1002/smll.202305711 10.1016/j.ccr.2022.214950 10.1016/j.optmat.2008.01.018 10.1007/s40843-018-9390-2 10.1021/cm5006955 10.1002/anie.202006671 10.1021/acs.chemmater.0c02929 10.1002/advs.202204755 10.1002/anie.202300581 10.1039/D1TC05436H 10.1002/anie.202205587 10.1039/D2QI01689C 10.1039/D2SC03771H 10.1002/anie.201911324 10.1039/D3QI01502E 10.1021/acs.chemmater.0c02011 10.1002/sstr.202300274 10.1021/acs.chemmater.8b01470 10.1002/adom.202100563 10.1002/anie.202201616 10.1021/acs.inorgchem.8b01437 10.1021/acs.inorgchem.2c02861 10.1007/s00340-009-3554-4 10.1021/acs.inorgchem.9b00094 10.1002/ejic.202200419 10.1039/D2QM00621A 10.1016/j.jallcom.2021.159112 10.1021/acs.jpcc.2c01095 10.1021/acs.chemmater.8b03642 10.1002/adma.202309675 10.1002/chem.202003606 10.1021/jacs.7b05943 10.1016/j.ccr.2020.213379 10.1039/D1SC07121A 10.1039/C9SC00028C 10.1002/zaac.19432520101 10.1021/jacs.5b03986 10.1016/j.mtphys.2023.101127 10.1016/j.cclet.2022.107838 10.1002/smll.202305828 10.1039/D3QM00657C 10.1021/jacs.5b07920 10.1016/j.ccr.2022.214443 10.1021/acs.inorgchem.6b00517 10.1002/anie.201802058 10.1016/j.ccr.2019.213150 10.1002/anie.201912416 10.1002/smll.202308806 10.1016/j.ccr.2023.215059 10.1039/D3QI00048F 10.1038/457953a 10.1002/smll.202300248 10.1016/j.jcrysgro.2007.11.201 10.1016/j.ccr.2018.09.002 10.1007/s40843-022-2417-2 10.1002/anie.202103657 10.1021/acs.cgd.1c01298 10.1007/s40843-020-1604-0 10.1021/jacs.0c00060 10.1021/acs.inorgchem.2c02798 10.1016/j.jallcom.2018.05.109 10.1021/jacs.8b08803 10.1021/jacs.8b01263 10.1016/j.jssc.2021.122226 10.1021/acs.chemmater.1c01399 10.1063/1.93615 10.1039/D1MH00562F 10.1021/cg800054x 10.1021/acs.inorgchem.8b00531 10.1002/anie.202115669 10.1021/ja3037299 10.1016/j.ccr.2021.214380 10.1039/C9DT00269C 10.1002/zaac.19663440306 10.1021/acsami.2c04422 10.1103/PhysRevLett.7.118 10.1039/D3TC00154G 10.1109/JQE.1972.1076900 10.1021/ja209276a 10.1002/adom.202202147 10.1039/D0QI01318H 10.1021/acs.chemmater.0c00150 10.1364/JOSAB.6.000616 10.1002/anie.202218048 10.1021/acs.inorgchem.9b02481 10.1039/C4TC02992E 10.1039/C7TC04857B 10.1021/acs.chemmater.0c00609 10.1039/C9DT04710G 10.1021/jacs.1c06061 10.1002/anie.202108978 10.1039/D1CC01275D 10.1002/anie.201805759 10.1007/s40843-019-1201-5 10.1039/D1SC06849K 10.1016/j.mtphys.2021.100569 10.1002/smll.202302819 10.1063/1.3257728 10.1039/D1MH01434J 10.1016/j.mtphys.2023.101243 10.1021/acs.cgd.7b00214 10.1002/cjoc.202200357 10.1002/adom.202301634 10.1021/cm034397s 10.1002/pssa.2210900115 10.1038/s41566-023-01228-7 10.1107/S0567740882002994 10.1016/j.ccr.2023.215617 10.1063/1.2969059 10.1002/smll.202303847 10.1016/j.inoche.2020.107852 10.1016/j.jallcom.2021.163384 10.1016/S0030-4018(98)00397-6 10.1021/acs.chemmater.3c00291 10.1021/ja400500m 10.1021/cg8010579 10.1039/D0QM01109F 10.1021/acs.chemmater.0c03008 10.1002/anie.201700540 10.1016/0025-5408(91)90078-Z 10.1039/C9TC06999B 10.1002/anie.201712168 10.1021/acs.inorgchem.2c02765 10.1038/s41377-022-00941-2 10.1039/D2MH01200F 10.1063/1.1653673 10.1002/anie.201905558 10.1021/acsami.1c23843 10.1021/acs.inorgchem.1c02555 10.1016/j.jssc.2013.03.046 10.1021/acs.chemmater.8b02223 10.1002/anie.202002291 10.1007/s40843-022-2181-4 10.1002/smll.202302797 10.1002/anie.201903976 10.1016/j.ccr.2021.214154 10.1016/j.mtphys.2023.101033 10.1021/acs.accounts.8b00649 10.1021/acs.cgd.7b00677 10.1021/acsami.0c15728 10.1002/anie.202107613 10.1021/acs.chemmater.1c04296 10.1021/ic1008297 10.1021/acs.inorgchem.0c01111 10.1002/smll.202304563 10.1016/j.ccr.2022.214706 10.1016/j.ccr.2018.09.011 10.1021/acsmaterialslett.2c00485 10.1021/acs.chemmater.2c00385 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202409997 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 39711290 10_1002_smll_202409997 SMLL202409997 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Tianchi Talent Youth Doctoral Program funderid: 5105240151e – fundername: Xinjiang Major Science and Technology Project funderid: 2021A01001 – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region funderid: 2024D01C235; 2024D01C260 – fundername: National Natural Science Foundation of China funderid: 22335007; 22361132544 – fundername: Tianchi Talent Youth Doctoral Program grantid: 5105240151e – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2024D01C235 – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2024D01C260 – fundername: National Natural Science Foundation of China grantid: 22335007 – fundername: National Natural Science Foundation of China grantid: 22361132544 – fundername: Xinjiang Major Science and Technology Project grantid: 2021A01001 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 53G AAMMB AAYXX AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION LH4 31~ AANHP AASGY AAYOK ACBWZ ACRPL ACYXJ ADNMO ASPBG AVWKF AZFZN BDRZF EBD EJD EMOBN FEDTE GODZA HVGLF NPM SV3 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3737-c7a54da3f0b4b1cc4a96242a62c9714a258df24f1841bb54f180a342c42c50463 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381605900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Sun Nov 09 14:38:19 EST 2025 Tue Jul 15 08:47:57 EDT 2025 Thu Feb 13 03:15:48 EST 2025 Sat Nov 29 01:42:35 EST 2025 Tue Nov 18 22:40:05 EST 2025 Thu Feb 13 09:32:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | structure‐property survey nonlinear optics targeted balance performances emergent infrared NLO candidates |
| Language | English |
| License | 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3737-c7a54da3f0b4b1cc4a96242a62c9714a258df24f1841bb54f180a342c42c50463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2647-7168 |
| PMID | 39711290 |
| PQID | 3165772337 |
| PQPubID | 1046358 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_3148496511 proquest_journals_3165772337 pubmed_primary_39711290 crossref_primary_10_1002_smll_202409997 crossref_citationtrail_10_1002_smll_202409997 wiley_primary_10_1002_smll_202409997_SMLL202409997 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1985; 28 2018 2022; 6 13 2019; 10 2020; 12 2024; 35 2008; 31 2024; 36 2020 2021 2022 2022 2021 2021; 59 64 61 61 60 6 2018 2018 2019 2022 2023 2022; 30 30 141 14 35 9 2023; 62 2009; 95 2023; 66 2012; 134 2009; 97 2015; 137 1971; 18 2022; 40 2022 2022 2021 2023 2023; 34 126 33 7 62 1985; 90 2024; 20 2018; 30 2018 2018 2021; 57 57 60 2024 2022 2021 2022 2019 2021; 505 459 5 11 62 8 2021; 45 2021; 300 2019; 31 2020; 142 1989; 6 1998 2018 2023; 57 6 2024; 12 2020; 32 2021; 143 2023 2022 2023 2020 2023 2024; 477 470 481 406 35 502 2009; 457 2017; 139 2021; 57 2022; 4 1982; 41 2022; 9 2019; 48 2017; 56 2013 2015 2017 2017 2022 2021; 26 137 333 17 453 448 2022; 13 2022; 14 2021; 60 1982 2003 2010 2010 1991 1943; B38 15 183 49 26 252 2009 2022 2022 2014 2015 2023; 9 9 10 26 3 66 2023; 31 2021; 21 1974; 11 2023; 34 2023; 38 2013; 203 2020 2022; 421 2022 2019; 58 2018 2020; 57 142 2020; 59 2017 2019 2021; 17 141 439 2008; 8 2022 2024 2022; 459 63 61 2020; 8 2022 2022 2022; 14 34 13 2023 2023; 11 59 2019 2022 2022; 48 61 22 2020; 2 2018 2020; 140 32 2021; 33 1978; 23 2023; 29 1961; 7 2022 2021; 901 16 2018; 377 2020; 49 2008; 310 2018 2022 2019; 140 34 58 2011 2020; 133 26 2021; 9 2021; 8 2021; 868 2023; 10 2017 2024 2022 2019; 56 63 61 58 2019 2022; 380 34 1998 1972; 155 8 2023; 11 2023; 17 2022 2022; 6 34 2022; 51 2019 2016 2013; 52 323 135 2023; 19 2008; 93 2016; 55 1991; 27 2021; 10 2019 2023 2022; 400 4 13 2022; 61 1965 2020; 115 2020 2019 2018; 407 62 758 1976; 16 2023 1968 1966; 33 357 344 2018; 57 e_1_2_6_114_1 e_1_2_6_114_2 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_114_3 e_1_2_6_30_2 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_38_3 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_3 e_1_2_6_41_2 e_1_2_6_41_1 e_1_2_6_102_1 Chen C. T. (e_1_2_6_4_1) 1985; 28 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_41_5 e_1_2_6_41_4 e_1_2_6_26_1 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_113_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_3 e_1_2_6_6_2 e_1_2_6_6_1 Jarchow O. (e_1_2_6_103_2) 1968; 357 e_1_2_6_27_3 e_1_2_6_27_2 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_112_1 Zhang J. (e_1_2_6_92_1) 1998 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_3_6 e_1_2_6_3_3 e_1_2_6_3_2 e_1_2_6_3_5 e_1_2_6_3_4 e_1_2_6_24_2 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_111_2 e_1_2_6_111_3 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_37_2 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_40_2 e_1_2_6_40_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_3 e_1_2_6_34_3 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_34_6 e_1_2_6_34_5 e_1_2_6_57_1 e_1_2_6_34_4 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_9_1 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_117_2 e_1_2_6_50_1 e_1_2_6_132_1 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_105_2 e_1_2_6_105_3 e_1_2_6_105_4 e_1_2_6_105_5 e_1_2_6_61_1 e_1_2_6_105_6 e_1_2_6_120_1 e_1_2_6_23_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_116_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 Zhou H. (e_1_2_6_11_2) 2024; 63 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_20_2 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_7_1 e_1_2_6_43_6 e_1_2_6_20_4 e_1_2_6_20_3 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_43_3 e_1_2_6_43_4 e_1_2_6_43_5 e_1_2_6_115_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_130_1 Bloembergen N. (e_1_2_6_2_1) 1965 e_1_2_6_10_4 e_1_2_6_33_4 e_1_2_6_10_5 e_1_2_6_33_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_10_3 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_10_6 e_1_2_6_33_6 e_1_2_6_33_5 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_103_3 e_1_2_6_126_2 e_1_2_6_21_1 Liu B. W. (e_1_2_6_122_1) 2020; 2 e_1_2_6_82_1 e_1_2_6_8_2 e_1_2_6_8_1 e_1_2_6_8_3 e_1_2_6_21_5 e_1_2_6_21_4 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_21_6 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 868 year: 2021 publication-title: J. Alloys Compd. – volume: 6 34 start-page: 3054 4375 year: 2022 2022 publication-title: Mater. Chem. Front. Chem. Mater. – volume: 9 start-page: 5932 year: 2022 publication-title: Inorg. Chem. Front. – volume: 17 start-page: 694 year: 2023 publication-title: Nat. Photonics – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2330 year: 2021 publication-title: Mater. Horiz. – volume: 32 start-page: 8947 year: 2020 publication-title: Chem. Mater. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 21 year: 2021 publication-title: Mater. Today Phys. – start-page: 1 year: 1998 end-page: 3 – volume: 6 13 start-page: 2435 3942 year: 2018 2022 publication-title: J. Mater. Chem. C Chem. Sci. – volume: 9 year: 2021 publication-title: Adv. Optical Mater. – volume: 7 start-page: 118 year: 1961 publication-title: Phys. Rev. Lett. – volume: 57 start-page: 2150 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 26 137 333 17 453 448 start-page: 849 57 2254 year: 2013 2015 2017 2017 2022 2021 publication-title: Chem. Mater. J. Am. Chem. Soc. Coord. Chem. Rev. Cryst. Growth Des. Coord. Chem. Rev. Coord. Chem. Rev. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 9979 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 35 year: 2024 publication-title: Chinese Chem. Lett. – volume: 11 start-page: 285 year: 1974 publication-title: Opt. Commun. – volume: 8 start-page: 3688 year: 2020 publication-title: J. Mater. Chem. C – volume: 203 start-page: 31 year: 2013 publication-title: J. Solid State Chem. – volume: 300 year: 2021 publication-title: J. Solid State Chem. – volume: 155 8 start-page: 307 900 year: 1998 1972 publication-title: Opt. Commun. IEEE J. Quantum Electron – volume: 23 start-page: 187 year: 1978 publication-title: J. Solid State Chem. – volume: 56 63 61 58 start-page: 3916 year: 2017 2024 2022 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 58 start-page: 3990 year: 2019 publication-title: Inorg. Chem. – volume: 66 start-page: 740 year: 2023 publication-title: Sci. China Mater. – volume: 11 59 start-page: 4439 3309 year: 2023 2023 publication-title: J. Mater. Chem. C Chem. Commun. – volume: 30 30 141 14 35 9 start-page: 5397 7823 8093 5281 year: 2018 2018 2019 2022 2023 2022 publication-title: Chem. Mater. Chem. Mater. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Chem. Mater. Natl. Sci. Rev. – volume: 9 start-page: 4632 year: 2022 publication-title: Inorg. Chem. Front. – volume: 20 year: 2024 publication-title: Small – volume: 58 year: 2019 publication-title: Inorg. Chem. – volume: 28 start-page: 235 year: 1985 publication-title: Sci. Sin. B – volume: 34 126 33 7 62 start-page: 7047 1462 5744 year: 2022 2022 2021 2023 2023 publication-title: Chem. Mater. J. Phys. Chem. C Chem. Mater. Mater. Chem. Front. Angew. Chem., Int. Ed. – volume: 33 start-page: 6012 year: 2021 publication-title: Chem. Mater. – volume: 901 16 start-page: 3299 year: 2022 2021 publication-title: J. Alloys Compd. Chem. Asian J. – volume: 10 year: 2021 publication-title: Adv. Optical Mater. – volume: 59 start-page: 5674 year: 2020 publication-title: Inorg. Chem. – volume: 10 start-page: 6253 year: 2023 publication-title: Inorg. Chem. Front. – volume: 421 2022 year: 2020 2022 publication-title: Coord. Chem. Rev. Eur. J. Inorg. Chem. – volume: 2 start-page: 964 year: 2020 publication-title: CCS Chem – volume: 51 start-page: 4522 year: 2022 publication-title: Dalton Trans. – volume: 10 start-page: 2045 year: 2023 publication-title: Inorg. Chem. Front. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 4856 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Chem. Mater. – volume: 12 year: 2024 publication-title: Adv. Optical Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1975 year: 2020 publication-title: Dalton Trans. – volume: 33 357 344 start-page: 345 157 year: 2023 1968 1966 publication-title: Mater. Today Phys. Z. Anorg. Allg. Chem. Z. Anorg. Allg. Chem. – volume: 459 63 61 year: 2022 2024 2022 publication-title: Coord. Chem. Rev. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 59 start-page: 9944 year: 2020 publication-title: Inorg. Chem. – volume: 9 start-page: 6554 year: 2022 publication-title: Inorg. Chem. Front. – volume: 29 year: 2023 publication-title: Chem. ‐ Eur. J. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 16 start-page: 1798 year: 1976 publication-title: Appl. Opt. – volume: 57 142 start-page: 9828 6472 year: 2018 2020 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 18 start-page: 301 year: 1971 publication-title: Appl. Phys. Lett. – volume: 400 4 13 year: 2019 2023 2022 publication-title: Coord. Chem. Rev. Small Struct. Chem. Sci. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 38 year: 2023 publication-title: Mater. Today Phys – volume: 57 6 start-page: 6577 1188 year: 2018 2023 publication-title: Angew. Chem., Int. Ed. Matter – volume: 31 start-page: 110 year: 2008 publication-title: Opt. Mater. – volume: 45 year: 2021 publication-title: New J. Chem. – volume: 33 start-page: 4225 year: 2021 publication-title: Chem. Mater. – volume: 8 start-page: 3394 year: 2021 publication-title: Mater. Horiz. – volume: 61 year: 2022 publication-title: Inorg. Chem. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 9446 year: 2018 publication-title: Inorg. Chem. – volume: 115 year: 2020 publication-title: Inorg. Chem. Commun. – volume: 30 start-page: 3901 year: 2018 publication-title: Chem. Mater. – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 13 start-page: 2640 year: 2022 publication-title: Chem. Sci. – volume: 9 9 10 26 3 66 start-page: 1186 4632 96 2743 3060 2795 year: 2009 2022 2022 2014 2015 2023 publication-title: Gryst. Growth Des. Inorg. Chem. Front. J. Mater. Chem. C Chem. Mater. J. Mater. Chem. C Sci. China Mater. – volume: 380 34 start-page: 83 5301 year: 2019 2022 publication-title: Coord. Chem. Rev. Chem. Mater. – volume: 57 start-page: 5175 year: 2021 publication-title: Chem. Commun. – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 310 start-page: 1954 year: 2008 publication-title: J. Cryst. Growth – volume: 11 year: 2023 publication-title: Adv. Optical Mater. – volume: 140 32 start-page: 3884 2172 year: 2018 2020 publication-title: J. Am. Chem. Soc. Chem. Mater. – volume: 14 34 13 start-page: 3853 5305 year: 2022 2022 2022 publication-title: ACS Appl. Mater. Interfaces Chem. Mater. Chem. Sci. – volume: 6 start-page: 616 year: 1989 publication-title: J. Opt. Soc. Am. B – volume: 59 64 61 61 60 6 start-page: 2008 9263 year: 2020 2021 2022 2022 2021 2021 publication-title: Angew. Chem., Int. Ed. Sci. China Mater. Inorg. Chem. Inorg. Chem. Inorg. Chem. ACS Omega – year: 1965 – volume: 133 26 year: 2011 2020 publication-title: J. Am. Chem. Soc. Chem. ‐ Eur. J. – volume: 40 start-page: 2407 year: 2022 publication-title: Chin. J. Chem. – volume: 55 start-page: 3724 year: 2016 publication-title: Inorg. Chem. – volume: 48 61 22 start-page: 1500 year: 2019 2022 2022 publication-title: Dalton Trans. Inorg. Chem. Cryst. Growth Des. – volume: 97 start-page: 9 year: 2009 publication-title: Appl. Phys. B – volume: 13 year: 2022 publication-title: Chem. Sci. – volume: 10 start-page: 3963 year: 2019 publication-title: Chem. Sci. – volume: 377 start-page: 191 year: 2018 publication-title: Coord. Chem. Rev. – volume: 457 start-page: 953 year: 2009 publication-title: Nature – volume: 407 62 758 start-page: 1023 85 year: 2020 2019 2018 publication-title: Coord. Chem. Rev. Sci. China Mater. J. Alloys Compd. – volume: 19 year: 2023 publication-title: Small – volume: 477 470 481 406 35 502 year: 2023 2022 2023 2020 2023 2024 publication-title: Coord. Chem. Rev. Coord. Chem. Rev. Coord. Chem. Rev. Coord. Chem. Rev. Mater. Today Phys Coord. Chem. Rev. – volume: 57 57 60 start-page: 4820 6095 year: 2018 2018 2021 publication-title: Inorg. Chem. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 10 start-page: 619 year: 2023 publication-title: Mater. Horiz. – volume: 137 start-page: 8360 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2023 publication-title: Mater. Today Phys. – volume: 8 start-page: 2946 year: 2008 publication-title: Cryst. Growth Des. – volume: 32 start-page: 5890 year: 2020 publication-title: Chem. Mater. – volume: 41 start-page: 607 year: 1982 publication-title: Appl. Phys. Lett. – volume: 48 start-page: 4484 year: 2019 publication-title: Dalton Trans. – volume: 90 start-page: 167 year: 1985 publication-title: Phys. Stat. Sol. – volume: B38 15 183 49 26 252 start-page: 368 3406 2759 6986 973 2 year: 1982 2003 2010 2010 1991 1943 publication-title: Acta Crystallogr. Chem. Mater. J. Solid State Chem. Inorg. Chem. Mater. Res. Bull. Z. Anorg. Allg. Chem. – volume: 59 start-page: 7514 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 1137 year: 1991 publication-title: IEEE J. Quantum Electron. – volume: 32 start-page: 8012 year: 2020 publication-title: Chem. Mater. – volume: 9 start-page: 1513 year: 2022 publication-title: Mater. Horiz. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 14 start-page: 4352 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1593 year: 2022 publication-title: ACS Materials Lett – volume: 52 323 135 start-page: 791 15 4215 year: 2019 2016 2013 publication-title: Acc. Chem. Res. Coord. Chem. Rev. J. Am. Chem. Soc. – volume: 505 459 5 11 62 8 start-page: 3507 252 1798 1588 year: 2024 2022 2021 2022 2019 2021 publication-title: Coord. Chem. Rev. Coord. Chem. Rev. Mater. Chem. Front. Light Sci. Appl. Sci. China Mater. Inorg. Chem. Front. – volume: 32 start-page: 3288 year: 2020 publication-title: Chem. Mater. – volume: 30 start-page: 7428 year: 2018 publication-title: Chem. Mater. – volume: 17 141 439 start-page: 4015 year: 2017 2019 2021 publication-title: Cryst. Growth Des. J. Am. Chem. Soc. Coord. Chem. Rev. – volume: 140 34 58 start-page: 399 year: 2018 2022 2019 publication-title: J. Am. Chem. Soc. Chem. Mater. Angew. Chem., Int. Ed. – ident: e_1_2_6_33_1 doi: 10.1021/cm401737s – ident: e_1_2_6_75_1 doi: 10.1039/D2SC03760B – ident: e_1_2_6_39_1 doi: 10.1002/chem.202203597 – ident: e_1_2_6_9_1 doi: 10.1016/j.ccr.2019.213152 – ident: e_1_2_6_111_3 doi: 10.1039/D2SC00099G – ident: e_1_2_6_21_3 doi: 10.1021/jacs.9b03858 – ident: e_1_2_6_41_3 doi: 10.1021/acs.chemmater.0c04772 – ident: e_1_2_6_72_1 doi: 10.1039/D1NJ02565A – ident: e_1_2_6_105_3 doi: 10.1016/j.jssc.2010.09.017 – ident: e_1_2_6_81_1 doi: 10.1002/smll.202302088 – ident: e_1_2_6_24_1 doi: 10.1002/anie.201803392 – start-page: 1 volume-title: Electro‐Optic and 2nd Harmonic Generation Materials, Devices, and Applications year: 1998 ident: e_1_2_6_92_1 – ident: e_1_2_6_21_6 doi: 10.1093/nsr/nwac110 – ident: e_1_2_6_76_1 doi: 10.1039/D1DT04317J – ident: e_1_2_6_24_2 doi: 10.1016/j.matt.2023.02.005 – ident: e_1_2_6_62_1 doi: 10.1021/acs.chemmater.1c01133 – ident: e_1_2_6_13_1 doi: 10.1364/AO.16.001798 – ident: e_1_2_6_33_3 doi: 10.1016/j.ccr.2016.11.012 – volume-title: Nonlinear optics year: 1965 ident: e_1_2_6_2_1 – ident: e_1_2_6_8_2 doi: 10.1016/j.ccr.2015.12.008 – ident: e_1_2_6_41_1 doi: 10.1021/acs.chemmater.2c02578 – ident: e_1_2_6_3_1 doi: 10.1016/j.ccr.2024.215664 – ident: e_1_2_6_10_4 doi: 10.1021/acs.inorgchem.2c02149 – ident: e_1_2_6_17_1 doi: 10.1016/0030-4018(74)90183-7 – ident: e_1_2_6_33_5 doi: 10.1016/j.ccr.2021.214328 – ident: e_1_2_6_60_1 doi: 10.1002/adom.202102123 – ident: e_1_2_6_91_1 doi: 10.1016/0022-4596(78)90064-6 – ident: e_1_2_6_43_2 doi: 10.1039/D2QI01263D – ident: e_1_2_6_38_2 doi: 10.1021/acs.chemmater.1c03728 – ident: e_1_2_6_70_1 doi: 10.1016/j.mtphys.2023.100987 – ident: e_1_2_6_14_1 doi: 10.1109/3.83367 – ident: e_1_2_6_126_2 doi: 10.1039/D2CC07084G – ident: e_1_2_6_44_1 doi: 10.1021/acs.inorgchem.8b02113 – ident: e_1_2_6_88_1 doi: 10.1002/adom.202301735 – ident: e_1_2_6_11_3 doi: 10.1002/anie.202112844 – ident: e_1_2_6_21_4 doi: 10.1021/acsami.2c12001 – ident: e_1_2_6_114_1 doi: 10.1039/C9DT02780G – ident: e_1_2_6_125_1 doi: 10.1039/D2MH00060A – ident: e_1_2_6_67_1 doi: 10.1021/acs.inorgchem.0c00431 – ident: e_1_2_6_121_1 doi: 10.1021/jacs.0c04738 – ident: e_1_2_6_119_1 doi: 10.1021/acsami.2c11199 – ident: e_1_2_6_21_2 doi: 10.1021/acs.chemmater.8b03310 – ident: e_1_2_6_36_2 doi: 10.1021/acs.chemmater.2c01051 – ident: e_1_2_6_99_1 doi: 10.1021/acs.chemmater.9b03214 – ident: e_1_2_6_7_1 doi: 10.1016/j.ccr.2019.213045 – ident: e_1_2_6_55_1 doi: 10.1039/D2QI01569B – ident: e_1_2_6_10_6 doi: 10.1021/acsomega.1c00736 – ident: e_1_2_6_35_2 doi: 10.1002/asia.202100935 – ident: e_1_2_6_90_1 doi: 10.1016/j.cclet.2023.109108 – ident: e_1_2_6_20_2 doi: 10.1002/anie.202319121 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201708231 – ident: e_1_2_6_6_3 doi: 10.1016/j.ccr.2021.213916 – volume: 2 start-page: 964 year: 2020 ident: e_1_2_6_122_1 publication-title: CCS Chem – ident: e_1_2_6_6_2 doi: 10.1021/jacs.9b08851 – ident: e_1_2_6_124_1 doi: 10.1002/smll.202305711 – ident: e_1_2_6_34_1 doi: 10.1016/j.ccr.2022.214950 – ident: e_1_2_6_94_1 doi: 10.1016/j.optmat.2008.01.018 – ident: e_1_2_6_9_2 doi: 10.1007/s40843-018-9390-2 – ident: e_1_2_6_43_4 doi: 10.1021/cm5006955 – ident: e_1_2_6_10_1 doi: 10.1002/anie.202006671 – ident: e_1_2_6_77_1 doi: 10.1021/acs.chemmater.0c02929 – ident: e_1_2_6_112_1 doi: 10.1002/advs.202204755 – ident: e_1_2_6_41_5 doi: 10.1002/anie.202300581 – ident: e_1_2_6_43_3 doi: 10.1039/D1TC05436H – ident: e_1_2_6_74_1 doi: 10.1002/anie.202205587 – ident: e_1_2_6_127_1 doi: 10.1039/D2QI01689C – ident: e_1_2_6_7_3 doi: 10.1039/D2SC03771H – ident: e_1_2_6_38_3 doi: 10.1002/anie.201911324 – ident: e_1_2_6_85_1 doi: 10.1039/D3QI01502E – ident: e_1_2_6_113_1 doi: 10.1021/acs.chemmater.0c02011 – ident: e_1_2_6_7_2 doi: 10.1002/sstr.202300274 – ident: e_1_2_6_69_1 doi: 10.1021/acs.chemmater.8b01470 – ident: e_1_2_6_131_1 doi: 10.1002/adom.202100563 – ident: e_1_2_6_115_1 doi: 10.1002/anie.202201616 – ident: e_1_2_6_59_1 doi: 10.1021/acs.inorgchem.8b01437 – volume: 63 year: 2024 ident: e_1_2_6_11_2 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_6_10_3 doi: 10.1021/acs.inorgchem.2c02861 – ident: e_1_2_6_19_1 doi: 10.1007/s00340-009-3554-4 – ident: e_1_2_6_51_1 doi: 10.1021/acs.inorgchem.9b00094 – ident: e_1_2_6_40_2 doi: 10.1002/ejic.202200419 – ident: e_1_2_6_117_1 doi: 10.1039/D2QM00621A – ident: e_1_2_6_57_1 doi: 10.1016/j.jallcom.2021.159112 – ident: e_1_2_6_41_2 doi: 10.1021/acs.jpcc.2c01095 – ident: e_1_2_6_53_1 doi: 10.1021/acs.chemmater.8b03642 – ident: e_1_2_6_134_1 doi: 10.1002/adma.202309675 – ident: e_1_2_6_22_2 doi: 10.1002/chem.202003606 – ident: e_1_2_6_23_1 doi: 10.1021/jacs.7b05943 – ident: e_1_2_6_40_1 doi: 10.1016/j.ccr.2020.213379 – ident: e_1_2_6_37_2 doi: 10.1039/D1SC07121A – ident: e_1_2_6_47_1 doi: 10.1039/C9SC00028C – ident: e_1_2_6_105_6 doi: 10.1002/zaac.19432520101 – ident: e_1_2_6_104_1 doi: 10.1021/jacs.5b03986 – ident: e_1_2_6_34_5 doi: 10.1016/j.mtphys.2023.101127 – ident: e_1_2_6_80_1 doi: 10.1016/j.cclet.2022.107838 – ident: e_1_2_6_86_1 doi: 10.1002/smll.202305828 – ident: e_1_2_6_41_4 doi: 10.1039/D3QM00657C – ident: e_1_2_6_33_2 doi: 10.1021/jacs.5b07920 – ident: e_1_2_6_11_1 doi: 10.1016/j.ccr.2022.214443 – ident: e_1_2_6_45_1 doi: 10.1021/acs.inorgchem.6b00517 – ident: e_1_2_6_27_2 doi: 10.1002/anie.201802058 – ident: e_1_2_6_34_4 doi: 10.1016/j.ccr.2019.213150 – ident: e_1_2_6_128_1 doi: 10.1002/anie.201912416 – ident: e_1_2_6_132_1 doi: 10.1002/smll.202308806 – ident: e_1_2_6_34_3 doi: 10.1016/j.ccr.2023.215059 – ident: e_1_2_6_82_1 doi: 10.1039/D3QI00048F – ident: e_1_2_6_18_1 doi: 10.1038/457953a – ident: e_1_2_6_120_1 doi: 10.1002/smll.202300248 – ident: e_1_2_6_42_1 doi: 10.1016/j.jcrysgro.2007.11.201 – ident: e_1_2_6_32_1 doi: 10.1016/j.ccr.2018.09.002 – ident: e_1_2_6_43_6 doi: 10.1007/s40843-022-2417-2 – ident: e_1_2_6_27_3 doi: 10.1002/anie.202103657 – ident: e_1_2_6_114_3 doi: 10.1021/acs.cgd.1c01298 – ident: e_1_2_6_10_2 doi: 10.1007/s40843-020-1604-0 – ident: e_1_2_6_12_2 doi: 10.1021/jacs.0c00060 – ident: e_1_2_6_114_2 doi: 10.1021/acs.inorgchem.2c02798 – ident: e_1_2_6_9_3 doi: 10.1016/j.jallcom.2018.05.109 – ident: e_1_2_6_38_1 doi: 10.1021/jacs.8b08803 – ident: e_1_2_6_28_1 doi: 10.1021/jacs.8b01263 – ident: e_1_2_6_50_1 doi: 10.1016/j.jssc.2021.122226 – ident: e_1_2_6_109_1 doi: 10.1021/acs.chemmater.1c01399 – ident: e_1_2_6_16_1 doi: 10.1063/1.93615 – ident: e_1_2_6_61_1 doi: 10.1039/D1MH00562F – ident: e_1_2_6_96_1 doi: 10.1021/cg800054x – ident: e_1_2_6_27_1 doi: 10.1021/acs.inorgchem.8b00531 – ident: e_1_2_6_20_3 doi: 10.1002/anie.202115669 – ident: e_1_2_6_97_1 doi: 10.1021/ja3037299 – ident: e_1_2_6_3_2 doi: 10.1016/j.ccr.2021.214380 – ident: e_1_2_6_65_1 doi: 10.1039/C9DT00269C – ident: e_1_2_6_103_3 doi: 10.1002/zaac.19663440306 – ident: e_1_2_6_111_1 doi: 10.1021/acsami.2c04422 – ident: e_1_2_6_1_1 doi: 10.1103/PhysRevLett.7.118 – ident: e_1_2_6_126_1 doi: 10.1039/D3TC00154G – ident: e_1_2_6_30_2 doi: 10.1109/JQE.1972.1076900 – ident: e_1_2_6_22_1 doi: 10.1021/ja209276a – ident: e_1_2_6_49_1 doi: 10.1002/adom.202202147 – ident: e_1_2_6_3_6 doi: 10.1039/D0QI01318H – ident: e_1_2_6_28_2 doi: 10.1021/acs.chemmater.0c00150 – ident: e_1_2_6_5_1 doi: 10.1364/JOSAB.6.000616 – ident: e_1_2_6_71_1 doi: 10.1002/anie.202218048 – ident: e_1_2_6_84_1 doi: 10.1021/acs.inorgchem.9b02481 – ident: e_1_2_6_43_5 doi: 10.1039/C4TC02992E – ident: e_1_2_6_37_1 doi: 10.1039/C7TC04857B – ident: e_1_2_6_56_1 doi: 10.1021/acs.chemmater.0c00609 – ident: e_1_2_6_64_1 doi: 10.1039/C9DT04710G – ident: e_1_2_6_101_1 doi: 10.1021/jacs.1c06061 – ident: e_1_2_6_106_1 doi: 10.1002/anie.202108978 – ident: e_1_2_6_48_1 doi: 10.1039/D1CC01275D – ident: e_1_2_6_12_1 doi: 10.1002/anie.201805759 – ident: e_1_2_6_3_5 doi: 10.1007/s40843-019-1201-5 – ident: e_1_2_6_58_1 doi: 10.1039/D1SC06849K – ident: e_1_2_6_98_1 doi: 10.1016/j.mtphys.2021.100569 – ident: e_1_2_6_83_1 doi: 10.1002/smll.202302819 – ident: e_1_2_6_93_1 doi: 10.1063/1.3257728 – ident: e_1_2_6_46_1 doi: 10.1039/D1MH01434J – ident: e_1_2_6_87_1 doi: 10.1016/j.mtphys.2023.101243 – ident: e_1_2_6_33_4 doi: 10.1021/acs.cgd.7b00214 – ident: e_1_2_6_110_1 doi: 10.1002/cjoc.202200357 – ident: e_1_2_6_129_1 doi: 10.1002/adom.202301634 – ident: e_1_2_6_105_2 doi: 10.1021/cm034397s – volume: 28 start-page: 235 year: 1985 ident: e_1_2_6_4_1 publication-title: Sci. Sin. B – ident: e_1_2_6_15_1 doi: 10.1002/pssa.2210900115 – ident: e_1_2_6_29_1 doi: 10.1038/s41566-023-01228-7 – ident: e_1_2_6_105_1 doi: 10.1107/S0567740882002994 – ident: e_1_2_6_34_6 doi: 10.1016/j.ccr.2023.215617 – ident: e_1_2_6_95_1 doi: 10.1063/1.2969059 – ident: e_1_2_6_130_1 doi: 10.1002/smll.202303847 – ident: e_1_2_6_68_1 doi: 10.1016/j.inoche.2020.107852 – ident: e_1_2_6_35_1 doi: 10.1016/j.jallcom.2021.163384 – ident: e_1_2_6_30_1 doi: 10.1016/S0030-4018(98)00397-6 – ident: e_1_2_6_21_5 doi: 10.1021/acs.chemmater.3c00291 – ident: e_1_2_6_8_3 doi: 10.1021/ja400500m – ident: e_1_2_6_43_1 doi: 10.1021/cg8010579 – ident: e_1_2_6_3_3 doi: 10.1039/D0QM01109F – volume: 357 start-page: 345 year: 1968 ident: e_1_2_6_103_2 publication-title: Z. Anorg. Allg. Chem. – ident: e_1_2_6_123_1 doi: 10.1021/acs.chemmater.0c03008 – ident: e_1_2_6_20_1 doi: 10.1002/anie.201700540 – ident: e_1_2_6_105_5 doi: 10.1016/0025-5408(91)90078-Z – ident: e_1_2_6_52_1 doi: 10.1039/C9TC06999B – ident: e_1_2_6_26_1 doi: 10.1002/anie.201712168 – ident: e_1_2_6_102_1 doi: 10.1021/acs.inorgchem.2c02765 – ident: e_1_2_6_3_4 doi: 10.1038/s41377-022-00941-2 – ident: e_1_2_6_73_1 doi: 10.1039/D2MH01200F – ident: e_1_2_6_31_1 doi: 10.1063/1.1653673 – ident: e_1_2_6_20_4 doi: 10.1002/anie.201905558 – ident: e_1_2_6_54_1 doi: 10.1021/acsami.1c23843 – ident: e_1_2_6_10_5 doi: 10.1021/acs.inorgchem.1c02555 – ident: e_1_2_6_133_1 doi: 10.1016/j.jssc.2013.03.046 – ident: e_1_2_6_21_1 doi: 10.1021/acs.chemmater.8b02223 – ident: e_1_2_6_100_1 doi: 10.1002/anie.202002291 – ident: e_1_2_6_79_1 doi: 10.1007/s40843-022-2181-4 – ident: e_1_2_6_108_1 doi: 10.1002/smll.202302797 – ident: e_1_2_6_63_1 doi: 10.1002/anie.201903976 – ident: e_1_2_6_33_6 doi: 10.1016/j.ccr.2021.214154 – ident: e_1_2_6_103_1 doi: 10.1016/j.mtphys.2023.101033 – ident: e_1_2_6_8_1 doi: 10.1021/acs.accounts.8b00649 – ident: e_1_2_6_6_1 doi: 10.1021/acs.cgd.7b00677 – ident: e_1_2_6_107_1 doi: 10.1021/acsami.0c15728 – ident: e_1_2_6_66_1 doi: 10.1002/anie.202107613 – ident: e_1_2_6_117_2 doi: 10.1021/acs.chemmater.1c04296 – ident: e_1_2_6_105_4 doi: 10.1021/ic1008297 – ident: e_1_2_6_116_1 doi: 10.1021/acs.inorgchem.0c01111 – ident: e_1_2_6_78_1 doi: 10.1039/D2QI01263D – ident: e_1_2_6_89_1 doi: 10.1002/smll.202304563 – ident: e_1_2_6_34_2 doi: 10.1016/j.ccr.2022.214706 – ident: e_1_2_6_36_1 doi: 10.1016/j.ccr.2018.09.011 – ident: e_1_2_6_118_1 doi: 10.1021/acsmaterialslett.2c00485 – ident: e_1_2_6_111_2 doi: 10.1021/acs.chemmater.2c00385 |
| SSID | ssj0031247 |
| Score | 2.505504 |
| SecondaryResourceType | review_article |
| Snippet | Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser,... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2409997 |
| SubjectTerms | Chalcogenides Crystal structure emergent infrared NLO candidates Energy gap Group 5A compounds Heavy metal oxides Heavy metals Infrared lasers Laser damage Laser guidance Lasers Literature reviews Medical materials Metal halides Metal oxides Nitrides Nonlinear optics Oxyhalides Silver gallium sulfide structure‐property survey targeted balance performances |
| Title | Emergent Mid‐Infrared Nonlinear Optical Candidates With Targeted Balance Performances |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202409997 https://www.ncbi.nlm.nih.gov/pubmed/39711290 https://www.proquest.com/docview/3165772337 https://www.proquest.com/docview/3148496511 |
| Volume | 21 |
| WOSCitedRecordID | wos001381605900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-Nsgf2APsDrKNDnjRpTxGJ7dTO4yhUm1Q6tIHoW-Q_sagEATVlz_sIfEY-CT4nDVRoQtqkPCTKJbZ8Pt-dffc7gM-SGqu0d1P70ml0UHSUCVZEMtPM0tibADpweiTGYzmZZMePsvhrfIh2ww0lI6zXKOBKV3sPoKHV5QUeHXiN5G0csQKr1E9e3oHVg5_D09FiNWZef4UCK15tRYi9tQBujOne8h-WFdMTa3PZeA3aZ7jx__1-DeuN5Um-1lPlDbwoyrfw6hEe4Ts4O6yTMefkaGrv_tx-L90MA9TJuG5YzciP67D5TQaYDoO7BRU5m87PyUmIKPek-xgraQpy_JCRUG3C6fDwZPAtaiovRIYJJiIjVMqtYi7WXCfGcJVhHonqU5OJhCuaSusod949TLRO8SZWjFPjrxQxyLagU16VxXsgQjoVlhVXCO4czWzfUhvbQknve1rehWgx7LlpYMmxOsZFXgMq0xwHLG8HrAtfWvrrGpDjr5S9BRfzRjCrnCX91DsUjPnXn9rXXqTwnESVxdUN0nCJMPpJ0oXtmvttU958Qws17gINTH6mD_mvo9GoffrwLx_twBrFmsMhUrwHnfnspvgIL83v-bSa7cKKmMjdZtLfA9zCATk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RpVLhAH3wWEpbV0LqKSKxnXVypJQVqNktKovgFvkRi5UgoM3CmZ_Q39hfgsfJhq4qVAlVyiFRJrHl8XgenvkMsJNQbaRybmovsQodFBWkghVBkipmaOhMAOU5nYnhMDk_T4-bbEKshanxIdqAG0qGX69RwDEgvfuIGlpdXeLegVNJzsgRL2CRu7kUd2Dx28_-aTZbjplTYP6EFae3AgTfmiE3hnR3_g_zmukvc3PeevXqp7_6Hzr-GlYa25Ps1ZPlDSwU5VtY_gOR8B2cHdTlmFMyGJvf97-OSjvBFHUyrFuWE_Ljxoe_yT4WxGC8oCJn4-kFGfmcckf6FbMldUGOH2sSqjU47R-M9g-D5uyFQDPBRKCFjLmRzIaKq0hrLlOsJJE9qlMRcUnjxFjKrXMQI6VivAkl41S7K0YUsnXolNdlsQlEJFb6hcUWgltLU9Mz1ISmkInzPg3vQjAb91w3wOR4PsZlXkMq0xwHLG8HrAtfWvqbGpLjScrtGRvzRjSrnEW92LkUjLnXn9vXTqhwp0SWxfUt0vAEgfSjqAsbNfvbppwBhzZq2AXqufyPPuQngyxrn7ae89EneHU4GmR5djT8_h6WKJ5A7PPGt6EzndwWH-ClvpuOq8nHZu4_ADmBBEE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VFiE4UH7LQgFXQuIUNbGdODlC2xVV02VVWrW3yL9ipTZdbbaceQSekSfB42TTrlCFhCrlkMiT2PJkPDP2zDcAH3KqjVTeTc1yp9BBUVEhmI3yQjFDY28CqMDpUoxG-dlZMe6iCTEXpsWH6DfcUDLCeo0CbqfGbV-jhjYX53h24FWSN3LEPVjjaZF52VzbPRqelIvlmHkFFiqseL0VIfjWArkxptvLX1jWTH-Zm8vWa1A_w_U7GPgTeNzZnuRT-7M8hRVbP4NHNxAJn8PpXpuOOSeHE_P756_92s0wRJ2M2p7ljHydhu1vsoMJMbhf0JDTyfw7OQ4x5Z70M0ZLakvG1zkJzQs4Ge4d73yJutoLkWaCiUgLmXIjmYsVV4nWXBaYSSIzqguRcEnT3DjKnXcQE6VSvIkl41T7K0UUspewWl_W9hUQkTsZFhZnBXeOFiYz1MTGytx7n4YPIFrMe6U7YHKsj3FetZDKtMIJq_oJG8DHnn7aQnLcSrm5YGPViWZTsSRLvUvBmG_e6pu9UOFJiazt5RXS8ByB9JNkABst-_uuvAGHNmo8ABq4_I8xVN8Oy7J_ev0_L72HB-PdYVXujw7ewEOKBYhD2PgmrM5nV_Yt3Nc_5pNm9q779f8AvWEDvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+Mid-Infrared+Nonlinear+Optical+Candidates+With+Targeted+Balance+Performances&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Junben&rft.au=Abudurusuli%2C+Ailijiang&rft.au=Yang%2C+Zhihua&rft.au=Pan%2C+Shilie&rft.date=2025-02-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=6&rft.spage=e2409997&rft_id=info:doi/10.1002%2Fsmll.202409997&rft_id=info%3Apmid%2F39711290&rft.externalDocID=39711290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |