Wafer‐Scale Epitaxial Growth of Two‐dimensional Organic Semiconductor Single Crystals toward High‐Performance Transistors

The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 35; číslo 36; s. e2301017 - n/a
Hlavní autoři: Wang, Jinwen, Ren, Zheng, Pan, Jing, Wu, Xiaofeng, Jie, Jiansheng, Zhang, Xiaohong, Zhang, Xiujuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.09.2023
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics. An anchored crystal‐seed epitaxial growth method is developed to effectively suppress the multiple nucleation behavior of the molecules and enhance the 2D growth of organic crystals. In consequence, wafer‐scale few‐layer organic single crystals are successfully fabricated on the viscous liquid substrate. Organic field‐effect transistors based on the crystal exhibit high device performance with excellent uniformity.
AbstractList The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm V s and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics.
The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm 2 V −1 s −1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics.
The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm2 V-1 s-1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics.The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm2 V-1 s-1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics.
The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics.
The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics. An anchored crystal‐seed epitaxial growth method is developed to effectively suppress the multiple nucleation behavior of the molecules and enhance the 2D growth of organic crystals. In consequence, wafer‐scale few‐layer organic single crystals are successfully fabricated on the viscous liquid substrate. Organic field‐effect transistors based on the crystal exhibit high device performance with excellent uniformity.
Author Wang, Jinwen
Wu, Xiaofeng
Pan, Jing
Jie, Jiansheng
Ren, Zheng
Zhang, Xiujuan
Zhang, Xiaohong
Author_xml – sequence: 1
  givenname: Jinwen
  surname: Wang
  fullname: Wang, Jinwen
  organization: Soochow University
– sequence: 2
  givenname: Zheng
  surname: Ren
  fullname: Ren, Zheng
  organization: Soochow University
– sequence: 3
  givenname: Jing
  surname: Pan
  fullname: Pan, Jing
  organization: Soochow University
– sequence: 4
  givenname: Xiaofeng
  surname: Wu
  fullname: Wu, Xiaofeng
  organization: Soochow University
– sequence: 5
  givenname: Jiansheng
  orcidid: 0000-0002-2230-4289
  surname: Jie
  fullname: Jie, Jiansheng
  email: jsjie@suda.edu.cn
  organization: Macau University of Science and Technology
– sequence: 6
  givenname: Xiaohong
  surname: Zhang
  fullname: Zhang, Xiaohong
  organization: Soochow University
– sequence: 7
  givenname: Xiujuan
  surname: Zhang
  fullname: Zhang, Xiujuan
  email: xjzhang@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37436692$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFLUsUiQ2bDP5JnHg5GkqLVFSkGcQyurFvpq4Se7ATDbOCR-AZeRI8mlKkSoiVF_ec78r3OyMnzjsk5CWjc0YpfwtmgDmnXFBGWfWEzFjJWV5QVZ6QGVWizJUs6lNyFuMdpVRJKp-RU1EVQkrFZ-T7F-gw_Prxc6Whx-xia0f4ZqHPLoPfjbeZ77L1zqe5sQO6aL1Ls5uwAWd1tsLBau_MpEcfspV1mxSxDPs4Qh-z0e8gmOzKbm6T_wlD58MATmO2DpCiYpLic_K0SzC-uH_Pyef3F-vlVX59c_lhubjOtahElfOC1QZBGVRlJyky1TJambqVhrdFx4RoAQtTAdeAQkgjBfCyqkrVUSHLSpyTN8fcbfBfJ4xjM9iose_BoZ9iw2shueJU0oS-foTe-Smkfx8oyUpVs-IQ-OqemtoBTbMNdoCwb_6cNgHzI6CDjzFg94Aw2hy6aw7dNQ_dJaF4JOhUxphOPgaw_b81ddR2tsf9f5Y0i3cfF3_d34g4sek
CitedBy_id crossref_primary_10_1002_asia_202400987
crossref_primary_10_1039_D4RA08354G
crossref_primary_10_1007_s44291_025_00067_w
crossref_primary_10_1002_smll_202404733
crossref_primary_10_1002_ifm2_21
crossref_primary_10_1002_adfm_202507081
crossref_primary_10_1002_smll_202403035
crossref_primary_10_26599_NR_2025_94907343
crossref_primary_10_1002_admt_202500495
crossref_primary_10_1073_pnas_2419673122
crossref_primary_10_1002_smll_202412101
crossref_primary_10_1021_acs_jpclett_5c01757
crossref_primary_10_1002_anie_202319380
crossref_primary_10_1039_D4CS00987H
crossref_primary_10_1002_ange_202319380
crossref_primary_10_1002_adfm_202314396
crossref_primary_10_1002_agt2_661
crossref_primary_10_1039_D5TC01650A
Cites_doi 10.1103/PhysRevB.80.085201
10.1002/adfm.201401087
10.1126/sciadv.abg0659
10.1002/adma.201200088
10.1038/ncomms9598
10.1007/s12274-019-2515-4
10.1021/cm8021165
10.1002/adma.201201856
10.1038/s41928-021-00672-z
10.1038/s41928-021-00675-w
10.1002/advs.201700290
10.1038/s41467-021-23066-3
10.1021/cg8000834
10.1016/j.mattod.2018.04.002
10.1002/adma.200801725
10.1039/D2CS00657J
10.1038/d41586-019-00793-8
10.1038/s41928-021-00670-1
10.1002/adma.202003315
10.1021/jacs.8b01997
10.1021/am5018804
10.1038/s41557-020-00593-y
10.1126/science.aav7057
10.1039/C3TC31783H
10.1016/j.orgel.2010.10.017
10.1002/anie.201602781
10.1126/science.abh3551
10.1002/adma.202109818
10.1002/adma.201205371
10.1038/ncomms13531
10.1002/adma.201502980
10.1021/ja003195j
10.1002/anie.201909552
10.1002/admt.201600090
10.1039/D2TC03048A
10.1073/pnas.1419771112
10.1021/ja073235k
10.1038/s41467-021-22192-2
10.1038/ncomms6162
10.1038/s41467-019-13581-9
10.1038/s41467-020-16809-1
10.1039/D0TC03222K
10.1039/D0NH00096E
10.1002/adma.202005915
10.1002/adfm.201906406
10.1039/C7CS00490G
10.1021/cm071051z
10.1039/C2TC00360K
10.1016/j.orgel.2015.01.021
10.1002/admi.201901753
10.1002/anie.201814439
10.1126/sciadv.abc8847
10.1038/nmat3650
10.1021/acsami.8b09655
10.1038/s42004-019-0122-7
10.1038/s41598-019-50294-x
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202301017
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37436692
10_1002_adma_202301017
ADMA202301017
Genre article
Journal Article
GrantInformation_xml – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials
– fundername: Jiangsu Postdoctoral Research Funding Program
  funderid: 2021K331C
– fundername: Science and Technology Development Fund, Macao Special Administrative Region, China
  funderid: 0145/2022/A3
– fundername: Postdoctoral Research Foundation of China
  funderid: 2020M681705
– fundername: Suzhou Science and Technology Plan Forward‐looking Project
  funderid: SYG202023
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices
– fundername: National Natural Science Foundation of China
  funderid: 91833303; 52225303; 51973147; 52173178
– fundername: 111 Project
– fundername: National Natural Science Foundation of China
  grantid: 91833303
– fundername: Jiangsu Postdoctoral Research Funding Program
  grantid: 2021K331C
– fundername: Postdoctoral Research Foundation of China
  grantid: 2020M681705
– fundername: National Natural Science Foundation of China
  grantid: 51973147
– fundername: Science and Technology Development Fund, Macao Special Administrative Region, China
  grantid: 0145/2022/A3
– fundername: National Natural Science Foundation of China
  grantid: 52225303
– fundername: Suzhou Science and Technology Plan Forward-looking Project
  grantid: SYG202023
– fundername: Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3737-2418dea9de95f60e19b107d8b6d2b4f133bae4d7a2cae336d63a257759f036573
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 07:02:30 EDT 2025
Fri Jul 25 08:03:55 EDT 2025
Thu Apr 03 06:58:24 EDT 2025
Sat Nov 29 07:19:58 EST 2025
Tue Nov 18 22:14:51 EST 2025
Sun Jul 06 04:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords 2D organic semiconductor single crystals
wafer-scale growth
organic field-effect transistors
anchored crystal-seed epitaxial growth
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-2418dea9de95f60e19b107d8b6d2b4f133bae4d7a2cae336d63a257759f036573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2230-4289
PMID 37436692
PQID 2861598147
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2836292060
proquest_journals_2861598147
pubmed_primary_37436692
crossref_primary_10_1002_adma_202301017
crossref_citationtrail_10_1002_adma_202301017
wiley_primary_10_1002_adma_202301017_ADMA202301017
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 5
2020 2018; 11 361
2023; 52
2019 2021 2016 2020; 363 12 7 6
2004 2020 2018; 303 8 47
2015; 18
2016 2016; 55 7
2001 2008 2012; 123 130 24
2020; 30
2019; 22
2019; 2
2015 2021; 27 33
2019 2012 2015 2018 2016 2011 2014 2017 2009 2013 2022; 7 24 6 5 1 12 24 3 21 25 10
2019 2014; 10 5
2019; 58
2021 2009; 13 113
2014 2009; 2 80
2021 2013 2018 2015 2019 2021; 7 1 10 112 9 373
2019 2018 2019; 12 140 58
2008; 20
2019 2021 2021 2021; 567 4 4 4
2014; 6
2013 2022 2020 2021 2020; 12 34 32 12 59
2009 2007; 9 19
e_1_2_8_22_7
e_1_2_8_22_9
e_1_2_8_22_3
e_1_2_8_22_4
e_1_2_8_24_2
e_1_2_8_22_5
e_1_2_8_24_3
e_1_2_8_22_6
Andrew J. D. (e_1_2_8_18_2) 2009; 113
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_22_10
e_1_2_8_22_11
Evans A. M. (e_1_2_8_9_2) 2018; 361
Diemer P. J. (e_1_2_8_22_8) 2017; 3
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_23_6
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_23_4
e_1_2_8_23_5
e_1_2_8_8_3
Vikram J. Z. (e_1_2_8_24_1) 2004; 303
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_5
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 22
  start-page: 67
  year: 2019
  publication-title: Mater. Today
– volume: 12 34 32 12 59
  start-page: 665 2774 1408
  year: 2013 2022 2020 2021 2020
  publication-title: Nat. Mater. Adv. Mater. Adv. Mater. Nat. Commun. Angew. Chem., Int. Ed.
– volume: 363 12 7 6
  start-page: 719 1928
  year: 2019 2021 2016 2020
  publication-title: Science Nat. Commun. Nat. Commun. Sci. Adv.
– volume: 11 361
  start-page: 3007 53
  year: 2020 2018
  publication-title: Nat. Commun. Science
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 22
  year: 2019
  publication-title: Commun. Chem.
– volume: 7 24 6 5 1 12 24 3 21 25 10
  start-page: 2441 8598 143 5969 1166 4352
  year: 2019 2012 2015 2018 2016 2011 2014 2017 2009 2013 2022
  publication-title: Adv. Mater. Interfaces Adv. Mater. Nat. Commun. Adv. Sci. Adv. Mater. Technol. Org. Electron. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. J. Mater. Chem. C
– volume: 6
  start-page: 7133
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55 7
  start-page: 9519
  year: 2016 2016
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 123 130 24
  start-page: 9482 2706 5553
  year: 2001 2008 2012
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 5
  start-page: 5589 5162
  year: 2019 2014
  publication-title: Nat. Commun. Nat. Commun.
– volume: 303 8 47
  start-page: 1664 422
  year: 2004 2020 2018
  publication-title: Science J. Mater. Chem. C Chem. Soc. Rev.
– volume: 9 19
  start-page: 151 3748
  year: 2009 2007
  publication-title: Cryst. Growth Des. Chem. Mater.
– volume: 27 33
  start-page: 6870
  year: 2015 2021
  publication-title: Adv. Mater. Adv. Mater.
– volume: 52
  start-page: 1650
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 7 1 10 112 9 373
  start-page: 914 5561 88
  year: 2021 2013 2018 2015 2019 2021
  publication-title: Sci. Adv. J. Mater. Chem. C ACS Appl. Mater. Interfaces Proc. Natl. Acad. Sci. USA Sci. Rep. Science
– volume: 567 4 4 4
  start-page: 169 786 775 853
  year: 2019 2021 2021 2021
  publication-title: Nature Nat. Electron. Nat. Electron. Nat. Electron.
– volume: 18
  start-page: 113
  year: 2015
  publication-title: Org. Electron.
– volume: 20
  start-page: 6733
  year: 2008
  publication-title: Chem. Mater.
– volume: 2 80
  start-page: 245
  year: 2014 2009
  publication-title: J. Mater. Chem. C Phys. Rev. B
– volume: 5
  start-page: 1096
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 12 140 58
  start-page: 2796 5339
  year: 2019 2018 2019
  publication-title: Nano Res. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 13 113
  start-page: 163
  year: 2021 2009
  publication-title: Nat. Chem. J. Phys. Chem. C
– ident: e_1_2_8_21_2
  doi: 10.1103/PhysRevB.80.085201
– ident: e_1_2_8_22_7
  doi: 10.1002/adfm.201401087
– ident: e_1_2_8_23_1
  doi: 10.1126/sciadv.abg0659
– ident: e_1_2_8_22_2
  doi: 10.1002/adma.201200088
– ident: e_1_2_8_22_3
  doi: 10.1038/ncomms9598
– ident: e_1_2_8_8_1
  doi: 10.1007/s12274-019-2515-4
– volume: 303
  start-page: 1664
  year: 2004
  ident: e_1_2_8_24_1
  publication-title: Science
– ident: e_1_2_8_15_1
  doi: 10.1021/cm8021165
– ident: e_1_2_8_14_3
  doi: 10.1002/adma.201201856
– ident: e_1_2_8_1_3
  doi: 10.1038/s41928-021-00672-z
– ident: e_1_2_8_1_4
  doi: 10.1038/s41928-021-00675-w
– ident: e_1_2_8_22_4
  doi: 10.1002/advs.201700290
– ident: e_1_2_8_2_4
  doi: 10.1038/s41467-021-23066-3
– ident: e_1_2_8_11_1
  doi: 10.1021/cg8000834
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mattod.2018.04.002
– ident: e_1_2_8_22_9
  doi: 10.1002/adma.200801725
– ident: e_1_2_8_10_1
  doi: 10.1039/D2CS00657J
– ident: e_1_2_8_1_1
  doi: 10.1038/d41586-019-00793-8
– ident: e_1_2_8_1_2
  doi: 10.1038/s41928-021-00670-1
– volume: 361
  start-page: 53
  year: 2018
  ident: e_1_2_8_9_2
  publication-title: Science
– ident: e_1_2_8_2_3
  doi: 10.1002/adma.202003315
– ident: e_1_2_8_8_2
  doi: 10.1021/jacs.8b01997
– ident: e_1_2_8_6_1
  doi: 10.1021/am5018804
– ident: e_1_2_8_18_1
  doi: 10.1038/s41557-020-00593-y
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aav7057
– ident: e_1_2_8_21_1
  doi: 10.1039/C3TC31783H
– ident: e_1_2_8_22_6
  doi: 10.1016/j.orgel.2010.10.017
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201602781
– ident: e_1_2_8_23_6
  doi: 10.1126/science.abh3551
– volume: 113
  year: 2009
  ident: e_1_2_8_18_2
  publication-title: J. Phys. Chem. C
– ident: e_1_2_8_2_2
  doi: 10.1002/adma.202109818
– ident: e_1_2_8_22_10
  doi: 10.1002/adma.201205371
– ident: e_1_2_8_3_3
  doi: 10.1038/ncomms13531
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201502980
– ident: e_1_2_8_14_1
  doi: 10.1021/ja003195j
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201909552
– ident: e_1_2_8_22_5
  doi: 10.1002/admt.201600090
– ident: e_1_2_8_22_11
  doi: 10.1039/D2TC03048A
– ident: e_1_2_8_23_4
  doi: 10.1073/pnas.1419771112
– ident: e_1_2_8_14_2
  doi: 10.1021/ja073235k
– volume: 3
  year: 2017
  ident: e_1_2_8_22_8
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_3_2
  doi: 10.1038/s41467-021-22192-2
– ident: e_1_2_8_4_2
  doi: 10.1038/ncomms6162
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-019-13581-9
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-020-16809-1
– ident: e_1_2_8_24_2
  doi: 10.1039/D0TC03222K
– ident: e_1_2_8_7_1
  doi: 10.1039/D0NH00096E
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.202005915
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201906406
– ident: e_1_2_8_24_3
  doi: 10.1039/C7CS00490G
– ident: e_1_2_8_11_2
  doi: 10.1021/cm071051z
– ident: e_1_2_8_23_2
  doi: 10.1039/C2TC00360K
– ident: e_1_2_8_16_1
  doi: 10.1016/j.orgel.2015.01.021
– ident: e_1_2_8_22_1
  doi: 10.1002/admi.201901753
– ident: e_1_2_8_2_5
  doi: 10.1002/anie.201814439
– ident: e_1_2_8_3_4
  doi: 10.1126/sciadv.abc8847
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat3650
– ident: e_1_2_8_5_2
  doi: 10.1038/ncomms13531
– ident: e_1_2_8_8_3
  doi: 10.1002/anie.201909552
– ident: e_1_2_8_23_3
  doi: 10.1021/acsami.8b09655
– ident: e_1_2_8_19_1
  doi: 10.1038/s42004-019-0122-7
– ident: e_1_2_8_23_5
  doi: 10.1038/s41598-019-50294-x
SSID ssj0009606
Score 2.4886763
Snippet The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the...
The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2301017
SubjectTerms 2D organic semiconductor single crystals
anchored crystal‐seed epitaxial growth
Crystal defects
Crystal growth
Crystal lattices
Electronics
Epitaxial growth
Lattice matching
Liquid surfaces
Materials science
Nucleation
Optoelectronics
Organic crystals
organic field‐effect transistors
Single crystals
Substrates
Transistors
Wafers
wafer‐scale growth
Title Wafer‐Scale Epitaxial Growth of Two‐dimensional Organic Semiconductor Single Crystals toward High‐Performance Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301017
https://www.ncbi.nlm.nih.gov/pubmed/37436692
https://www.proquest.com/docview/2861598147
https://www.proquest.com/docview/2836292060
Volume 35
WOSCitedRecordID wos001038745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhUM5QEtb2EKRK1XiFLFrJ459XAFLDxShLpS9RU5si0ooQcnyd4JH4Bn7JIydbJZVVVVqb4k8dix7xjMTz3wD8CXMpEOtkoHmFB2UlCkUKSMCwUw_Uimn2udW_TiKj4_FeCxPXmTx1_gQ7Q83Jxn-vHYCrtJqdwYaqrTHDUIT2nHVAixSZN6oA4v734dnRzPgXe7ra7r7vkDyUEyBG3t0d36EecX0m7U5b7x67TNc_f95v4GVxvIkg5pV3sIrk6_B8gs8wnfwcK6sKX89Po1w5ww5cBVF7pBBySE665MLUlhyeltgu3Y1AWo8D1Jnc2Zk5MLsi9zhxxYlGeGAOMReeY_m52VFJj48l7iwEux_MktXIF5berCS6j2cDQ9O974GTYWGIGMxiwNU_0IbJbWRkeU905cpupNapFzTNLTo_6bKhDpWNFOGMa45U3hGxJG0qDmjmH2ATl7kZgOItBL1JvJKZnhoIzQjkMZqIS2SUxt3IZhuT5I18OWuisZlUgMv08QtbNIubBd2WvqrGrjjj5Rb091OGgGuEirQ1JOiH2Lz57YZRc_dp6jcFNeOBrW_pD3e68J6zSXtpxhaZpxL2gXqmeEvc0gG-98G7dvHf-m0Ca_dcx3_tgWdSXltPsFSdjP5WZXbsBCPxXYjHM8EdxEC
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED_BhgQ88H9QGGAkJJ6itXbi2I_VtjJEV020g71FTmyLSVOC0o4_T-wj7DPySbhz0pQKISTEY-KzY9l3uZ_t8-8AXsaFJtYqHVnJcYGSC4Mm5VSkhBskJpfchrtV78fpZKJOTvRRG01Id2Eafohuw40sI_yvycBpQ3pnxRpqbCAOQgxNanUVNmPUJVTyzb13o-PxinlXhgSbdOAXaRmrJXNjn--st7DumX6Dm-voNbif0e3_0PE7cKvFnmzYKMtduOLKe3DzF0bC-_D9g_Gu_nFxOcW5c2yfcop8RRVlr3G5vvjIKs9mXyost5QVoGH0YM19zoJNKdC-KolBtqrZFBvEJnbrbwhAz-ZsEQJ0GQWWYP2j1YUFFvxloCuZP4Dj0f5s9yBqczREhUhFGiEAUNYZbZ1OvOy7gc5xQWlVLi3PY48r4Ny42KaGF8YJIa0UBv8SaaI9-s4kFVuwUValewRMe42eE7WlcDL2CQIJlPFWaY_i3Kc9iJbzkxUtgTnl0TjLGuplntHAZt3A9uBVJ_-poe74o-T2crqz1oTnGVcI9rQaxFj8oitG46MTFVO66pxk0P9r3pf9Hjxs1KT7lEBsJqXmPeBBG_7Sh2y4dzjsnh7_S6XncP1gdjjOxm8mb5_ADXrfRMNtw8aiPndP4VrxeXE6r5-1NvIT54AUCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFyE48LtAYQEjIXGKtrUTxz5W2y0gSlXRXdhb5MS2QFolq7TLzwkegWfkSZhx0pQKISTEMfHYsewZz-d4_A3A07jQxFqlIys5blByYdCknIqUcMPE5JLbcLfq7TSdzdTJiZ630YR0F6bhh-h-uJFlhPWaDNydWb-_YQ01NhAHIYYmtboIOzFlkunBzvjN5Hi6Yd6VIcEmHfhFWsZqzdw44PvbLWx7pt_g5jZ6De5ncv0_dPwGXGuxJxs1ynITLrjyFlz9hZHwNnx9Z7yrf3z7vsC5c-yQcop8RhVlz3G7vnrPKs-OPlVYbikrQMPowZr7nAVbUKB9VRKDbFWzBTaITRzUXxCAni7ZKgToMgoswfrzzYUFFvxloCtZ7sLx5PDo4EXU5miICpGKNEIAoKwz2jqdeDlwQ53jhtKqXFqexx53wLlxsU0NL4wTQlopDK4SaaI9-s4kFXegV1aluwdMe42eE7WlcDL2CQIJlPFWaY_i3Kd9iNbzkxUtgTnl0TjNGuplntHAZt3A9uFZJ3_WUHf8UXJvPd1Za8LLjCsEe1oNYyx-0hWj8dGJiilddU4y6P81H8hBH-42atJ9SiA2k1LzPvCgDX_pQzYavx51T_f_pdJjuDwfT7Lpy9mrB3CFXjfBcHvQW9Xn7iFcKj6uPizrR62J_ARVQxOF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wafer-Scale+Epitaxial+Growth+of+Two-dimensional+Organic+Semiconductor+Single+Crystals+toward+High-Performance+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Jinwen&rft.au=Ren%2C+Zheng&rft.au=Pan%2C+Jing&rft.au=Wu%2C+Xiaofeng&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=36&rft.spage=e2301017&rft_id=info:doi/10.1002%2Fadma.202301017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon