Amorphous Domains in Black Titanium Dioxide
Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the i...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 33; číslo 23; s. e2100407 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.06.2021
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.
Benefiting from the diffusion of oxygen vacancies from the surface to inside, the regional dual structure with anisotropic oxygen vacancies at both the surface and in the interior of TiO2 is obtained by constructing amorphous domains. The as‐prepared sample exhibits superior catalytic activity, which can immediately degrade rhodamine B solution to colorless with a shake. |
|---|---|
| AbstractList | Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.
Benefiting from the diffusion of oxygen vacancies from the surface to inside, the regional dual structure with anisotropic oxygen vacancies at both the surface and in the interior of TiO2 is obtained by constructing amorphous domains. The as‐prepared sample exhibits superior catalytic activity, which can immediately degrade rhodamine B solution to colorless with a shake. Although oxygen vacancies (O v s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O v s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic O v s at both the surface and in the interior of TiO 2 by constructing amorphous domains. The as‐prepared black TiO 2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface O v s in TiO 2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed O v s into the subsurface. The stable O v ‐induced amorphous domains in TiO 2 with enhanced catalytic performances provide a scalable strategy to practical O v engineering in functional metal oxides. Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ov s at both the surface and in the interior of TiO2 by constructing amorphous domains. The as-prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface Ov s in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed Ov s into the subsurface. The stable Ov -induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ov s at both the surface and in the interior of TiO2 by constructing amorphous domains. The as-prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface Ov s in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed Ov s into the subsurface. The stable Ov -induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides. Although oxygen vacancies (O s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic O s at both the surface and in the interior of TiO by constructing amorphous domains. The as-prepared black TiO with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface O s in TiO are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed O s into the subsurface. The stable O -induced amorphous domains in TiO with enhanced catalytic performances provide a scalable strategy to practical O engineering in functional metal oxides. Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides. |
| Author | Zhang, Peng Cao, Xingzhong Chai, Ziwei Teobaldi, Gilberto Liu, Li‐Min Zhang, Yan Qiu, Xiaoyi Guo, Lin Kang, Jianxin |
| Author_xml | – sequence: 1 givenname: Jianxin surname: Kang fullname: Kang, Jianxin organization: Beihang University – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Beihang University – sequence: 3 givenname: Ziwei surname: Chai fullname: Chai, Ziwei organization: Beihang University – sequence: 4 givenname: Xiaoyi surname: Qiu fullname: Qiu, Xiaoyi organization: Beihang University – sequence: 5 givenname: Xingzhong surname: Cao fullname: Cao, Xingzhong organization: Chinese Academy of Sciences – sequence: 6 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Chinese Academy of Sciences – sequence: 7 givenname: Gilberto surname: Teobaldi fullname: Teobaldi, Gilberto organization: University of Southampton – sequence: 8 givenname: Li‐Min surname: Liu fullname: Liu, Li‐Min email: liminliu@buaa.edu.cn organization: Beihang University – sequence: 9 givenname: Lin orcidid: 0000-0002-6070-2384 surname: Guo fullname: Guo, Lin email: guolin@buaa.edu.cn organization: Beihang University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33909930$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkFtLwzAUgINM3EVffZSCL4J0nja9nce5eYOJL_O5pGmKmW0ykxbdvzdzc4IgvuQQ-L7k8A1JT2klCDkNYBwAhFesbNg4hNBdIkgPyCCIw8CPAOMeGQDS2MckyvpkaO0SADCB5Ij0KUVApDAgl5NGm9WL7qw30w2TynpSedc146_eQrZMya7xZlJ_yFIck8OK1Vac7OaIPN_eLKb3_vzp7mE6mfucpjT1acFZEmQ8wgKwSpCVxeYMkwTTsqQZCqRFCqyqBM9EVWDEGQurrKSCc0wzOiIX23dXRr91wrZ5Iy0Xdc2UcIvmYRxgBnH6hZ7_Qpe6M8pt5yiaRZQGEDnqbEd1RSPKfGVkw8w6_87ggPEW4EZba0S1RwLIN53zTed839kJ0S-Bu1it1Ko1TNZ_a7jV3mUt1v98kk9mj5Mf9xMPR5AX |
| CitedBy_id | crossref_primary_10_1002_smll_202204136 crossref_primary_10_1016_j_scitotenv_2024_171521 crossref_primary_10_1016_j_apsusc_2021_152150 crossref_primary_10_1016_j_mcat_2023_113744 crossref_primary_10_3390_nano12050742 crossref_primary_10_1007_s12598_024_03082_0 crossref_primary_10_1016_j_surfcoat_2024_131546 crossref_primary_10_1021_acsestengg_5c00395 crossref_primary_10_1039_D4CY00893F crossref_primary_10_1016_j_colsurfb_2025_114619 crossref_primary_10_1016_j_apsusc_2022_153236 crossref_primary_10_1016_j_cej_2025_167295 crossref_primary_10_1002_adsu_202200402 crossref_primary_10_1016_j_cej_2025_167104 crossref_primary_10_1007_s12274_022_4704_9 crossref_primary_10_1002_anie_202421427 crossref_primary_10_1016_j_colsurfa_2023_132113 crossref_primary_10_1002_anie_202410457 crossref_primary_10_1016_j_inoche_2022_109704 crossref_primary_10_1016_j_apsusc_2023_158066 crossref_primary_10_1021_acsanm_4c05573 crossref_primary_10_1016_j_optmat_2022_113182 crossref_primary_10_1039_D5NJ01001B crossref_primary_10_1016_j_apcatb_2025_125906 crossref_primary_10_1039_D2QI02596E crossref_primary_10_1007_s10854_024_12798_9 crossref_primary_10_3390_nano13030468 crossref_primary_10_1002_cjoc_202400388 crossref_primary_10_1002_solr_202200929 crossref_primary_10_1016_j_cej_2024_149435 crossref_primary_10_1016_j_ceramint_2023_08_179 crossref_primary_10_1002_ange_202421427 crossref_primary_10_1016_j_cej_2024_151887 crossref_primary_10_1039_D3CY01611K crossref_primary_10_1021_acs_est_4c09037 crossref_primary_10_1039_D5NJ01880C crossref_primary_10_1016_j_apmt_2022_101498 crossref_primary_10_1016_j_jallcom_2024_176415 crossref_primary_10_1039_D4MH00589A crossref_primary_10_1039_D4NR03545C crossref_primary_10_3390_nano11112801 crossref_primary_10_1007_s12274_022_4185_x crossref_primary_10_1016_j_fuel_2024_132366 crossref_primary_10_1002_cctc_202402001 crossref_primary_10_1016_j_apsusc_2023_158403 crossref_primary_10_1016_j_checat_2023_100871 crossref_primary_10_1002_aenm_202502405 crossref_primary_10_1016_j_renene_2024_121004 crossref_primary_10_1038_s41467_024_53574_x crossref_primary_10_1016_j_cej_2024_152895 crossref_primary_10_1002_ange_202410457 crossref_primary_10_1016_j_fuel_2023_130200 crossref_primary_10_1016_j_apcatb_2023_122494 crossref_primary_10_1088_1757_899X_1331_1_012004 |
| Cites_doi | 10.1016/j.apcatb.2018.11.063 10.1103/PhysRevB.55.10382 10.1103/PhysRevLett.97.187401 10.1039/C8TA10421B 10.1039/C9EE00950G 10.1039/c0cc02327b 10.1103/PhysRevLett.113.086402 10.1039/c3ee41817k 10.1038/238037a0 10.1016/j.nanoen.2020.104716 10.1039/c1jm10155b 10.1021/acsami.0c08969 10.1021/nl201766h 10.1002/adma.201201036 10.1039/C3CC47519K 10.1002/adfm.201700856 10.1039/C6TA01928E 10.1103/PhysRevLett.102.106105 10.1021/jp711369e 10.1021/ja3012676 10.1016/j.apcatb.2013.11.015 10.1038/ncomms8120 10.1002/adma.201803234 10.1021/ja504802q 10.1039/C4TA04873C 10.1038/srep01411 10.1002/adma.201600495 10.1039/c3ee41960f 10.1016/j.surfrep.2018.02.003 10.1021/ja402751r 10.1016/j.chempr.2017.05.006 10.1016/j.ajme.2017.09.001 10.1039/C7CC06851D 10.1021/acscatal.5b02098 10.1126/science.1200448 10.1002/anie.201206375 10.1038/35104607 10.1021/acs.jpcc.8b04037 10.1021/ja207826q 10.1002/anie.201713229 10.1002/advs.201500027 10.1103/PhysRevB.79.092101 10.1021/jacs.5b04483 10.1021/jacs.6b12850 10.1016/j.apcatb.2015.04.016 10.1021/jz501061n 10.1063/1.2401311 10.1023/A:1019117328935 10.1103/PhysRevB.58.15226 10.1021/ja103843d 10.1038/s41563-018-0135-0 10.1002/adma.201303088 10.1021/ja808433d 10.1002/adma.201604747 10.1021/nn405534r 10.1002/anie.200500659 10.1107/S090904959801591X 10.1126/science.271.5251.933 10.1002/adma.201806482 10.1021/jacs.6b07199 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202100407 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 33909930 10_1002_adma_202100407 ADMA202100407 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation Funded Project funderid: 2018M640041 – fundername: National Natural Science Foundation of China funderid: 51532001; 11974037; 52002010; U1930402 – fundername: Beijing Natural Science Foundation funderid: 2194077 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20180020 – fundername: Royal Society Newton Advanced Fellowship scheme funderid: NAF∖R1∖180242 – fundername: National Natural Science Foundation of China grantid: 11974037 – fundername: National Natural Science Foundation of China grantid: 52002010 – fundername: National Natural Science Foundation of China grantid: U1930402 – fundername: China Postdoctoral Science Foundation Funded Project grantid: 2018M640041 – fundername: Beijing Natural Science Foundation grantid: 2194077 – fundername: Royal Society Newton Advanced Fellowship scheme grantid: NAF∖R1∖180242 – fundername: National Natural Science Foundation of China grantid: 51532001 – fundername: National Postdoctoral Program for Innovative Talents grantid: BX20180020 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3737-3bca618c49b09f69adbf69a26697dd389e93b70affec8efb94caa2f8d3ecc9783 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644976200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 10:04:55 EST 2025 Sun Nov 09 08:40:28 EST 2025 Mon Jul 21 05:41:29 EDT 2025 Tue Nov 18 22:42:31 EST 2025 Sat Nov 29 07:21:19 EST 2025 Wed Jan 22 16:30:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | amorphous domains defect engineering black titanium dioxide oxygen vacancies |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3737-3bca618c49b09f69adbf69a26697dd389e93b70affec8efb94caa2f8d3ecc9783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6070-2384 |
| PMID | 33909930 |
| PQID | 2538433104 |
| PQPubID | 2045203 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2519805778 proquest_journals_2538433104 pubmed_primary_33909930 crossref_primary_10_1002_adma_202100407 crossref_citationtrail_10_1002_adma_202100407 wiley_primary_10_1002_adma_202100407_ADMA202100407 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 122 2013; 3 2013; 25 2017; 2 2019; 12 2011; 11 2020; 12 2013; 6 2014; 136 2019; 244 2012; 51 2014; 5 2012; 134 2014; 148–149 1997; 55 2015; 137 2011; 21 2018; 30 2018; 73 2008; 112 2014; 8 2012; 24 2014; 50 2001; 414 2015; 2 2019; 7 2015; 6 2006; 97 2015; 3 2019; 31 2017; 27 2017; 29 2009; 131 1999; 8 1996; 58 1999; 6 1972; 238 2005; 44 2011; 331 2011; 133 2017; 139 2014; 113 2016; 4 2015; 176–177 2017; 53 2016; 6 2018; 17 2009; 79 2010; 46 2020; 72 2010; 132 1996; 271 2009; 102 2013; 135 2016; 138 2016; 28 2018; 54 2006; 100 2018; 57 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 134 start-page: 7600 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2474 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 46 start-page: 6801 year: 2010 publication-title: Chem. Commun. – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 100 year: 2006 publication-title: J. Appl. Phys. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 176–177 start-page: 354 year: 2015 publication-title: Appl. Catal., B – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1097 year: 2016 publication-title: ACS Catal. – volume: 6 start-page: 7120 year: 2015 publication-title: Nat. Commun. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 7 start-page: 3797 year: 2019 publication-title: J. Mater. Chem. A – volume: 79 year: 2009 publication-title: Phys. Rev. B – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 21 start-page: 9263 year: 2011 publication-title: J. Mater. Chem. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 137 start-page: 9146 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3026 year: 2011 publication-title: Nano Lett. – volume: 271 start-page: 933 year: 1996 publication-title: Science – volume: 244 start-page: 407 year: 2019 publication-title: Appl. Catal., B – volume: 112 start-page: 8809 year: 2008 publication-title: J. Phys. Chem. C – volume: 2 start-page: 877 year: 2017 publication-title: Chem – volume: 414 start-page: 338 year: 2001 publication-title: Nature – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 8 start-page: 1491 year: 2014 publication-title: ACS Nano – volume: 73 start-page: 58 year: 2018 publication-title: Surf. Sci. Rep. – volume: 3 start-page: 412 year: 2015 publication-title: J. Mater. Chem. A – volume: 58 year: 1996 publication-title: Phys. Rev. B – volume: 136 start-page: 9280 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 72 year: 2020 publication-title: Nano Energy – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 139 start-page: 3513 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 445 year: 1999 publication-title: J. Synchrotron Radiat. – volume: 24 start-page: 3201 year: 2012 publication-title: Adv. Mater. – volume: 331 start-page: 746 year: 2011 publication-title: Science – volume: 6 start-page: 3007 year: 2013 publication-title: Energy Environ. Sci. – volume: 50 start-page: 557 year: 2014 publication-title: Chem. Commun. – volume: 8 start-page: 189 year: 1999 publication-title: Top. Catal. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 7495 year: 2016 publication-title: J. Mater. Chem. A – volume: 44 start-page: 4778 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 923 year: 2018 publication-title: Nat. Mater. – volume: 28 start-page: 5850 year: 2016 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 2609 year: 2013 publication-title: Energy Environ. Sci. – volume: 54 start-page: 287 year: 2018 publication-title: Alexandria J. Med. – volume: 148–149 start-page: 339 year: 2014 publication-title: Appl. Catal., B – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 55 year: 1997 publication-title: Phys. Rev. B – volume: 57 start-page: 5278 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 6905 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 1411 year: 2013 publication-title: Sci. Rep. – volume: 12 start-page: 2443 year: 2019 publication-title: Energy Environ. Sci. – volume: 131 start-page: 3140 year: 2009 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_60_1 doi: 10.1016/j.apcatb.2018.11.063 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevB.55.10382 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevLett.97.187401 – ident: e_1_2_9_35_1 doi: 10.1039/C8TA10421B – ident: e_1_2_9_18_1 doi: 10.1039/C9EE00950G – ident: e_1_2_9_27_1 doi: 10.1039/c0cc02327b – ident: e_1_2_9_54_1 doi: 10.1103/PhysRevLett.113.086402 – ident: e_1_2_9_10_1 doi: 10.1039/c3ee41817k – ident: e_1_2_9_1_1 doi: 10.1038/238037a0 – ident: e_1_2_9_37_1 doi: 10.1016/j.nanoen.2020.104716 – ident: e_1_2_9_50_1 doi: 10.1039/c1jm10155b – ident: e_1_2_9_20_1 doi: 10.1021/acsami.0c08969 – ident: e_1_2_9_45_1 doi: 10.1021/nl201766h – ident: e_1_2_9_43_1 doi: 10.1002/adma.201201036 – ident: e_1_2_9_21_1 doi: 10.1039/C3CC47519K – ident: e_1_2_9_30_1 doi: 10.1002/adfm.201700856 – ident: e_1_2_9_32_1 doi: 10.1039/C6TA01928E – ident: e_1_2_9_15_1 doi: 10.1103/PhysRevLett.102.106105 – ident: e_1_2_9_38_1 doi: 10.1021/jp711369e – ident: e_1_2_9_25_1 doi: 10.1021/ja3012676 – ident: e_1_2_9_8_1 doi: 10.1016/j.apcatb.2013.11.015 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms8120 – ident: e_1_2_9_19_1 doi: 10.1002/adma.201803234 – ident: e_1_2_9_5_1 doi: 10.1021/ja504802q – ident: e_1_2_9_41_1 doi: 10.1039/C4TA04873C – ident: e_1_2_9_42_1 doi: 10.1038/srep01411 – ident: e_1_2_9_47_1 doi: 10.1002/adma.201600495 – ident: e_1_2_9_11_1 doi: 10.1039/c3ee41960f – ident: e_1_2_9_56_1 doi: 10.1016/j.surfrep.2018.02.003 – ident: e_1_2_9_24_1 doi: 10.1021/ja402751r – ident: e_1_2_9_34_1 doi: 10.1016/j.chempr.2017.05.006 – ident: e_1_2_9_58_1 doi: 10.1016/j.ajme.2017.09.001 – ident: e_1_2_9_22_1 doi: 10.1039/C7CC06851D – ident: e_1_2_9_33_1 doi: 10.1021/acscatal.5b02098 – ident: e_1_2_9_4_1 doi: 10.1126/science.1200448 – ident: e_1_2_9_52_1 doi: 10.1002/anie.201206375 – ident: e_1_2_9_3_1 doi: 10.1038/35104607 – ident: e_1_2_9_29_1 doi: 10.1021/acs.jpcc.8b04037 – ident: e_1_2_9_14_1 doi: 10.1021/ja207826q – ident: e_1_2_9_7_1 doi: 10.1002/anie.201713229 – ident: e_1_2_9_23_1 doi: 10.1002/advs.201500027 – ident: e_1_2_9_53_1 doi: 10.1103/PhysRevB.79.092101 – ident: e_1_2_9_55_1 doi: 10.1021/jacs.5b04483 – ident: e_1_2_9_59_1 doi: 10.1021/jacs.6b12850 – ident: e_1_2_9_46_1 doi: 10.1016/j.apcatb.2015.04.016 – ident: e_1_2_9_16_1 doi: 10.1021/jz501061n – ident: e_1_2_9_49_1 doi: 10.1063/1.2401311 – ident: e_1_2_9_28_1 doi: 10.1023/A:1019117328935 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevB.58.15226 – ident: e_1_2_9_36_1 doi: 10.1021/ja103843d – ident: e_1_2_9_13_1 doi: 10.1038/s41563-018-0135-0 – ident: e_1_2_9_9_1 doi: 10.1002/adma.201303088 – ident: e_1_2_9_51_1 doi: 10.1021/ja808433d – ident: e_1_2_9_12_1 doi: 10.1002/adma.201604747 – ident: e_1_2_9_31_1 doi: 10.1021/nn405534r – ident: e_1_2_9_57_1 doi: 10.1002/anie.200500659 – ident: e_1_2_9_40_1 doi: 10.1107/S090904959801591X – ident: e_1_2_9_2_1 doi: 10.1126/science.271.5251.933 – ident: e_1_2_9_6_1 doi: 10.1002/adma.201806482 – ident: e_1_2_9_17_1 doi: 10.1021/jacs.6b07199 |
| SSID | ssj0009606 |
| Score | 2.5895405 |
| Snippet | Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a... Although oxygen vacancies (O v s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O v s remains a... Although oxygen vacancies (O s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O s remains a... Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2100407 |
| SubjectTerms | amorphous domains black titanium dioxide defect engineering Domains Materials science Metal oxides oxygen vacancies Rhodamine Titanium Titanium dioxide |
| Title | Amorphous Domains in Black Titanium Dioxide |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100407 https://www.ncbi.nlm.nih.gov/pubmed/33909930 https://www.proquest.com/docview/2538433104 https://www.proquest.com/docview/2519805778 |
| Volume | 33 |
| WOSCitedRecordID | wos000644976200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_P6ozlFB8EGKXdK1yeNwDh90iGywt3JtEii4VqwT_3yTtus2RAR9KS1Nm3CXy_245H4HcEkUCm1D3GG-ch1PcG1zBJnTlVS7u46HArEoNhEMh2wy4U9LWfwlP0QdcDOWUazXxsAxym8WpKEoCt4gYijPTDp5k-jJ221As_88GD8siHf9or6m2e9zuO-xOXGjS25W_7DqmL6hzVXwWnifwc7_x70L2xXytHvlVNmDNZnuw9YSH-EBXPemmZZ7NsvtfjbFJM3tJLWLGJ89SjSMTGZTu59kn4mQhzAe3I1u752qmoIT04DqlSSK0e-w2OORy5XPUUTmqh00D4TQuEVyGgUummMkTKqIezEiUUxQrWUTIDqCRpql8gRs1QmkK5VEpqQXE-SxT5FIjXUCRUSXW-DMRRnGFdW4qXjxEpYkySQ0QghrIVhwVbd_LUk2fmzZmmsmrIwtD4letE3il-tZcFG_1mZi9j4wlVpqoUnQZRqbBsyC41KjdVeUco2TqWsBKRT3yxjCXv-xVz-d_uWjM9g09-WRsxY03t9m8hw24o_3JH9rw3owYe1qIn8Bo1PwJA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD6IE9QH75d6rSD4IGVd0rXJ43AOxTlEJvgW0iaBgmvFOfHne9J21SEiiC-F3sO55Hyc5HwH4JQYqdCHuMdC43uB4uhzRDKvrSmGu1YglZRFs4loMGCPj_yu2k1oa2FKfog64WY9o5ivrYPbhHTzkzVUqoI4iFjOM1tP3gjQltDIG9373kP_k3k3LBps2gU_j4cBmzI3-qQ5-4XZyPQNbs6i1yL89Fb_YeBrsFJhT7dTGss6zOlsA5a_MBJuwnlnlKPk88nY7eYjmWZjN83cIsvnDlMEkulk5HbT_D1VegseepfDiyuv6qfgJTSiOJfEiQxbLAl47HMTcqlie8QQzSOlELloTuPIl3YjCdMm5kEiJTFMUdSzTRFtw3yWZ3oXXNOKtK-NlszoICGSJyGVRCPaiQxRbe6AN5WlSCqycdvz4kmUNMlEWCGIWggOnNXPP5c0Gz8-eTBVjajcbSwITtu29MsPHDipb6Oj2NUPmWmUmrAlugzRacQc2ClVWv-KUo5ImfoOkEJzv4xBdLq3nfps7y8vHcPi1fC2L_rXg5t9WLLXyw1oBzD_-jLRh7CQvL2m45ejyp4_AGyG8yw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kV0QPvh_1WUHwIGW7SbdNjsVaFHURUfAW0iaBgtsu1hV_vknbrS4igngptE2bMJPJfEwy3wCcIMWFtiHqEF-5jieotjnEiTOQWLu7vscF51WxiWA4JE9P9K45TWhyYWp-iDbgZiyjWq-NgcuxUL1P1lAuKuIgZDjPTD551zOVZDrQje7jx5tP5l2_KrBpNvwc6ntkytzoot7sH2Y90ze4OYteK_cTr_zDwFdhucGedlhPljWYk_k6LH1hJNyAs3BUaMkXk9KOihHP8tLOcruK8tkPmQaS2WRkR1nxngm5CY_xxcP5pdPUU3BSHGC9liQp9_sk9WjiUuVTLhJz1S6aBkJo5CIpTgKXm4MkRKqEeinnSBGBtZ5NiGgLOnmRyx2wVT-QrlSSEyW9FHGa-pgjqdFOoJAYUAucqSxZ2pCNm5oXz6ymSUbMCIG1QrDgtG0_rmk2fmy5P1UNa8ytZEgv2yb1y_UsOG5fa0Mxux88l1pqzKToEo1OA2LBdq3StiuMqUbK2LUAVZr7ZQwsjG7D9m73Lx8dwcJdFLObq-H1Hiyax_X5s33ovL5M5AHMp2-vWfly2EznDwiH8qc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amorphous+Domains+in+Black+Titanium+Dioxide&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kang%2C+Jianxin&rft.au=Zhang%2C+Yan&rft.au=Chai%2C+Ziwei&rft.au=Qiu%2C+Xiaoyi&rft.date=2021-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100407&rft.externalDBID=10.1002%252Fadma.202100407&rft.externalDocID=ADMA202100407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |