Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color

Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 31; H. 6; S. e1805496 - n/a
Hauptverfasser: Tan, Haiying, Lyu, Quanqian, Xie, Zhanjun, Li, Miaomiao, Wang, Kui, Wang, Ke, Xiong, Bijin, Zhang, Lianbin, Zhu, Jintao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 08.02.2019
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. Photonic elastomers with self‐healing capability and angle‐independent color are fabricated through the combination of a supramolecular elastomer with isotropic nanostructures, exhibiting chameleon‐skin‐like mechanochromic capability. Interestingly, the photonic elastomers are capable of healing scratches or cuts, ensuring the optical and mechanical properties.
AbstractList Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. Photonic elastomers with self‐healing capability and angle‐independent color are fabricated through the combination of a supramolecular elastomer with isotropic nanostructures, exhibiting chameleon‐skin‐like mechanochromic capability. Interestingly, the photonic elastomers are capable of healing scratches or cuts, ensuring the optical and mechanical properties.
Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO 2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Author Li, Miaomiao
Lyu, Quanqian
Xie, Zhanjun
Zhang, Lianbin
Tan, Haiying
Wang, Ke
Wang, Kui
Xiong, Bijin
Zhu, Jintao
Author_xml – sequence: 1
  givenname: Haiying
  surname: Tan
  fullname: Tan, Haiying
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Quanqian
  surname: Lyu
  fullname: Lyu, Quanqian
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Zhanjun
  surname: Xie
  fullname: Xie, Zhanjun
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Miaomiao
  surname: Li
  fullname: Li, Miaomiao
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Kui
  surname: Wang
  fullname: Wang, Kui
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Bijin
  surname: Xiong
  fullname: Xiong, Bijin
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Lianbin
  surname: Zhang
  fullname: Zhang, Lianbin
  email: zhanglianbin@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Jintao
  orcidid: 0000-0002-8230-3923
  surname: Zhu
  fullname: Zhu, Jintao
  email: jtzhu@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548887$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rFTEUBuAgFXtb3bqUATdu5nqS-chkebmtttCioK6H03y0KZlkTDKUu_Mn-Bv9JabcWqEgbpJFnjc55D0iBz54TchrCmsKwN6jmnDNgA7QtaJ_Rla0Y7RuQXQHZAWi6WrRt8MhOUrpFgBED_0LctgUPQwDXxFzqTM6F9IyR5yC03JxGKvPNyEHb2V16jDlMOmYqjubb6ov2plfP36eaXTWX1dbnPHKOpt3FXpVbfy10-X43Cs967L4XG2DC_EleW7QJf3qYT8m3z6cft2e1RefPp5vNxe1bHjT14gG-lZx5B2UGVWvpB6U0qxjveq4MUYrCrSVqIQyzDBOmeKDaKRouATZHJN3-3vnGL4vOuVxsklq59DrsKSR0Y73HRsACn37hN6GJfoyXVGcFyigLerNg1quJq3GOdoJ427884MFrPdAxpBS1OaRUBjvKxrvKxofKyqB9klA2ozZBp8jWvfvmNjH7qzTu_88Mm5OLjd_s78B_ZyonQ
CitedBy_id crossref_primary_10_1016_j_cej_2020_126504
crossref_primary_10_1016_j_cej_2021_131259
crossref_primary_10_1016_j_porgcoat_2023_108153
crossref_primary_10_1002_adma_202002800
crossref_primary_10_1002_smll_202103271
crossref_primary_10_1016_j_apmt_2021_101276
crossref_primary_10_1002_adfm_202410921
crossref_primary_10_1002_adfm_202204744
crossref_primary_10_1007_s10118_025_3286_x
crossref_primary_10_1002_adom_202401139
crossref_primary_10_1002_aenm_202302038
crossref_primary_10_1146_annurev_matsci_080423_124646
crossref_primary_10_1002_adma_201905876
crossref_primary_10_1007_s12274_023_5920_7
crossref_primary_10_1002_adfm_202104991
crossref_primary_10_1039_D0MH00535E
crossref_primary_10_1002_advs_202304506
crossref_primary_10_1002_agt2_109
crossref_primary_10_1002_smll_202201012
crossref_primary_10_1002_adfm_202108830
crossref_primary_10_1007_s10570_023_05117_8
crossref_primary_10_1016_j_dyepig_2023_111915
crossref_primary_10_1016_j_nxmate_2024_100412
crossref_primary_10_1002_marc_202100867
crossref_primary_10_1016_j_mser_2021_100647
crossref_primary_10_1016_j_cej_2024_151273
crossref_primary_10_1016_j_cej_2021_132342
crossref_primary_10_1002_aenm_202101443
crossref_primary_10_1016_j_polymer_2020_123119
crossref_primary_10_1038_s41467_024_49860_3
crossref_primary_10_1016_j_cej_2020_127023
crossref_primary_10_1016_j_matdes_2022_110475
crossref_primary_10_1002_SMMD_20220026
crossref_primary_10_1016_j_porgcoat_2025_109100
crossref_primary_10_1016_j_cej_2024_149966
crossref_primary_10_3390_polym12010083
crossref_primary_10_1002_app_49916
crossref_primary_10_1039_D2NR05821A
crossref_primary_10_1016_j_cej_2023_141965
crossref_primary_10_1002_smll_201907626
crossref_primary_10_1016_j_carbpol_2025_123678
crossref_primary_10_1016_j_jcis_2024_10_178
crossref_primary_10_1002_smm2_1252
crossref_primary_10_1002_adfm_202000356
crossref_primary_10_3390_polym15122635
crossref_primary_10_1016_j_measurement_2023_114010
crossref_primary_10_1039_D4MH01172D
crossref_primary_10_1080_02678292_2023_2200265
crossref_primary_10_1016_j_cej_2024_150969
crossref_primary_10_1016_j_jcis_2024_11_001
crossref_primary_10_1002_cplu_202400002
crossref_primary_10_1002_syst_202100016
crossref_primary_10_1016_j_cej_2023_146602
crossref_primary_10_3390_gels10080506
crossref_primary_10_1002_smll_202405426
crossref_primary_10_1016_j_cej_2021_130870
crossref_primary_10_1007_s42765_022_00174_3
crossref_primary_10_1002_admi_202201252
crossref_primary_10_1016_j_dyepig_2021_109864
crossref_primary_10_3390_cryst10080675
crossref_primary_10_1016_j_mtcomm_2022_103398
crossref_primary_10_1016_j_jcis_2020_02_107
crossref_primary_10_1002_marc_202400450
crossref_primary_10_1016_j_cej_2025_161344
crossref_primary_10_1002_adfm_202000008
crossref_primary_10_1002_adma_202211342
crossref_primary_10_1002_sstr_202000110
crossref_primary_10_1016_j_apsusc_2024_161946
crossref_primary_10_1016_j_cis_2024_103272
crossref_primary_10_1016_j_polymer_2020_122886
crossref_primary_10_1002_adfm_202408800
crossref_primary_10_1002_advs_202202897
crossref_primary_10_1016_j_cej_2024_156362
crossref_primary_10_1002_smll_202003638
crossref_primary_10_1002_admi_202200051
crossref_primary_10_1002_adma_202406714
crossref_primary_10_1002_adfm_202313781
crossref_primary_10_1002_marc_202000528
crossref_primary_10_1016_j_eurpolymj_2025_114281
crossref_primary_10_1002_adfm_202210047
crossref_primary_10_1002_adma_202001467
crossref_primary_10_1002_anie_201911468
crossref_primary_10_1002_marc_202500173
crossref_primary_10_3390_biomimetics8030286
crossref_primary_10_1016_j_jlumin_2022_119646
crossref_primary_10_1002_admt_202100479
crossref_primary_10_1002_adfm_202215055
crossref_primary_10_1016_j_cej_2022_139075
crossref_primary_10_1039_D4TC05318D
crossref_primary_10_1002_admt_202100118
crossref_primary_10_1016_j_cej_2020_127581
crossref_primary_10_1002_adom_202402139
crossref_primary_10_1002_marc_201900038
crossref_primary_10_1002_smll_202502181
crossref_primary_10_1088_1361_6528_ac659d
crossref_primary_10_1016_j_pnsc_2024_07_022
crossref_primary_10_1016_j_compositesb_2021_109456
crossref_primary_10_1039_D0QM00025F
crossref_primary_10_1016_j_compositesb_2021_109213
crossref_primary_10_1016_j_ijbiomac_2023_123152
crossref_primary_10_1016_j_jcis_2025_138655
crossref_primary_10_1021_acs_nanolett_5c02222
crossref_primary_10_1021_polymscitech_5c00037
crossref_primary_10_1007_s11595_021_2408_8
crossref_primary_10_1002_adom_202100831
crossref_primary_10_1016_j_jcis_2024_12_018
crossref_primary_10_1002_adom_202000984
crossref_primary_10_1177_24723444231220700
crossref_primary_10_1002_aisy_202000108
crossref_primary_10_1016_j_matdes_2020_109039
crossref_primary_10_1016_j_ijbiomac_2024_137675
crossref_primary_10_1016_j_optmat_2025_117312
crossref_primary_10_1016_j_snb_2020_129137
crossref_primary_10_1002_adpr_202100043
crossref_primary_10_1002_adfm_202411670
crossref_primary_10_1016_j_jcis_2021_07_112
crossref_primary_10_1016_j_mtchem_2021_100708
crossref_primary_10_1016_j_materresbull_2025_113651
crossref_primary_10_1016_j_dyepig_2021_109676
crossref_primary_10_1002_smtd_202200461
crossref_primary_10_1016_j_cej_2020_124142
crossref_primary_10_1016_j_cej_2022_140591
crossref_primary_10_1002_adma_202110488
crossref_primary_10_1039_D0PY01096K
crossref_primary_10_1039_D2MH00410K
crossref_primary_10_1016_j_jallcom_2021_162433
crossref_primary_10_1002_admi_202001950
crossref_primary_10_1016_j_polymer_2022_124878
crossref_primary_10_1002_adsr_202200078
crossref_primary_10_1016_j_cej_2023_143418
crossref_primary_10_1016_j_cej_2023_143937
crossref_primary_10_1002_adhm_202404723
crossref_primary_10_1002_marc_202100768
crossref_primary_10_1016_j_cej_2022_138285
crossref_primary_10_1002_aesr_202300289
crossref_primary_10_1002_adom_202001207
crossref_primary_10_1002_adfm_202009017
crossref_primary_10_1002_smll_202007426
crossref_primary_10_1016_j_ceramint_2023_11_311
crossref_primary_10_1002_ange_201911468
crossref_primary_10_1016_j_progpolymsci_2023_101724
crossref_primary_10_1021_acs_iecr_5c02768
Cites_doi 10.1002/anie.201704752
10.1126/science.aan0221
10.1002/adma.201600480
10.1007/s11426-012-4511-3
10.1002/adma.201504723
10.1021/acsnano.7b05109
10.1002/adfm.201800560
10.1002/adma.201301909
10.1002/anie.200907091
10.1016/j.progpolymsci.2012.05.003
10.1021/jacs.8b01682
10.1002/adfm.201800741
10.1126/science.1260318
10.1021/acsami.7b08636
10.1126/science.aar5308
10.1021/la4030266
10.1002/adma.201707344
10.1002/anie.201507503
10.1021/acs.macromol.5b02756
10.1038/nchem.2492
10.1038/ncomms7368
10.1016/j.polymer.2018.02.020
10.1002/adma.200801258
10.1016/j.polymer.2016.06.053
10.1039/c2jm33643j
10.1021/acsnano.7b05885
10.1021/acs.macromol.7b01607
10.1002/anie.201705462
10.1073/pnas.1703616114
10.1002/adfm.201303555
10.1039/C6TC01340F
10.1021/ma201585v
10.1002/adfm.201401562
10.1002/aelm.201600260
10.1039/C7CC06126A
10.1002/adma.201500281
10.1002/adma.201605050
10.1016/j.snb.2016.05.027
10.1002/adma.201703678
10.1038/nmat4635
10.1002/anie.201412475
10.1038/nature09963
10.1002/adfm.201606339
10.1021/am900074v
10.1002/adma.201604209
10.1038/nature23673
10.1021/la0521037
10.1002/adma.201203865
10.1038/nature06669
10.1038/386143a0
10.1002/adma.201870073
10.1002/adfm.201802585
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201805496
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30548887
10_1002_adma_201805496
ADMA201805496
Genre article
Journal Article
GrantInformation_xml – fundername: Open Research Fund of State Key Lab of Polym Phys Chem
– fundername: CIAC
– fundername: NSFC
  funderid: 51525302
– fundername: CAS
  funderid: 2017‐27
– fundername: NSF of the Hubei Scientific Committee
  funderid: 2016CFA001
– fundername: CAS
  grantid: 2017-27
– fundername: NSFC
  grantid: 51525302
– fundername: NSF of the Hubei Scientific Committee
  grantid: 2016CFA001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3736-aaf064d7a750305d6dce8dde2526d57fffed1014cad9df2f2712d7893c937c0c3
IEDL.DBID DRFUL
ISICitedReferencesCount 224
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459630600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 10:46:05 EST 2025
Sun Nov 30 04:45:56 EST 2025
Mon Jul 21 05:43:12 EDT 2025
Tue Nov 18 22:33:10 EST 2025
Sat Nov 29 07:20:43 EST 2025
Wed Jan 22 16:23:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords photonic crystals
elastomers
angle-independent
metallosupramolecular coordination
self-healing
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-aaf064d7a750305d6dce8dde2526d57fffed1014cad9df2f2712d7893c937c0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8230-3923
PMID 30548887
PQID 2177157904
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2157652800
proquest_journals_2177157904
pubmed_primary_30548887
crossref_primary_10_1002_adma_201805496
crossref_citationtrail_10_1002_adma_201805496
wiley_primary_10_1002_adma_201805496_ADMA201805496
PublicationCentury 2000
PublicationDate February 8, 2019
PublicationDateYYYYMMDD 2019-02-08
PublicationDate_xml – month: 02
  year: 2019
  text: February 8, 2019
  day: 08
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2016 2017; 54 8 50
2015 2017 2018; 6 357 359
2013; 25
2013 2015; 29 27
2018; 139
2006; 22
2017; 56
2009 2012 2015; 21 22 54
2016 2016 2017; 234 98 114
2011; 44
2014; 24
2018; 30
1996; 1
1997 2011 2018 2018 2018; 386 50 57 30 28
2009 2017; 1 11
2013 2014 2015 2016 2016 2017 2017 2017 2017 2018; 38 24 347 4 15 29 3 549 29 30
2008 2011 2012 2013 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018; 451 472 55 25 28 28 49 53 27 9 11 28 28 140
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_1_5
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_3_2
e_1_2_4_5_3
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_5_5
e_1_2_4_9_1
e_1_2_4_5_4
e_1_2_4_5_7
e_1_2_4_9_3
e_1_2_4_5_6
e_1_2_4_9_2
e_1_2_4_5_9
e_1_2_4_5_8
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_10_4
e_1_2_4_10_5
e_1_2_4_14_1
e_1_2_4_10_6
e_1_2_4_16_1
e_1_2_4_10_7
e_1_2_4_10_8
e_1_2_4_10_9
White J. R. (e_1_2_4_15_1) 1996
e_1_2_4_10_11
e_1_2_4_10_12
e_1_2_4_10_13
e_1_2_4_10_14
e_1_2_4_10_10
e_1_2_4_5_10
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_6_3
e_1_2_4_8_1
e_1_2_4_8_3
e_1_2_4_11_1
e_1_2_4_13_1
e_1_2_4_17_1
References_xml – volume: 139
  start-page: 130
  year: 2018
  publication-title: Polymer
– volume: 1 11
  start-page: 982 11350
  year: 2009 2017
  publication-title: ACS Appl. Mater. Interfaces ACS Nano
– volume: 44
  start-page: 7820
  year: 2011
  publication-title: Macromolecules
– volume: 24
  start-page: 3197
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1870073
  year: 2018
  publication-title: Adv. Mater.
– volume: 6 357 359
  start-page: 6368 470 1509
  year: 2015 2017 2018
  publication-title: Nat. Commun. Science Science
– volume: 234 98 114
  start-page: 527 516 5900
  year: 2016 2016 2017
  publication-title: Sens. Actuators, B Polymer Proc. Natl. Acad. Sci., USA
– volume: 54 8 50
  start-page: 3630 618 8845
  year: 2015 2016 2017
  publication-title: Angew. Chem., Int. Ed. Nat. Chem. Macromolecules
– volume: 25
  start-page: 5314
  year: 2013
  publication-title: Adv. Mater.
– volume: 21 22 54
  start-page: 1801 23299 15368
  year: 2009 2012 2015
  publication-title: Adv. Mater. J. Mater. Chem. Angew. Chem., Int. Ed.
– volume: 29 27
  start-page: 13951 2489
  year: 2013 2015
  publication-title: Langmuir Adv. Mater.
– volume: 451 472 55 25 28 28 49 53 27 9 11 28 28 140
  start-page: 977 334 648 1634 4678 2455 1781 12088 1606339 29120 11074 1800560 1800741 5280
  year: 2008 2011 2012 2013 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018
  publication-title: Nature Nature Sci. China: Chem. Adv. Mater. Adv. Mater. Adv. Mater. Macromolecules Chem. Commun. Adv. Funct. Mater. ACS Appl. Mater. Interfaces ACS Nano Adv. Funct. Mater. Adv. Funct. Mater. J. Am. Chem. Soc.
– volume: 1
  start-page: 1
  year: 1996
  end-page: 598
– volume: 56
  start-page: 10462
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 386 50 57 30 28
  start-page: 143 1492 2544 1707344 1802585
  year: 1997 2011 2018 2018 2018
  publication-title: Nature Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater.
– volume: 38 24 347 4 15 29 3 549 29 30
  start-page: 584 6430 159 5839 911 1605050 1600260 497 1604209 1703678
  year: 2013 2014 2015 2016 2016 2017 2017 2017 2017 2018
  publication-title: Prog. Polym. Sci. Adv. Funct. Mater. Science J. Mater. Chem. C Nat. Mater. Adv. Mater. Adv. Electron. Mater. Nature Adv. Mater. Adv. Mater.
– volume: 22
  start-page: 1365
  year: 2006
  publication-title: Langmuir
– ident: e_1_2_4_1_3
  doi: 10.1002/anie.201704752
– ident: e_1_2_4_3_2
  doi: 10.1126/science.aan0221
– ident: e_1_2_4_10_5
  doi: 10.1002/adma.201600480
– start-page: 1
  volume-title: Rubber Technologist's Handbook
  year: 1996
  ident: e_1_2_4_15_1
– ident: e_1_2_4_10_3
  doi: 10.1007/s11426-012-4511-3
– ident: e_1_2_4_10_6
  doi: 10.1002/adma.201504723
– ident: e_1_2_4_10_11
  doi: 10.1021/acsnano.7b05109
– ident: e_1_2_4_10_12
  doi: 10.1002/adfm.201800560
– ident: e_1_2_4_12_1
  doi: 10.1002/adma.201301909
– ident: e_1_2_4_1_2
  doi: 10.1002/anie.200907091
– ident: e_1_2_4_5_1
  doi: 10.1016/j.progpolymsci.2012.05.003
– ident: e_1_2_4_10_14
  doi: 10.1021/jacs.8b01682
– ident: e_1_2_4_10_13
  doi: 10.1002/adfm.201800741
– ident: e_1_2_4_5_3
  doi: 10.1126/science.1260318
– ident: e_1_2_4_10_10
  doi: 10.1021/acsami.7b08636
– ident: e_1_2_4_3_3
  doi: 10.1126/science.aar5308
– ident: e_1_2_4_4_1
  doi: 10.1021/la4030266
– ident: e_1_2_4_1_4
  doi: 10.1002/adma.201707344
– ident: e_1_2_4_9_3
  doi: 10.1002/anie.201507503
– ident: e_1_2_4_10_7
  doi: 10.1021/acs.macromol.5b02756
– ident: e_1_2_4_8_2
  doi: 10.1038/nchem.2492
– ident: e_1_2_4_3_1
  doi: 10.1038/ncomms7368
– ident: e_1_2_4_11_1
  doi: 10.1016/j.polymer.2018.02.020
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.200801258
– ident: e_1_2_4_6_2
  doi: 10.1016/j.polymer.2016.06.053
– ident: e_1_2_4_9_2
  doi: 10.1039/c2jm33643j
– ident: e_1_2_4_2_2
  doi: 10.1021/acsnano.7b05885
– ident: e_1_2_4_8_3
  doi: 10.1021/acs.macromol.7b01607
– ident: e_1_2_4_7_1
  doi: 10.1002/anie.201705462
– ident: e_1_2_4_6_3
  doi: 10.1073/pnas.1703616114
– ident: e_1_2_4_16_1
  doi: 10.1002/adfm.201303555
– ident: e_1_2_4_5_4
  doi: 10.1039/C6TC01340F
– ident: e_1_2_4_13_1
  doi: 10.1021/ma201585v
– ident: e_1_2_4_5_2
  doi: 10.1002/adfm.201401562
– ident: e_1_2_4_5_7
  doi: 10.1002/aelm.201600260
– ident: e_1_2_4_10_8
  doi: 10.1039/C7CC06126A
– ident: e_1_2_4_4_2
  doi: 10.1002/adma.201500281
– ident: e_1_2_4_5_6
  doi: 10.1002/adma.201605050
– ident: e_1_2_4_6_1
  doi: 10.1016/j.snb.2016.05.027
– ident: e_1_2_4_5_10
  doi: 10.1002/adma.201703678
– ident: e_1_2_4_5_5
  doi: 10.1038/nmat4635
– ident: e_1_2_4_8_1
  doi: 10.1002/anie.201412475
– ident: e_1_2_4_10_2
  doi: 10.1038/nature09963
– ident: e_1_2_4_10_9
  doi: 10.1002/adfm.201606339
– ident: e_1_2_4_2_1
  doi: 10.1021/am900074v
– ident: e_1_2_4_5_9
  doi: 10.1002/adma.201604209
– ident: e_1_2_4_5_8
  doi: 10.1038/nature23673
– ident: e_1_2_4_17_1
  doi: 10.1021/la0521037
– ident: e_1_2_4_10_4
  doi: 10.1002/adma.201203865
– ident: e_1_2_4_10_1
  doi: 10.1038/nature06669
– ident: e_1_2_4_1_1
  doi: 10.1038/386143a0
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201870073
– ident: e_1_2_4_1_5
  doi: 10.1002/adfm.201802585
SSID ssj0009606
Score 2.6508744
Snippet Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1805496
SubjectTerms angle‐independent
Cerium
Chlorides
Color
Elastomers
Elongated structure
Healing
Materials science
Mechanical properties
metallosupramolecular coordination
Modulus of elasticity
Nanoparticles
Optical coatings
Optical properties
photonic crystals
Photonics
Polydimethylsiloxane
self‐healing
Silicon dioxide
Wearable technology
Title Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201805496
https://www.ncbi.nlm.nih.gov/pubmed/30548887
https://www.proquest.com/docview/2177157904
https://www.proquest.com/docview/2157652800
Volume 31
WOSCitedRecordID wos000459630600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-thQd4YBt_RhhDnoTEk0XqxLHzWBWqTQKEYEh9ixzbAaQurdp00t74CHxGPgnnJE2pEELa3hLZTizbd_c7n_07gEPNUWh4ain3WUpDZWIqscM0ROdBo8lVMigvCp-Jiws5GMSXL27xV_wQzYabk4xSXzsBV-n0eEEaqkzJG9SRCDriqAUrDBcvb8PKyVX_5mxBvBuV-TVdvI_GUSjnxI0-O17-wrJheoU2l8FraX36H_-_359go0aepFstlc_wweabsP6Cj3ALsnNbuED8dDaeqN_zxLnk8m5UOAZdcopQuxi5nW7i9m_JtR1mTw-P7ioTtic9NLzlWdu_ROWGdPPbocXin02m3YL0UNdOtuGmf_qr94PWiRioDkQQUaUyRC5GKBf09LmJjLYS9SLjLDJcZFlmjcv5q3GqTcYyJjrMCERCGsGP9nWwA-18lNtdID7CF6Edo42UoeRR2ol8pkN0glLf4HrygM5nIdE1S7lLljFMKn5llrjxS5rx8-CoqT-u-DnerLk_n9SkltNpgg6Z6HAR-6EH35tilDAXNlG5Hc1cHfTJOENk7cGXajE0v8LRQA0ohQesnPN3-pB0T867zdvevzT6Cmv4HJcHx-U-tIvJzH6DVf2nuJ9ODqAlBvKgloFngLEIWg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTtswFD5iMGnjYrCNQTYGnjRpVxapG8fOZVWoQGsrxEDiLnJtByZ1KWpTpN3tEXhGnmTnJGlYNU1IE5eJ7cSyz8_nY_s7AJ-tRKWRI89lKEY8Mi7hGjvMI1w8WHS5RrfLi8J9NRzqy8vktD5NSHdhKn6IJuBGmlHaa1JwCkgfPLCGGlcSB7U0oo4kfgZrEcoSCvna4Vnvov_AvBuXCTZpw48ncaQXzI2hOFj-wrJn-gtuLqPX0v30Np6g45vwqsaerFMJy2tY8fkbWP-DkfAtZANf0Fb8bH4zNT8WqXPZ6fWkIA5ddoRgu5hQrJtRBJd98-Ps_tcdXWbC9qyLrrc8bfuTmdyxTn419lh80uTaLVgXre10Cy56R-fdY16nYuC2rdoxNyZD7OKUoW3PULrYWa_RMgopYidVlmXeUdZfi5PtMpEJ1RJOIRayCH9saNvvYDWf5H4HWIgARlnitNE60jIeteJQ2AiXQaPQoUQFwBfTkNqap5zSZYzTimFZpDR-aTN-AXxp6t9UDB3_rLm7mNW01tRZiksy1ZIqCaMAPjXFqGO0cWJyP5lTHVyVSYHYOoDtShqaX-FooA3UKgBRTvojfUg7h4NO8_T-fxrtw4vj80E_7Z8Mv36Al_g-KY-R611YLaZz_xGe29vi-2y6V6vCbxhLC2I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9BhxA8jP8QNsBISDxZS904dh6rdhUTXVUBk_YWuf4zkEpatSnS3vYR-Ix8Eu6SNKNCCAnxmNhOLJ_v_Duf_TuAN1ai0siZ5zIWM54Yl3GNHeYJOg8Wl1yje9VF4bGaTPT5eTZtThPSXZiaH6LdcCPNqOw1KbhfunB0zRpqXEUc1NWIOrL0JuwllEmmA3vDD6Oz8TXzblol2KSAH8_SRG-ZG2NxtPuF3ZXpN7i5i16r5Wd07z90_D7sN9iT9evJ8gBu-OIh3P2FkfARhFNfUih-vVmuzNdt6lw2_bwoiUOXHSPYLhe0181oB5d99PPw4-o7XWbC9myAS2912vaSmcKxfnEx91h80ubaLdkAre3qMZyNjj8N3vEmFQO3PdVLuTEBsYtThsKesXSps16jZRRSpE6qEIJ3lPXXorBdEEGornAKsZBF-GNj23sCnWJR-GfAYgQwyhKnjdaJlumsm8bCJugGzWKHMyoCvhVDbhueckqXMc9rhmWR0_jl7fhF8Latv6wZOv5Y83Ar1bzR1HWOLpnqSpXFSQSv22LUMQqcmMIvNlQHvTIpEFtH8LSeDe2vcDTQBmoVgaiE_pc-5P3hab99ev4vjV7B7elwlI9PJu8P4A6-zqpT5PoQOuVq41_ALfut_LJevWw04SeSrQrd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallosupramolecular+Photonic+Elastomers+with+Self-Healing+Capability+and+Angle-Independent+Color&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Haiying&rft.au=Lyu%2C+Quanqian&rft.au=Xie%2C+Zhanjun&rft.au=Li%2C+Miaomiao&rft.date=2019-02-08&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=6&rft.spage=e1805496&rft_id=info:doi/10.1002%2Fadma.201805496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon