Wafer‐Scale Epitaxial Growth of Two‐dimensional Organic Semiconductor Single Crystals toward High‐Performance Transistors
The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 35; číslo 36; s. e2301017 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.09.2023
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics.
An anchored crystal‐seed epitaxial growth method is developed to effectively suppress the multiple nucleation behavior of the molecules and enhance the 2D growth of organic crystals. In consequence, wafer‐scale few‐layer organic single crystals are successfully fabricated on the viscous liquid substrate. Organic field‐effect transistors based on the crystal exhibit high device performance with excellent uniformity. |
|---|---|
| AbstractList | The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm
V
s
and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics. The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm 2 V −1 s −1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics. The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm2 V-1 s-1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics.The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice-matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single-crystal electronics. Here, an anchored crystal-seed epitaxial growth method for wafer-scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer-scale few-layer bis(triethylsilythynyl)-anthradithphene (Dif-TES-ADT) single crystal is formed, yielding a breakthrough for organic field-effect transistors with a high reliable mobility up to 8.6 cm2 V-1 s-1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single-crystal wafers for high-performance organic electronics. The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics. The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics. An anchored crystal‐seed epitaxial growth method is developed to effectively suppress the multiple nucleation behavior of the molecules and enhance the 2D growth of organic crystals. In consequence, wafer‐scale few‐layer organic single crystals are successfully fabricated on the viscous liquid substrate. Organic field‐effect transistors based on the crystal exhibit high device performance with excellent uniformity. |
| Author | Wang, Jinwen Wu, Xiaofeng Pan, Jing Jie, Jiansheng Ren, Zheng Zhang, Xiujuan Zhang, Xiaohong |
| Author_xml | – sequence: 1 givenname: Jinwen surname: Wang fullname: Wang, Jinwen organization: Soochow University – sequence: 2 givenname: Zheng surname: Ren fullname: Ren, Zheng organization: Soochow University – sequence: 3 givenname: Jing surname: Pan fullname: Pan, Jing organization: Soochow University – sequence: 4 givenname: Xiaofeng surname: Wu fullname: Wu, Xiaofeng organization: Soochow University – sequence: 5 givenname: Jiansheng orcidid: 0000-0002-2230-4289 surname: Jie fullname: Jie, Jiansheng email: jsjie@suda.edu.cn organization: Macau University of Science and Technology – sequence: 6 givenname: Xiaohong surname: Zhang fullname: Zhang, Xiaohong organization: Soochow University – sequence: 7 givenname: Xiujuan surname: Zhang fullname: Zhang, Xiujuan email: xjzhang@suda.edu.cn organization: Soochow University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37436692$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAURi1URKeFLUsUiQ2bDP5JnHg5GkqLVFSkGcQyurFvpq4Se7ATDbOCR-AZeRI8mlKkSoiVF_ec78r3OyMnzjsk5CWjc0YpfwtmgDmnXFBGWfWEzFjJWV5QVZ6QGVWizJUs6lNyFuMdpVRJKp-RU1EVQkrFZ-T7F-gw_Prxc6Whx-xia0f4ZqHPLoPfjbeZ77L1zqe5sQO6aL1Ls5uwAWd1tsLBau_MpEcfspV1mxSxDPs4Qh-z0e8gmOzKbm6T_wlD58MATmO2DpCiYpLic_K0SzC-uH_Pyef3F-vlVX59c_lhubjOtahElfOC1QZBGVRlJyky1TJambqVhrdFx4RoAQtTAdeAQkgjBfCyqkrVUSHLSpyTN8fcbfBfJ4xjM9iose_BoZ9iw2shueJU0oS-foTe-Smkfx8oyUpVs-IQ-OqemtoBTbMNdoCwb_6cNgHzI6CDjzFg94Aw2hy6aw7dNQ_dJaF4JOhUxphOPgaw_b81ddR2tsf9f5Y0i3cfF3_d34g4sek |
| CitedBy_id | crossref_primary_10_1002_asia_202400987 crossref_primary_10_1039_D4RA08354G crossref_primary_10_1007_s44291_025_00067_w crossref_primary_10_1002_smll_202404733 crossref_primary_10_1002_ifm2_21 crossref_primary_10_1002_adfm_202507081 crossref_primary_10_1002_smll_202403035 crossref_primary_10_26599_NR_2025_94907343 crossref_primary_10_1002_admt_202500495 crossref_primary_10_1073_pnas_2419673122 crossref_primary_10_1002_smll_202412101 crossref_primary_10_1021_acs_jpclett_5c01757 crossref_primary_10_1002_anie_202319380 crossref_primary_10_1039_D4CS00987H crossref_primary_10_1002_ange_202319380 crossref_primary_10_1002_adfm_202314396 crossref_primary_10_1002_agt2_661 crossref_primary_10_1039_D5TC01650A |
| Cites_doi | 10.1103/PhysRevB.80.085201 10.1002/adfm.201401087 10.1126/sciadv.abg0659 10.1002/adma.201200088 10.1038/ncomms9598 10.1007/s12274-019-2515-4 10.1021/cm8021165 10.1002/adma.201201856 10.1038/s41928-021-00672-z 10.1038/s41928-021-00675-w 10.1002/advs.201700290 10.1038/s41467-021-23066-3 10.1021/cg8000834 10.1016/j.mattod.2018.04.002 10.1002/adma.200801725 10.1039/D2CS00657J 10.1038/d41586-019-00793-8 10.1038/s41928-021-00670-1 10.1002/adma.202003315 10.1021/jacs.8b01997 10.1021/am5018804 10.1038/s41557-020-00593-y 10.1126/science.aav7057 10.1039/C3TC31783H 10.1016/j.orgel.2010.10.017 10.1002/anie.201602781 10.1126/science.abh3551 10.1002/adma.202109818 10.1002/adma.201205371 10.1038/ncomms13531 10.1002/adma.201502980 10.1021/ja003195j 10.1002/anie.201909552 10.1002/admt.201600090 10.1039/D2TC03048A 10.1073/pnas.1419771112 10.1021/ja073235k 10.1038/s41467-021-22192-2 10.1038/ncomms6162 10.1038/s41467-019-13581-9 10.1038/s41467-020-16809-1 10.1039/D0TC03222K 10.1039/D0NH00096E 10.1002/adma.202005915 10.1002/adfm.201906406 10.1039/C7CS00490G 10.1021/cm071051z 10.1039/C2TC00360K 10.1016/j.orgel.2015.01.021 10.1002/admi.201901753 10.1002/anie.201814439 10.1126/sciadv.abc8847 10.1038/nmat3650 10.1021/acsami.8b09655 10.1038/s42004-019-0122-7 10.1038/s41598-019-50294-x |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202301017 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 37436692 10_1002_adma_202301017 ADMA202301017 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials – fundername: Jiangsu Postdoctoral Research Funding Program funderid: 2021K331C – fundername: Science and Technology Development Fund, Macao Special Administrative Region, China funderid: 0145/2022/A3 – fundername: Postdoctoral Research Foundation of China funderid: 2020M681705 – fundername: Suzhou Science and Technology Plan Forward‐looking Project funderid: SYG202023 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices – fundername: National Natural Science Foundation of China funderid: 91833303; 52225303; 51973147; 52173178 – fundername: 111 Project – fundername: National Natural Science Foundation of China grantid: 91833303 – fundername: Jiangsu Postdoctoral Research Funding Program grantid: 2021K331C – fundername: Postdoctoral Research Foundation of China grantid: 2020M681705 – fundername: National Natural Science Foundation of China grantid: 51973147 – fundername: Science and Technology Development Fund, Macao Special Administrative Region, China grantid: 0145/2022/A3 – fundername: National Natural Science Foundation of China grantid: 52225303 – fundername: Suzhou Science and Technology Plan Forward-looking Project grantid: SYG202023 – fundername: Joint International Research Laboratory of Carbon-Based Functional Materials and Devices |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3737-2418dea9de95f60e19b107d8b6d2b4f133bae4d7a2cae336d63a257759f036573 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Oct 02 07:02:30 EDT 2025 Fri Jul 25 08:03:55 EDT 2025 Thu Apr 03 06:58:24 EDT 2025 Sat Nov 29 07:19:58 EST 2025 Tue Nov 18 22:14:51 EST 2025 Sun Jul 06 04:46:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 36 |
| Keywords | 2D organic semiconductor single crystals wafer-scale growth organic field-effect transistors anchored crystal-seed epitaxial growth |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3737-2418dea9de95f60e19b107d8b6d2b4f133bae4d7a2cae336d63a257759f036573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2230-4289 |
| PMID | 37436692 |
| PQID | 2861598147 |
| PQPubID | 2045203 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2836292060 proquest_journals_2861598147 pubmed_primary_37436692 crossref_primary_10_1002_adma_202301017 crossref_citationtrail_10_1002_adma_202301017 wiley_primary_10_1002_adma_202301017_ADMA202301017 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2020; 5 2020 2018; 11 361 2023; 52 2019 2021 2016 2020; 363 12 7 6 2004 2020 2018; 303 8 47 2015; 18 2016 2016; 55 7 2001 2008 2012; 123 130 24 2020; 30 2019; 22 2019; 2 2015 2021; 27 33 2019 2012 2015 2018 2016 2011 2014 2017 2009 2013 2022; 7 24 6 5 1 12 24 3 21 25 10 2019 2014; 10 5 2019; 58 2021 2009; 13 113 2014 2009; 2 80 2021 2013 2018 2015 2019 2021; 7 1 10 112 9 373 2019 2018 2019; 12 140 58 2008; 20 2019 2021 2021 2021; 567 4 4 4 2014; 6 2013 2022 2020 2021 2020; 12 34 32 12 59 2009 2007; 9 19 e_1_2_8_22_7 e_1_2_8_22_9 e_1_2_8_22_3 e_1_2_8_22_4 e_1_2_8_24_2 e_1_2_8_22_5 e_1_2_8_24_3 e_1_2_8_22_6 Andrew J. D. (e_1_2_8_18_2) 2009; 113 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_22_10 e_1_2_8_22_11 Evans A. M. (e_1_2_8_9_2) 2018; 361 Diemer P. J. (e_1_2_8_22_8) 2017; 3 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_23_6 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_23_4 e_1_2_8_23_5 e_1_2_8_8_3 Vikram J. Z. (e_1_2_8_24_1) 2004; 303 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_12_1 |
| References_xml | – volume: 22 start-page: 67 year: 2019 publication-title: Mater. Today – volume: 12 34 32 12 59 start-page: 665 2774 1408 year: 2013 2022 2020 2021 2020 publication-title: Nat. Mater. Adv. Mater. Adv. Mater. Nat. Commun. Angew. Chem., Int. Ed. – volume: 363 12 7 6 start-page: 719 1928 year: 2019 2021 2016 2020 publication-title: Science Nat. Commun. Nat. Commun. Sci. Adv. – volume: 11 361 start-page: 3007 53 year: 2020 2018 publication-title: Nat. Commun. Science – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 22 year: 2019 publication-title: Commun. Chem. – volume: 7 24 6 5 1 12 24 3 21 25 10 start-page: 2441 8598 143 5969 1166 4352 year: 2019 2012 2015 2018 2016 2011 2014 2017 2009 2013 2022 publication-title: Adv. Mater. Interfaces Adv. Mater. Nat. Commun. Adv. Sci. Adv. Mater. Technol. Org. Electron. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. J. Mater. Chem. C – volume: 6 start-page: 7133 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 55 7 start-page: 9519 year: 2016 2016 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 123 130 24 start-page: 9482 2706 5553 year: 2001 2008 2012 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 5 start-page: 5589 5162 year: 2019 2014 publication-title: Nat. Commun. Nat. Commun. – volume: 303 8 47 start-page: 1664 422 year: 2004 2020 2018 publication-title: Science J. Mater. Chem. C Chem. Soc. Rev. – volume: 9 19 start-page: 151 3748 year: 2009 2007 publication-title: Cryst. Growth Des. Chem. Mater. – volume: 27 33 start-page: 6870 year: 2015 2021 publication-title: Adv. Mater. Adv. Mater. – volume: 52 start-page: 1650 year: 2023 publication-title: Chem. Soc. Rev. – volume: 7 1 10 112 9 373 start-page: 914 5561 88 year: 2021 2013 2018 2015 2019 2021 publication-title: Sci. Adv. J. Mater. Chem. C ACS Appl. Mater. Interfaces Proc. Natl. Acad. Sci. USA Sci. Rep. Science – volume: 567 4 4 4 start-page: 169 786 775 853 year: 2019 2021 2021 2021 publication-title: Nature Nat. Electron. Nat. Electron. Nat. Electron. – volume: 18 start-page: 113 year: 2015 publication-title: Org. Electron. – volume: 20 start-page: 6733 year: 2008 publication-title: Chem. Mater. – volume: 2 80 start-page: 245 year: 2014 2009 publication-title: J. Mater. Chem. C Phys. Rev. B – volume: 5 start-page: 1096 year: 2020 publication-title: Nanoscale Horiz. – volume: 12 140 58 start-page: 2796 5339 year: 2019 2018 2019 publication-title: Nano Res. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 13 113 start-page: 163 year: 2021 2009 publication-title: Nat. Chem. J. Phys. Chem. C – ident: e_1_2_8_21_2 doi: 10.1103/PhysRevB.80.085201 – ident: e_1_2_8_22_7 doi: 10.1002/adfm.201401087 – ident: e_1_2_8_23_1 doi: 10.1126/sciadv.abg0659 – ident: e_1_2_8_22_2 doi: 10.1002/adma.201200088 – ident: e_1_2_8_22_3 doi: 10.1038/ncomms9598 – ident: e_1_2_8_8_1 doi: 10.1007/s12274-019-2515-4 – volume: 303 start-page: 1664 year: 2004 ident: e_1_2_8_24_1 publication-title: Science – ident: e_1_2_8_15_1 doi: 10.1021/cm8021165 – ident: e_1_2_8_14_3 doi: 10.1002/adma.201201856 – ident: e_1_2_8_1_3 doi: 10.1038/s41928-021-00672-z – ident: e_1_2_8_1_4 doi: 10.1038/s41928-021-00675-w – ident: e_1_2_8_22_4 doi: 10.1002/advs.201700290 – ident: e_1_2_8_2_4 doi: 10.1038/s41467-021-23066-3 – ident: e_1_2_8_11_1 doi: 10.1021/cg8000834 – ident: e_1_2_8_12_1 doi: 10.1016/j.mattod.2018.04.002 – ident: e_1_2_8_22_9 doi: 10.1002/adma.200801725 – ident: e_1_2_8_10_1 doi: 10.1039/D2CS00657J – ident: e_1_2_8_1_1 doi: 10.1038/d41586-019-00793-8 – ident: e_1_2_8_1_2 doi: 10.1038/s41928-021-00670-1 – volume: 361 start-page: 53 year: 2018 ident: e_1_2_8_9_2 publication-title: Science – ident: e_1_2_8_2_3 doi: 10.1002/adma.202003315 – ident: e_1_2_8_8_2 doi: 10.1021/jacs.8b01997 – ident: e_1_2_8_6_1 doi: 10.1021/am5018804 – ident: e_1_2_8_18_1 doi: 10.1038/s41557-020-00593-y – ident: e_1_2_8_3_1 doi: 10.1126/science.aav7057 – ident: e_1_2_8_21_1 doi: 10.1039/C3TC31783H – ident: e_1_2_8_22_6 doi: 10.1016/j.orgel.2010.10.017 – ident: e_1_2_8_5_1 doi: 10.1002/anie.201602781 – ident: e_1_2_8_23_6 doi: 10.1126/science.abh3551 – volume: 113 year: 2009 ident: e_1_2_8_18_2 publication-title: J. Phys. Chem. C – ident: e_1_2_8_2_2 doi: 10.1002/adma.202109818 – ident: e_1_2_8_22_10 doi: 10.1002/adma.201205371 – ident: e_1_2_8_3_3 doi: 10.1038/ncomms13531 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201502980 – ident: e_1_2_8_14_1 doi: 10.1021/ja003195j – ident: e_1_2_8_20_1 doi: 10.1002/anie.201909552 – ident: e_1_2_8_22_5 doi: 10.1002/admt.201600090 – ident: e_1_2_8_22_11 doi: 10.1039/D2TC03048A – ident: e_1_2_8_23_4 doi: 10.1073/pnas.1419771112 – ident: e_1_2_8_14_2 doi: 10.1021/ja073235k – volume: 3 year: 2017 ident: e_1_2_8_22_8 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_3_2 doi: 10.1038/s41467-021-22192-2 – ident: e_1_2_8_4_2 doi: 10.1038/ncomms6162 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-019-13581-9 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-020-16809-1 – ident: e_1_2_8_24_2 doi: 10.1039/D0TC03222K – ident: e_1_2_8_7_1 doi: 10.1039/D0NH00096E – ident: e_1_2_8_13_2 doi: 10.1002/adma.202005915 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201906406 – ident: e_1_2_8_24_3 doi: 10.1039/C7CS00490G – ident: e_1_2_8_11_2 doi: 10.1021/cm071051z – ident: e_1_2_8_23_2 doi: 10.1039/C2TC00360K – ident: e_1_2_8_16_1 doi: 10.1016/j.orgel.2015.01.021 – ident: e_1_2_8_22_1 doi: 10.1002/admi.201901753 – ident: e_1_2_8_2_5 doi: 10.1002/anie.201814439 – ident: e_1_2_8_3_4 doi: 10.1126/sciadv.abc8847 – ident: e_1_2_8_2_1 doi: 10.1038/nmat3650 – ident: e_1_2_8_5_2 doi: 10.1038/ncomms13531 – ident: e_1_2_8_8_3 doi: 10.1002/anie.201909552 – ident: e_1_2_8_23_3 doi: 10.1021/acsami.8b09655 – ident: e_1_2_8_19_1 doi: 10.1038/s42004-019-0122-7 – ident: e_1_2_8_23_5 doi: 10.1038/s41598-019-50294-x |
| SSID | ssj0009606 |
| Score | 2.4886763 |
| Snippet | The success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the... The success of state-of-the-art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single-crystal wafers. However, the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2301017 |
| SubjectTerms | 2D organic semiconductor single crystals anchored crystal‐seed epitaxial growth Crystal defects Crystal growth Crystal lattices Electronics Epitaxial growth Lattice matching Liquid surfaces Materials science Nucleation Optoelectronics Organic crystals organic field‐effect transistors Single crystals Substrates Transistors Wafers wafer‐scale growth |
| Title | Wafer‐Scale Epitaxial Growth of Two‐dimensional Organic Semiconductor Single Crystals toward High‐Performance Transistors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301017 https://www.ncbi.nlm.nih.gov/pubmed/37436692 https://www.proquest.com/docview/2861598147 https://www.proquest.com/docview/2836292060 |
| Volume | 35 |
| WOSCitedRecordID | wos001038745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhUM5QEtb2EKRK1XiFLFrJ459XAFLDxShLpS9RU5si0ooQcnyd4JH4Bn7JIydbJZVVVVqb4k8dix7xjMTz3wD8CXMpEOtkoHmFB2UlCkUKSMCwUw_Uimn2udW_TiKj4_FeCxPXmTx1_gQ7Q83Jxn-vHYCrtJqdwYaqrTHDUIT2nHVAixSZN6oA4v734dnRzPgXe7ra7r7vkDyUEyBG3t0d36EecX0m7U5b7x67TNc_f95v4GVxvIkg5pV3sIrk6_B8gs8wnfwcK6sKX89Po1w5ww5cBVF7pBBySE665MLUlhyeltgu3Y1AWo8D1Jnc2Zk5MLsi9zhxxYlGeGAOMReeY_m52VFJj48l7iwEux_MktXIF5berCS6j2cDQ9O974GTYWGIGMxiwNU_0IbJbWRkeU905cpupNapFzTNLTo_6bKhDpWNFOGMa45U3hGxJG0qDmjmH2ATl7kZgOItBL1JvJKZnhoIzQjkMZqIS2SUxt3IZhuT5I18OWuisZlUgMv08QtbNIubBd2WvqrGrjjj5Rb091OGgGuEirQ1JOiH2Lz57YZRc_dp6jcFNeOBrW_pD3e68J6zSXtpxhaZpxL2gXqmeEvc0gG-98G7dvHf-m0Ca_dcx3_tgWdSXltPsFSdjP5WZXbsBCPxXYjHM8EdxEC |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED_BhgQ88H9QGGAkJJ6itXbi2I_VtjJEV020g71FTmyLSVOC0o4_T-wj7DPySbhz0pQKISTEY-KzY9l3uZ_t8-8AXsaFJtYqHVnJcYGSC4Mm5VSkhBskJpfchrtV78fpZKJOTvRRG01Id2Eafohuw40sI_yvycBpQ3pnxRpqbCAOQgxNanUVNmPUJVTyzb13o-PxinlXhgSbdOAXaRmrJXNjn--st7DumX6Dm-voNbif0e3_0PE7cKvFnmzYKMtduOLKe3DzF0bC-_D9g_Gu_nFxOcW5c2yfcop8RRVlr3G5vvjIKs9mXyost5QVoGH0YM19zoJNKdC-KolBtqrZFBvEJnbrbwhAz-ZsEQJ0GQWWYP2j1YUFFvxloCuZP4Dj0f5s9yBqczREhUhFGiEAUNYZbZ1OvOy7gc5xQWlVLi3PY48r4Ny42KaGF8YJIa0UBv8SaaI9-s4kFVuwUValewRMe42eE7WlcDL2CQIJlPFWaY_i3Kc9iJbzkxUtgTnl0TjLGuplntHAZt3A9uBVJ_-poe74o-T2crqz1oTnGVcI9rQaxFj8oitG46MTFVO66pxk0P9r3pf9Hjxs1KT7lEBsJqXmPeBBG_7Sh2y4dzjsnh7_S6XncP1gdjjOxm8mb5_ADXrfRMNtw8aiPndP4VrxeXE6r5-1NvIT54AUCg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFyE48LtAYQEjIXGKtrUTxz5W2y0gSlXRXdhb5MS2QFolq7TLzwkegWfkSZhx0pQKISTEMfHYsewZz-d4_A3A07jQxFqlIys5blByYdCknIqUcMPE5JLbcLfq7TSdzdTJiZ630YR0F6bhh-h-uJFlhPWaDNydWb-_YQ01NhAHIYYmtboIOzFlkunBzvjN5Hi6Yd6VIcEmHfhFWsZqzdw44PvbLWx7pt_g5jZ6De5ncv0_dPwGXGuxJxs1ynITLrjyFlz9hZHwNnx9Z7yrf3z7vsC5c-yQcop8RhVlz3G7vnrPKs-OPlVYbikrQMPowZr7nAVbUKB9VRKDbFWzBTaITRzUXxCAni7ZKgToMgoswfrzzYUFFvxloCtZ7sLx5PDo4EXU5miICpGKNEIAoKwz2jqdeDlwQ53jhtKqXFqexx53wLlxsU0NL4wTQlopDK4SaaI9-s4kFXegV1aluwdMe42eE7WlcDL2CQIJlPFWaY_i3Kd9iNbzkxUtgTnl0TjNGuplntHAZt3A9uFZJ3_WUHf8UXJvPd1Za8LLjCsEe1oNYyx-0hWj8dGJiilddU4y6P81H8hBH-42atJ9SiA2k1LzPvCgDX_pQzYavx51T_f_pdJjuDwfT7Lpy9mrB3CFXjfBcHvQW9Xn7iFcKj6uPizrR62J_ARVQxOF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wafer-Scale+Epitaxial+Growth+of+Two-dimensional+Organic+Semiconductor+Single+Crystals+toward+High-Performance+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Jinwen&rft.au=Ren%2C+Zheng&rft.au=Pan%2C+Jing&rft.au=Wu%2C+Xiaofeng&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=36&rft.spage=e2301017&rft_id=info:doi/10.1002%2Fadma.202301017&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |