Amorphous Domains in Black Titanium Dioxide

Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 33; číslo 23; s. e2100407 - n/a
Hlavní autori: Kang, Jianxin, Zhang, Yan, Chai, Ziwei, Qiu, Xiaoyi, Cao, Xingzhong, Zhang, Peng, Teobaldi, Gilberto, Liu, Li‐Min, Guo, Lin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.06.2021
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides. Benefiting from the diffusion of oxygen vacancies from the surface to inside, the regional dual structure with anisotropic oxygen vacancies at both the surface and in the interior of TiO2 is obtained by constructing amorphous domains. The as‐prepared sample exhibits superior catalytic activity, which can immediately degrade rhodamine B solution to colorless with a shake.
AbstractList Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides. Benefiting from the diffusion of oxygen vacancies from the surface to inside, the regional dual structure with anisotropic oxygen vacancies at both the surface and in the interior of TiO2 is obtained by constructing amorphous domains. The as‐prepared sample exhibits superior catalytic activity, which can immediately degrade rhodamine B solution to colorless with a shake.
Although oxygen vacancies (O v s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O v s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic O v s at both the surface and in the interior of TiO 2 by constructing amorphous domains. The as‐prepared black TiO 2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface O v s in TiO 2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed O v s into the subsurface. The stable O v ‐induced amorphous domains in TiO 2 with enhanced catalytic performances provide a scalable strategy to practical O v engineering in functional metal oxides.
Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ov s at both the surface and in the interior of TiO2 by constructing amorphous domains. The as-prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface Ov s in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed Ov s into the subsurface. The stable Ov -induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ov s at both the surface and in the interior of TiO2 by constructing amorphous domains. The as-prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface Ov s in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed Ov s into the subsurface. The stable Ov -induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.
Although oxygen vacancies (O s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O s remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic O s at both the surface and in the interior of TiO by constructing amorphous domains. The as-prepared black TiO with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First-principle simulations reveal that subsurface O s in TiO are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface-formed O s into the subsurface. The stable O -induced amorphous domains in TiO with enhanced catalytic performances provide a scalable strategy to practical O engineering in functional metal oxides.
Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a great challenge. Here, a novel strategy is proposed to achieve the regional dual structure with anisotropic Ovs at both the surface and in the interior of TiO2 by constructing amorphous domains. The as‐prepared black TiO2 with amorphous domains exhibits superior activity in degrading rhodamine B (RhB) solutions, which can instantly decompose RhB with just a shake. First‐principle simulations reveal that subsurface Ovs in TiO2 are energetically favored, resulting in the formation of amorphous domains in the interior region via diffusion of surface‐formed Ovs into the subsurface. The stable Ov‐induced amorphous domains in TiO2 with enhanced catalytic performances provide a scalable strategy to practical Ov engineering in functional metal oxides.
Author Zhang, Peng
Cao, Xingzhong
Chai, Ziwei
Teobaldi, Gilberto
Liu, Li‐Min
Zhang, Yan
Qiu, Xiaoyi
Guo, Lin
Kang, Jianxin
Author_xml – sequence: 1
  givenname: Jianxin
  surname: Kang
  fullname: Kang, Jianxin
  organization: Beihang University
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Beihang University
– sequence: 3
  givenname: Ziwei
  surname: Chai
  fullname: Chai, Ziwei
  organization: Beihang University
– sequence: 4
  givenname: Xiaoyi
  surname: Qiu
  fullname: Qiu, Xiaoyi
  organization: Beihang University
– sequence: 5
  givenname: Xingzhong
  surname: Cao
  fullname: Cao, Xingzhong
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Gilberto
  surname: Teobaldi
  fullname: Teobaldi, Gilberto
  organization: University of Southampton
– sequence: 8
  givenname: Li‐Min
  surname: Liu
  fullname: Liu, Li‐Min
  email: liminliu@buaa.edu.cn
  organization: Beihang University
– sequence: 9
  givenname: Lin
  orcidid: 0000-0002-6070-2384
  surname: Guo
  fullname: Guo, Lin
  email: guolin@buaa.edu.cn
  organization: Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33909930$$D View this record in MEDLINE/PubMed
BookMark eNqFkFtLwzAUgINM3EVffZSCL4J0nja9nce5eYOJL_O5pGmKmW0ykxbdvzdzc4IgvuQQ-L7k8A1JT2klCDkNYBwAhFesbNg4hNBdIkgPyCCIw8CPAOMeGQDS2MckyvpkaO0SADCB5Ij0KUVApDAgl5NGm9WL7qw30w2TynpSedc146_eQrZMya7xZlJ_yFIck8OK1Vac7OaIPN_eLKb3_vzp7mE6mfucpjT1acFZEmQ8wgKwSpCVxeYMkwTTsqQZCqRFCqyqBM9EVWDEGQurrKSCc0wzOiIX23dXRr91wrZ5Iy0Xdc2UcIvmYRxgBnH6hZ7_Qpe6M8pt5yiaRZQGEDnqbEd1RSPKfGVkw8w6_87ggPEW4EZba0S1RwLIN53zTed839kJ0S-Bu1it1Ko1TNZ_a7jV3mUt1v98kk9mj5Mf9xMPR5AX
CitedBy_id crossref_primary_10_1002_smll_202204136
crossref_primary_10_1016_j_scitotenv_2024_171521
crossref_primary_10_1016_j_apsusc_2021_152150
crossref_primary_10_1016_j_mcat_2023_113744
crossref_primary_10_3390_nano12050742
crossref_primary_10_1007_s12598_024_03082_0
crossref_primary_10_1016_j_surfcoat_2024_131546
crossref_primary_10_1021_acsestengg_5c00395
crossref_primary_10_1039_D4CY00893F
crossref_primary_10_1016_j_colsurfb_2025_114619
crossref_primary_10_1016_j_apsusc_2022_153236
crossref_primary_10_1016_j_cej_2025_167295
crossref_primary_10_1002_adsu_202200402
crossref_primary_10_1016_j_cej_2025_167104
crossref_primary_10_1007_s12274_022_4704_9
crossref_primary_10_1002_anie_202421427
crossref_primary_10_1016_j_colsurfa_2023_132113
crossref_primary_10_1002_anie_202410457
crossref_primary_10_1016_j_inoche_2022_109704
crossref_primary_10_1016_j_apsusc_2023_158066
crossref_primary_10_1021_acsanm_4c05573
crossref_primary_10_1016_j_optmat_2022_113182
crossref_primary_10_1039_D5NJ01001B
crossref_primary_10_1016_j_apcatb_2025_125906
crossref_primary_10_1039_D2QI02596E
crossref_primary_10_1007_s10854_024_12798_9
crossref_primary_10_3390_nano13030468
crossref_primary_10_1002_cjoc_202400388
crossref_primary_10_1002_solr_202200929
crossref_primary_10_1016_j_cej_2024_149435
crossref_primary_10_1016_j_ceramint_2023_08_179
crossref_primary_10_1002_ange_202421427
crossref_primary_10_1016_j_cej_2024_151887
crossref_primary_10_1039_D3CY01611K
crossref_primary_10_1021_acs_est_4c09037
crossref_primary_10_1039_D5NJ01880C
crossref_primary_10_1016_j_apmt_2022_101498
crossref_primary_10_1016_j_jallcom_2024_176415
crossref_primary_10_1039_D4MH00589A
crossref_primary_10_1039_D4NR03545C
crossref_primary_10_3390_nano11112801
crossref_primary_10_1007_s12274_022_4185_x
crossref_primary_10_1016_j_fuel_2024_132366
crossref_primary_10_1002_cctc_202402001
crossref_primary_10_1016_j_apsusc_2023_158403
crossref_primary_10_1016_j_checat_2023_100871
crossref_primary_10_1002_aenm_202502405
crossref_primary_10_1016_j_renene_2024_121004
crossref_primary_10_1038_s41467_024_53574_x
crossref_primary_10_1016_j_cej_2024_152895
crossref_primary_10_1002_ange_202410457
crossref_primary_10_1016_j_fuel_2023_130200
crossref_primary_10_1016_j_apcatb_2023_122494
crossref_primary_10_1088_1757_899X_1331_1_012004
Cites_doi 10.1016/j.apcatb.2018.11.063
10.1103/PhysRevB.55.10382
10.1103/PhysRevLett.97.187401
10.1039/C8TA10421B
10.1039/C9EE00950G
10.1039/c0cc02327b
10.1103/PhysRevLett.113.086402
10.1039/c3ee41817k
10.1038/238037a0
10.1016/j.nanoen.2020.104716
10.1039/c1jm10155b
10.1021/acsami.0c08969
10.1021/nl201766h
10.1002/adma.201201036
10.1039/C3CC47519K
10.1002/adfm.201700856
10.1039/C6TA01928E
10.1103/PhysRevLett.102.106105
10.1021/jp711369e
10.1021/ja3012676
10.1016/j.apcatb.2013.11.015
10.1038/ncomms8120
10.1002/adma.201803234
10.1021/ja504802q
10.1039/C4TA04873C
10.1038/srep01411
10.1002/adma.201600495
10.1039/c3ee41960f
10.1016/j.surfrep.2018.02.003
10.1021/ja402751r
10.1016/j.chempr.2017.05.006
10.1016/j.ajme.2017.09.001
10.1039/C7CC06851D
10.1021/acscatal.5b02098
10.1126/science.1200448
10.1002/anie.201206375
10.1038/35104607
10.1021/acs.jpcc.8b04037
10.1021/ja207826q
10.1002/anie.201713229
10.1002/advs.201500027
10.1103/PhysRevB.79.092101
10.1021/jacs.5b04483
10.1021/jacs.6b12850
10.1016/j.apcatb.2015.04.016
10.1021/jz501061n
10.1063/1.2401311
10.1023/A:1019117328935
10.1103/PhysRevB.58.15226
10.1021/ja103843d
10.1038/s41563-018-0135-0
10.1002/adma.201303088
10.1021/ja808433d
10.1002/adma.201604747
10.1021/nn405534r
10.1002/anie.200500659
10.1107/S090904959801591X
10.1126/science.271.5251.933
10.1002/adma.201806482
10.1021/jacs.6b07199
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202100407
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33909930
10_1002_adma_202100407
ADMA202100407
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation Funded Project
  funderid: 2018M640041
– fundername: National Natural Science Foundation of China
  funderid: 51532001; 11974037; 52002010; U1930402
– fundername: Beijing Natural Science Foundation
  funderid: 2194077
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20180020
– fundername: Royal Society Newton Advanced Fellowship scheme
  funderid: NAF∖R1∖180242
– fundername: National Natural Science Foundation of China
  grantid: 11974037
– fundername: National Natural Science Foundation of China
  grantid: 52002010
– fundername: National Natural Science Foundation of China
  grantid: U1930402
– fundername: China Postdoctoral Science Foundation Funded Project
  grantid: 2018M640041
– fundername: Beijing Natural Science Foundation
  grantid: 2194077
– fundername: Royal Society Newton Advanced Fellowship scheme
  grantid: NAF∖R1∖180242
– fundername: National Natural Science Foundation of China
  grantid: 51532001
– fundername: National Postdoctoral Program for Innovative Talents
  grantid: BX20180020
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3737-3bca618c49b09f69adbf69a26697dd389e93b70affec8efb94caa2f8d3ecc9783
IEDL.DBID DRFUL
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644976200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 10:04:55 EST 2025
Sun Nov 09 08:40:28 EST 2025
Mon Jul 21 05:41:29 EDT 2025
Tue Nov 18 22:42:31 EST 2025
Sat Nov 29 07:21:19 EST 2025
Wed Jan 22 16:30:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords amorphous domains
defect engineering
black titanium dioxide
oxygen vacancies
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-3bca618c49b09f69adbf69a26697dd389e93b70affec8efb94caa2f8d3ecc9783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6070-2384
PMID 33909930
PQID 2538433104
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2519805778
proquest_journals_2538433104
pubmed_primary_33909930
crossref_primary_10_1002_adma_202100407
crossref_citationtrail_10_1002_adma_202100407
wiley_primary_10_1002_adma_202100407_ADMA202100407
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2013; 3
2013; 25
2017; 2
2019; 12
2011; 11
2020; 12
2013; 6
2014; 136
2019; 244
2012; 51
2014; 5
2012; 134
2014; 148–149
1997; 55
2015; 137
2011; 21
2018; 30
2018; 73
2008; 112
2014; 8
2012; 24
2014; 50
2001; 414
2015; 2
2019; 7
2015; 6
2006; 97
2015; 3
2019; 31
2017; 27
2017; 29
2009; 131
1999; 8
1996; 58
1999; 6
1972; 238
2005; 44
2011; 331
2011; 133
2017; 139
2014; 113
2016; 4
2015; 176–177
2017; 53
2016; 6
2018; 17
2009; 79
2010; 46
2020; 72
2010; 132
1996; 271
2009; 102
2013; 135
2016; 138
2016; 28
2018; 54
2006; 100
2018; 57
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 134
  start-page: 7600
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2474
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 46
  start-page: 6801
  year: 2010
  publication-title: Chem. Commun.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 100
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 176–177
  start-page: 354
  year: 2015
  publication-title: Appl. Catal., B
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1097
  year: 2016
  publication-title: ACS Catal.
– volume: 6
  start-page: 7120
  year: 2015
  publication-title: Nat. Commun.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 7
  start-page: 3797
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 21
  start-page: 9263
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 9146
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3026
  year: 2011
  publication-title: Nano Lett.
– volume: 271
  start-page: 933
  year: 1996
  publication-title: Science
– volume: 244
  start-page: 407
  year: 2019
  publication-title: Appl. Catal., B
– volume: 112
  start-page: 8809
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 877
  year: 2017
  publication-title: Chem
– volume: 414
  start-page: 338
  year: 2001
  publication-title: Nature
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 8
  start-page: 1491
  year: 2014
  publication-title: ACS Nano
– volume: 73
  start-page: 58
  year: 2018
  publication-title: Surf. Sci. Rep.
– volume: 3
  start-page: 412
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 58
  year: 1996
  publication-title: Phys. Rev. B
– volume: 136
  start-page: 9280
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3513
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 445
  year: 1999
  publication-title: J. Synchrotron Radiat.
– volume: 24
  start-page: 3201
  year: 2012
  publication-title: Adv. Mater.
– volume: 331
  start-page: 746
  year: 2011
  publication-title: Science
– volume: 6
  start-page: 3007
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 557
  year: 2014
  publication-title: Chem. Commun.
– volume: 8
  start-page: 189
  year: 1999
  publication-title: Top. Catal.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7495
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 4778
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 923
  year: 2018
  publication-title: Nat. Mater.
– volume: 28
  start-page: 5850
  year: 2016
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 2609
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 287
  year: 2018
  publication-title: Alexandria J. Med.
– volume: 148–149
  start-page: 339
  year: 2014
  publication-title: Appl. Catal., B
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 55
  year: 1997
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 5278
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 6905
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1411
  year: 2013
  publication-title: Sci. Rep.
– volume: 12
  start-page: 2443
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 131
  start-page: 3140
  year: 2009
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_60_1
  doi: 10.1016/j.apcatb.2018.11.063
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevB.55.10382
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevLett.97.187401
– ident: e_1_2_9_35_1
  doi: 10.1039/C8TA10421B
– ident: e_1_2_9_18_1
  doi: 10.1039/C9EE00950G
– ident: e_1_2_9_27_1
  doi: 10.1039/c0cc02327b
– ident: e_1_2_9_54_1
  doi: 10.1103/PhysRevLett.113.086402
– ident: e_1_2_9_10_1
  doi: 10.1039/c3ee41817k
– ident: e_1_2_9_1_1
  doi: 10.1038/238037a0
– ident: e_1_2_9_37_1
  doi: 10.1016/j.nanoen.2020.104716
– ident: e_1_2_9_50_1
  doi: 10.1039/c1jm10155b
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.0c08969
– ident: e_1_2_9_45_1
  doi: 10.1021/nl201766h
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.201201036
– ident: e_1_2_9_21_1
  doi: 10.1039/C3CC47519K
– ident: e_1_2_9_30_1
  doi: 10.1002/adfm.201700856
– ident: e_1_2_9_32_1
  doi: 10.1039/C6TA01928E
– ident: e_1_2_9_15_1
  doi: 10.1103/PhysRevLett.102.106105
– ident: e_1_2_9_38_1
  doi: 10.1021/jp711369e
– ident: e_1_2_9_25_1
  doi: 10.1021/ja3012676
– ident: e_1_2_9_8_1
  doi: 10.1016/j.apcatb.2013.11.015
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms8120
– ident: e_1_2_9_19_1
  doi: 10.1002/adma.201803234
– ident: e_1_2_9_5_1
  doi: 10.1021/ja504802q
– ident: e_1_2_9_41_1
  doi: 10.1039/C4TA04873C
– ident: e_1_2_9_42_1
  doi: 10.1038/srep01411
– ident: e_1_2_9_47_1
  doi: 10.1002/adma.201600495
– ident: e_1_2_9_11_1
  doi: 10.1039/c3ee41960f
– ident: e_1_2_9_56_1
  doi: 10.1016/j.surfrep.2018.02.003
– ident: e_1_2_9_24_1
  doi: 10.1021/ja402751r
– ident: e_1_2_9_34_1
  doi: 10.1016/j.chempr.2017.05.006
– ident: e_1_2_9_58_1
  doi: 10.1016/j.ajme.2017.09.001
– ident: e_1_2_9_22_1
  doi: 10.1039/C7CC06851D
– ident: e_1_2_9_33_1
  doi: 10.1021/acscatal.5b02098
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1200448
– ident: e_1_2_9_52_1
  doi: 10.1002/anie.201206375
– ident: e_1_2_9_3_1
  doi: 10.1038/35104607
– ident: e_1_2_9_29_1
  doi: 10.1021/acs.jpcc.8b04037
– ident: e_1_2_9_14_1
  doi: 10.1021/ja207826q
– ident: e_1_2_9_7_1
  doi: 10.1002/anie.201713229
– ident: e_1_2_9_23_1
  doi: 10.1002/advs.201500027
– ident: e_1_2_9_53_1
  doi: 10.1103/PhysRevB.79.092101
– ident: e_1_2_9_55_1
  doi: 10.1021/jacs.5b04483
– ident: e_1_2_9_59_1
  doi: 10.1021/jacs.6b12850
– ident: e_1_2_9_46_1
  doi: 10.1016/j.apcatb.2015.04.016
– ident: e_1_2_9_16_1
  doi: 10.1021/jz501061n
– ident: e_1_2_9_49_1
  doi: 10.1063/1.2401311
– ident: e_1_2_9_28_1
  doi: 10.1023/A:1019117328935
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevB.58.15226
– ident: e_1_2_9_36_1
  doi: 10.1021/ja103843d
– ident: e_1_2_9_13_1
  doi: 10.1038/s41563-018-0135-0
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201303088
– ident: e_1_2_9_51_1
  doi: 10.1021/ja808433d
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201604747
– ident: e_1_2_9_31_1
  doi: 10.1021/nn405534r
– ident: e_1_2_9_57_1
  doi: 10.1002/anie.200500659
– ident: e_1_2_9_40_1
  doi: 10.1107/S090904959801591X
– ident: e_1_2_9_2_1
  doi: 10.1126/science.271.5251.933
– ident: e_1_2_9_6_1
  doi: 10.1002/adma.201806482
– ident: e_1_2_9_17_1
  doi: 10.1021/jacs.6b07199
SSID ssj0009606
Score 2.5895405
Snippet Although oxygen vacancies (Ovs) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ovs remains a...
Although oxygen vacancies (O v s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O v s remains a...
Although oxygen vacancies (O s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic O s remains a...
Although oxygen vacancies (Ov s) play a critical role for many applications of metal oxides, a controllable synthetic strategy for anisotropic Ov s remains a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100407
SubjectTerms amorphous domains
black titanium dioxide
defect engineering
Domains
Materials science
Metal oxides
oxygen vacancies
Rhodamine
Titanium
Titanium dioxide
Title Amorphous Domains in Black Titanium Dioxide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100407
https://www.ncbi.nlm.nih.gov/pubmed/33909930
https://www.proquest.com/docview/2538433104
https://www.proquest.com/docview/2519805778
Volume 33
WOSCitedRecordID wos000644976200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_P6ozlFB8EGKXdK1yeNwDh90iGywt3JtEii4VqwT_3yTtus2RAR9KS1Nm3CXy_245H4HcEkUCm1D3GG-ch1PcG1zBJnTlVS7u46HArEoNhEMh2wy4U9LWfwlP0QdcDOWUazXxsAxym8WpKEoCt4gYijPTDp5k-jJ221As_88GD8siHf9or6m2e9zuO-xOXGjS25W_7DqmL6hzVXwWnifwc7_x70L2xXytHvlVNmDNZnuw9YSH-EBXPemmZZ7NsvtfjbFJM3tJLWLGJ89SjSMTGZTu59kn4mQhzAe3I1u752qmoIT04DqlSSK0e-w2OORy5XPUUTmqh00D4TQuEVyGgUummMkTKqIezEiUUxQrWUTIDqCRpql8gRs1QmkK5VEpqQXE-SxT5FIjXUCRUSXW-DMRRnGFdW4qXjxEpYkySQ0QghrIVhwVbd_LUk2fmzZmmsmrIwtD4letE3il-tZcFG_1mZi9j4wlVpqoUnQZRqbBsyC41KjdVeUco2TqWsBKRT3yxjCXv-xVz-d_uWjM9g09-WRsxY03t9m8hw24o_3JH9rw3owYe1qIn8Bo1PwJA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD6IE9QH75d6rSD4IGVd0rXJ43AOxTlEJvgW0iaBgmvFOfHne9J21SEiiC-F3sO55Hyc5HwH4JQYqdCHuMdC43uB4uhzRDKvrSmGu1YglZRFs4loMGCPj_yu2k1oa2FKfog64WY9o5ivrYPbhHTzkzVUqoI4iFjOM1tP3gjQltDIG9373kP_k3k3LBps2gU_j4cBmzI3-qQ5-4XZyPQNbs6i1yL89Fb_YeBrsFJhT7dTGss6zOlsA5a_MBJuwnlnlKPk88nY7eYjmWZjN83cIsvnDlMEkulk5HbT_D1VegseepfDiyuv6qfgJTSiOJfEiQxbLAl47HMTcqlie8QQzSOlELloTuPIl3YjCdMm5kEiJTFMUdSzTRFtw3yWZ3oXXNOKtK-NlszoICGSJyGVRCPaiQxRbe6AN5WlSCqycdvz4kmUNMlEWCGIWggOnNXPP5c0Gz8-eTBVjajcbSwITtu29MsPHDipb6Oj2NUPmWmUmrAlugzRacQc2ClVWv-KUo5ImfoOkEJzv4xBdLq3nfps7y8vHcPi1fC2L_rXg5t9WLLXyw1oBzD_-jLRh7CQvL2m45ejyp4_AGyG8yw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kV0QPvh_1WUHwIGW7SbdNjsVaFHURUfAW0iaBgtsu1hV_vknbrS4igngptE2bMJPJfEwy3wCcIMWFtiHqEF-5jieotjnEiTOQWLu7vscF51WxiWA4JE9P9K45TWhyYWp-iDbgZiyjWq-NgcuxUL1P1lAuKuIgZDjPTD551zOVZDrQje7jx5tP5l2_KrBpNvwc6ntkytzoot7sH2Y90ze4OYteK_cTr_zDwFdhucGedlhPljWYk_k6LH1hJNyAs3BUaMkXk9KOihHP8tLOcruK8tkPmQaS2WRkR1nxngm5CY_xxcP5pdPUU3BSHGC9liQp9_sk9WjiUuVTLhJz1S6aBkJo5CIpTgKXm4MkRKqEeinnSBGBtZ5NiGgLOnmRyx2wVT-QrlSSEyW9FHGa-pgjqdFOoJAYUAucqSxZ2pCNm5oXz6ymSUbMCIG1QrDgtG0_rmk2fmy5P1UNa8ytZEgv2yb1y_UsOG5fa0Mxux88l1pqzKToEo1OA2LBdq3StiuMqUbK2LUAVZr7ZQwsjG7D9m73Lx8dwcJdFLObq-H1Hiyax_X5s33ovL5M5AHMp2-vWfly2EznDwiH8qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amorphous+Domains+in+Black+Titanium+Dioxide&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kang%2C+Jianxin&rft.au=Zhang%2C+Yan&rft.au=Chai%2C+Ziwei&rft.au=Qiu%2C+Xiaoyi&rft.date=2021-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100407&rft.externalDBID=10.1002%252Fadma.202100407&rft.externalDocID=ADMA202100407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon