Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color
Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based ph...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 31; H. 6; S. e1805496 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
08.02.2019
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Photonic elastomers with self‐healing capability and angle‐independent color are fabricated through the combination of a supramolecular elastomer with isotropic nanostructures, exhibiting chameleon‐skin‐like mechanochromic capability. Interestingly, the photonic elastomers are capable of healing scratches or cuts, ensuring the optical and mechanical properties. |
|---|---|
| AbstractList | Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
Photonic elastomers with self‐healing capability and angle‐independent color are fabricated through the combination of a supramolecular elastomer with isotropic nanostructures, exhibiting chameleon‐skin‐like mechanochromic capability. Interestingly, the photonic elastomers are capable of healing scratches or cuts, ensuring the optical and mechanical properties. Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young's modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer‐based photonic elastomers with tunable mechanical strength, angle‐independent structural color, and self‐healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO 2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino‐terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle‐independent structural colors, while Young's modulus and elongation at break of the as‐formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon‐skin‐like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing. |
| Author | Li, Miaomiao Lyu, Quanqian Xie, Zhanjun Zhang, Lianbin Tan, Haiying Wang, Ke Wang, Kui Xiong, Bijin Zhu, Jintao |
| Author_xml | – sequence: 1 givenname: Haiying surname: Tan fullname: Tan, Haiying organization: Huazhong University of Science and Technology – sequence: 2 givenname: Quanqian surname: Lyu fullname: Lyu, Quanqian organization: Huazhong University of Science and Technology – sequence: 3 givenname: Zhanjun surname: Xie fullname: Xie, Zhanjun organization: Huazhong University of Science and Technology – sequence: 4 givenname: Miaomiao surname: Li fullname: Li, Miaomiao organization: Huazhong University of Science and Technology – sequence: 5 givenname: Kui surname: Wang fullname: Wang, Kui organization: Huazhong University of Science and Technology – sequence: 6 givenname: Ke surname: Wang fullname: Wang, Ke organization: Huazhong University of Science and Technology – sequence: 7 givenname: Bijin surname: Xiong fullname: Xiong, Bijin organization: Huazhong University of Science and Technology – sequence: 8 givenname: Lianbin surname: Zhang fullname: Zhang, Lianbin email: zhanglianbin@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 9 givenname: Jintao orcidid: 0000-0002-8230-3923 surname: Zhu fullname: Zhu, Jintao email: jtzhu@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548887$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0U1rFTEUBuAgFXtb3bqUATdu5nqS-chkebmtttCioK6H03y0KZlkTDKUu_Mn-Bv9JabcWqEgbpJFnjc55D0iBz54TchrCmsKwN6jmnDNgA7QtaJ_Rla0Y7RuQXQHZAWi6WrRt8MhOUrpFgBED_0LctgUPQwDXxFzqTM6F9IyR5yC03JxGKvPNyEHb2V16jDlMOmYqjubb6ov2plfP36eaXTWX1dbnPHKOpt3FXpVbfy10-X43Cs967L4XG2DC_EleW7QJf3qYT8m3z6cft2e1RefPp5vNxe1bHjT14gG-lZx5B2UGVWvpB6U0qxjveq4MUYrCrSVqIQyzDBOmeKDaKRouATZHJN3-3vnGL4vOuVxsklq59DrsKSR0Y73HRsACn37hN6GJfoyXVGcFyigLerNg1quJq3GOdoJ427884MFrPdAxpBS1OaRUBjvKxrvKxofKyqB9klA2ozZBp8jWvfvmNjH7qzTu_88Mm5OLjd_s78B_ZyonQ |
| CitedBy_id | crossref_primary_10_1016_j_cej_2020_126504 crossref_primary_10_1016_j_cej_2021_131259 crossref_primary_10_1016_j_porgcoat_2023_108153 crossref_primary_10_1002_adma_202002800 crossref_primary_10_1002_smll_202103271 crossref_primary_10_1016_j_apmt_2021_101276 crossref_primary_10_1002_adfm_202410921 crossref_primary_10_1002_adfm_202204744 crossref_primary_10_1007_s10118_025_3286_x crossref_primary_10_1002_adom_202401139 crossref_primary_10_1002_aenm_202302038 crossref_primary_10_1146_annurev_matsci_080423_124646 crossref_primary_10_1002_adma_201905876 crossref_primary_10_1007_s12274_023_5920_7 crossref_primary_10_1002_adfm_202104991 crossref_primary_10_1039_D0MH00535E crossref_primary_10_1002_advs_202304506 crossref_primary_10_1002_agt2_109 crossref_primary_10_1002_smll_202201012 crossref_primary_10_1002_adfm_202108830 crossref_primary_10_1007_s10570_023_05117_8 crossref_primary_10_1016_j_dyepig_2023_111915 crossref_primary_10_1016_j_nxmate_2024_100412 crossref_primary_10_1002_marc_202100867 crossref_primary_10_1016_j_mser_2021_100647 crossref_primary_10_1016_j_cej_2024_151273 crossref_primary_10_1016_j_cej_2021_132342 crossref_primary_10_1002_aenm_202101443 crossref_primary_10_1016_j_polymer_2020_123119 crossref_primary_10_1038_s41467_024_49860_3 crossref_primary_10_1016_j_cej_2020_127023 crossref_primary_10_1016_j_matdes_2022_110475 crossref_primary_10_1002_SMMD_20220026 crossref_primary_10_1016_j_porgcoat_2025_109100 crossref_primary_10_1016_j_cej_2024_149966 crossref_primary_10_3390_polym12010083 crossref_primary_10_1002_app_49916 crossref_primary_10_1039_D2NR05821A crossref_primary_10_1016_j_cej_2023_141965 crossref_primary_10_1002_smll_201907626 crossref_primary_10_1016_j_carbpol_2025_123678 crossref_primary_10_1016_j_jcis_2024_10_178 crossref_primary_10_1002_smm2_1252 crossref_primary_10_1002_adfm_202000356 crossref_primary_10_3390_polym15122635 crossref_primary_10_1016_j_measurement_2023_114010 crossref_primary_10_1039_D4MH01172D crossref_primary_10_1080_02678292_2023_2200265 crossref_primary_10_1016_j_cej_2024_150969 crossref_primary_10_1016_j_jcis_2024_11_001 crossref_primary_10_1002_cplu_202400002 crossref_primary_10_1002_syst_202100016 crossref_primary_10_1016_j_cej_2023_146602 crossref_primary_10_3390_gels10080506 crossref_primary_10_1002_smll_202405426 crossref_primary_10_1016_j_cej_2021_130870 crossref_primary_10_1007_s42765_022_00174_3 crossref_primary_10_1002_admi_202201252 crossref_primary_10_1016_j_dyepig_2021_109864 crossref_primary_10_3390_cryst10080675 crossref_primary_10_1016_j_mtcomm_2022_103398 crossref_primary_10_1016_j_jcis_2020_02_107 crossref_primary_10_1002_marc_202400450 crossref_primary_10_1016_j_cej_2025_161344 crossref_primary_10_1002_adfm_202000008 crossref_primary_10_1002_adma_202211342 crossref_primary_10_1002_sstr_202000110 crossref_primary_10_1016_j_apsusc_2024_161946 crossref_primary_10_1016_j_cis_2024_103272 crossref_primary_10_1016_j_polymer_2020_122886 crossref_primary_10_1002_adfm_202408800 crossref_primary_10_1002_advs_202202897 crossref_primary_10_1016_j_cej_2024_156362 crossref_primary_10_1002_smll_202003638 crossref_primary_10_1002_admi_202200051 crossref_primary_10_1002_adma_202406714 crossref_primary_10_1002_adfm_202313781 crossref_primary_10_1002_marc_202000528 crossref_primary_10_1016_j_eurpolymj_2025_114281 crossref_primary_10_1002_adfm_202210047 crossref_primary_10_1002_adma_202001467 crossref_primary_10_1002_anie_201911468 crossref_primary_10_1002_marc_202500173 crossref_primary_10_3390_biomimetics8030286 crossref_primary_10_1016_j_jlumin_2022_119646 crossref_primary_10_1002_admt_202100479 crossref_primary_10_1002_adfm_202215055 crossref_primary_10_1016_j_cej_2022_139075 crossref_primary_10_1039_D4TC05318D crossref_primary_10_1002_admt_202100118 crossref_primary_10_1016_j_cej_2020_127581 crossref_primary_10_1002_adom_202402139 crossref_primary_10_1002_marc_201900038 crossref_primary_10_1002_smll_202502181 crossref_primary_10_1088_1361_6528_ac659d crossref_primary_10_1016_j_pnsc_2024_07_022 crossref_primary_10_1016_j_compositesb_2021_109456 crossref_primary_10_1039_D0QM00025F crossref_primary_10_1016_j_compositesb_2021_109213 crossref_primary_10_1016_j_ijbiomac_2023_123152 crossref_primary_10_1016_j_jcis_2025_138655 crossref_primary_10_1021_acs_nanolett_5c02222 crossref_primary_10_1021_polymscitech_5c00037 crossref_primary_10_1007_s11595_021_2408_8 crossref_primary_10_1002_adom_202100831 crossref_primary_10_1016_j_jcis_2024_12_018 crossref_primary_10_1002_adom_202000984 crossref_primary_10_1177_24723444231220700 crossref_primary_10_1002_aisy_202000108 crossref_primary_10_1016_j_matdes_2020_109039 crossref_primary_10_1016_j_ijbiomac_2024_137675 crossref_primary_10_1016_j_optmat_2025_117312 crossref_primary_10_1016_j_snb_2020_129137 crossref_primary_10_1002_adpr_202100043 crossref_primary_10_1002_adfm_202411670 crossref_primary_10_1016_j_jcis_2021_07_112 crossref_primary_10_1016_j_mtchem_2021_100708 crossref_primary_10_1016_j_materresbull_2025_113651 crossref_primary_10_1016_j_dyepig_2021_109676 crossref_primary_10_1002_smtd_202200461 crossref_primary_10_1016_j_cej_2020_124142 crossref_primary_10_1016_j_cej_2022_140591 crossref_primary_10_1002_adma_202110488 crossref_primary_10_1039_D0PY01096K crossref_primary_10_1039_D2MH00410K crossref_primary_10_1016_j_jallcom_2021_162433 crossref_primary_10_1002_admi_202001950 crossref_primary_10_1016_j_polymer_2022_124878 crossref_primary_10_1002_adsr_202200078 crossref_primary_10_1016_j_cej_2023_143418 crossref_primary_10_1016_j_cej_2023_143937 crossref_primary_10_1002_adhm_202404723 crossref_primary_10_1002_marc_202100768 crossref_primary_10_1016_j_cej_2022_138285 crossref_primary_10_1002_aesr_202300289 crossref_primary_10_1002_adom_202001207 crossref_primary_10_1002_adfm_202009017 crossref_primary_10_1002_smll_202007426 crossref_primary_10_1016_j_ceramint_2023_11_311 crossref_primary_10_1002_ange_201911468 crossref_primary_10_1016_j_progpolymsci_2023_101724 crossref_primary_10_1021_acs_iecr_5c02768 |
| Cites_doi | 10.1002/anie.201704752 10.1126/science.aan0221 10.1002/adma.201600480 10.1007/s11426-012-4511-3 10.1002/adma.201504723 10.1021/acsnano.7b05109 10.1002/adfm.201800560 10.1002/adma.201301909 10.1002/anie.200907091 10.1016/j.progpolymsci.2012.05.003 10.1021/jacs.8b01682 10.1002/adfm.201800741 10.1126/science.1260318 10.1021/acsami.7b08636 10.1126/science.aar5308 10.1021/la4030266 10.1002/adma.201707344 10.1002/anie.201507503 10.1021/acs.macromol.5b02756 10.1038/nchem.2492 10.1038/ncomms7368 10.1016/j.polymer.2018.02.020 10.1002/adma.200801258 10.1016/j.polymer.2016.06.053 10.1039/c2jm33643j 10.1021/acsnano.7b05885 10.1021/acs.macromol.7b01607 10.1002/anie.201705462 10.1073/pnas.1703616114 10.1002/adfm.201303555 10.1039/C6TC01340F 10.1021/ma201585v 10.1002/adfm.201401562 10.1002/aelm.201600260 10.1039/C7CC06126A 10.1002/adma.201500281 10.1002/adma.201605050 10.1016/j.snb.2016.05.027 10.1002/adma.201703678 10.1038/nmat4635 10.1002/anie.201412475 10.1038/nature09963 10.1002/adfm.201606339 10.1021/am900074v 10.1002/adma.201604209 10.1038/nature23673 10.1021/la0521037 10.1002/adma.201203865 10.1038/nature06669 10.1038/386143a0 10.1002/adma.201870073 10.1002/adfm.201802585 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201805496 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 30548887 10_1002_adma_201805496 ADMA201805496 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Open Research Fund of State Key Lab of Polym Phys Chem – fundername: CIAC – fundername: NSFC funderid: 51525302 – fundername: CAS funderid: 2017‐27 – fundername: NSF of the Hubei Scientific Committee funderid: 2016CFA001 – fundername: CAS grantid: 2017-27 – fundername: NSFC grantid: 51525302 – fundername: NSF of the Hubei Scientific Committee grantid: 2016CFA001 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3736-aaf064d7a750305d6dce8dde2526d57fffed1014cad9df2f2712d7893c937c0c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 224 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459630600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 10:46:05 EST 2025 Sun Nov 30 04:45:56 EST 2025 Mon Jul 21 05:43:12 EDT 2025 Tue Nov 18 22:33:10 EST 2025 Sat Nov 29 07:20:43 EST 2025 Wed Jan 22 16:23:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | photonic crystals elastomers angle-independent metallosupramolecular coordination self-healing |
| Language | English |
| License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3736-aaf064d7a750305d6dce8dde2526d57fffed1014cad9df2f2712d7893c937c0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8230-3923 |
| PMID | 30548887 |
| PQID | 2177157904 |
| PQPubID | 2045203 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2157652800 proquest_journals_2177157904 pubmed_primary_30548887 crossref_primary_10_1002_adma_201805496 crossref_citationtrail_10_1002_adma_201805496 wiley_primary_10_1002_adma_201805496_ADMA201805496 |
| PublicationCentury | 2000 |
| PublicationDate | February 8, 2019 |
| PublicationDateYYYYMMDD | 2019-02-08 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 8, 2019 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015 2016 2017; 54 8 50 2015 2017 2018; 6 357 359 2013; 25 2013 2015; 29 27 2018; 139 2006; 22 2017; 56 2009 2012 2015; 21 22 54 2016 2016 2017; 234 98 114 2011; 44 2014; 24 2018; 30 1996; 1 1997 2011 2018 2018 2018; 386 50 57 30 28 2009 2017; 1 11 2013 2014 2015 2016 2016 2017 2017 2017 2017 2018; 38 24 347 4 15 29 3 549 29 30 2008 2011 2012 2013 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018; 451 472 55 25 28 28 49 53 27 9 11 28 28 140 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_1_5 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_3_2 e_1_2_4_5_3 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_5_5 e_1_2_4_9_1 e_1_2_4_5_4 e_1_2_4_5_7 e_1_2_4_9_3 e_1_2_4_5_6 e_1_2_4_9_2 e_1_2_4_5_9 e_1_2_4_5_8 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_10_4 e_1_2_4_10_5 e_1_2_4_14_1 e_1_2_4_10_6 e_1_2_4_16_1 e_1_2_4_10_7 e_1_2_4_10_8 e_1_2_4_10_9 White J. R. (e_1_2_4_15_1) 1996 e_1_2_4_10_11 e_1_2_4_10_12 e_1_2_4_10_13 e_1_2_4_10_14 e_1_2_4_10_10 e_1_2_4_5_10 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_6_2 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_6_3 e_1_2_4_8_1 e_1_2_4_8_3 e_1_2_4_11_1 e_1_2_4_13_1 e_1_2_4_17_1 |
| References_xml | – volume: 139 start-page: 130 year: 2018 publication-title: Polymer – volume: 1 11 start-page: 982 11350 year: 2009 2017 publication-title: ACS Appl. Mater. Interfaces ACS Nano – volume: 44 start-page: 7820 year: 2011 publication-title: Macromolecules – volume: 24 start-page: 3197 year: 2014 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1870073 year: 2018 publication-title: Adv. Mater. – volume: 6 357 359 start-page: 6368 470 1509 year: 2015 2017 2018 publication-title: Nat. Commun. Science Science – volume: 234 98 114 start-page: 527 516 5900 year: 2016 2016 2017 publication-title: Sens. Actuators, B Polymer Proc. Natl. Acad. Sci., USA – volume: 54 8 50 start-page: 3630 618 8845 year: 2015 2016 2017 publication-title: Angew. Chem., Int. Ed. Nat. Chem. Macromolecules – volume: 25 start-page: 5314 year: 2013 publication-title: Adv. Mater. – volume: 21 22 54 start-page: 1801 23299 15368 year: 2009 2012 2015 publication-title: Adv. Mater. J. Mater. Chem. Angew. Chem., Int. Ed. – volume: 29 27 start-page: 13951 2489 year: 2013 2015 publication-title: Langmuir Adv. Mater. – volume: 451 472 55 25 28 28 49 53 27 9 11 28 28 140 start-page: 977 334 648 1634 4678 2455 1781 12088 1606339 29120 11074 1800560 1800741 5280 year: 2008 2011 2012 2013 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 publication-title: Nature Nature Sci. China: Chem. Adv. Mater. Adv. Mater. Adv. Mater. Macromolecules Chem. Commun. Adv. Funct. Mater. ACS Appl. Mater. Interfaces ACS Nano Adv. Funct. Mater. Adv. Funct. Mater. J. Am. Chem. Soc. – volume: 1 start-page: 1 year: 1996 end-page: 598 – volume: 56 start-page: 10462 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 386 50 57 30 28 start-page: 143 1492 2544 1707344 1802585 year: 1997 2011 2018 2018 2018 publication-title: Nature Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater. – volume: 38 24 347 4 15 29 3 549 29 30 start-page: 584 6430 159 5839 911 1605050 1600260 497 1604209 1703678 year: 2013 2014 2015 2016 2016 2017 2017 2017 2017 2018 publication-title: Prog. Polym. Sci. Adv. Funct. Mater. Science J. Mater. Chem. C Nat. Mater. Adv. Mater. Adv. Electron. Mater. Nature Adv. Mater. Adv. Mater. – volume: 22 start-page: 1365 year: 2006 publication-title: Langmuir – ident: e_1_2_4_1_3 doi: 10.1002/anie.201704752 – ident: e_1_2_4_3_2 doi: 10.1126/science.aan0221 – ident: e_1_2_4_10_5 doi: 10.1002/adma.201600480 – start-page: 1 volume-title: Rubber Technologist's Handbook year: 1996 ident: e_1_2_4_15_1 – ident: e_1_2_4_10_3 doi: 10.1007/s11426-012-4511-3 – ident: e_1_2_4_10_6 doi: 10.1002/adma.201504723 – ident: e_1_2_4_10_11 doi: 10.1021/acsnano.7b05109 – ident: e_1_2_4_10_12 doi: 10.1002/adfm.201800560 – ident: e_1_2_4_12_1 doi: 10.1002/adma.201301909 – ident: e_1_2_4_1_2 doi: 10.1002/anie.200907091 – ident: e_1_2_4_5_1 doi: 10.1016/j.progpolymsci.2012.05.003 – ident: e_1_2_4_10_14 doi: 10.1021/jacs.8b01682 – ident: e_1_2_4_10_13 doi: 10.1002/adfm.201800741 – ident: e_1_2_4_5_3 doi: 10.1126/science.1260318 – ident: e_1_2_4_10_10 doi: 10.1021/acsami.7b08636 – ident: e_1_2_4_3_3 doi: 10.1126/science.aar5308 – ident: e_1_2_4_4_1 doi: 10.1021/la4030266 – ident: e_1_2_4_1_4 doi: 10.1002/adma.201707344 – ident: e_1_2_4_9_3 doi: 10.1002/anie.201507503 – ident: e_1_2_4_10_7 doi: 10.1021/acs.macromol.5b02756 – ident: e_1_2_4_8_2 doi: 10.1038/nchem.2492 – ident: e_1_2_4_3_1 doi: 10.1038/ncomms7368 – ident: e_1_2_4_11_1 doi: 10.1016/j.polymer.2018.02.020 – ident: e_1_2_4_9_1 doi: 10.1002/adma.200801258 – ident: e_1_2_4_6_2 doi: 10.1016/j.polymer.2016.06.053 – ident: e_1_2_4_9_2 doi: 10.1039/c2jm33643j – ident: e_1_2_4_2_2 doi: 10.1021/acsnano.7b05885 – ident: e_1_2_4_8_3 doi: 10.1021/acs.macromol.7b01607 – ident: e_1_2_4_7_1 doi: 10.1002/anie.201705462 – ident: e_1_2_4_6_3 doi: 10.1073/pnas.1703616114 – ident: e_1_2_4_16_1 doi: 10.1002/adfm.201303555 – ident: e_1_2_4_5_4 doi: 10.1039/C6TC01340F – ident: e_1_2_4_13_1 doi: 10.1021/ma201585v – ident: e_1_2_4_5_2 doi: 10.1002/adfm.201401562 – ident: e_1_2_4_5_7 doi: 10.1002/aelm.201600260 – ident: e_1_2_4_10_8 doi: 10.1039/C7CC06126A – ident: e_1_2_4_4_2 doi: 10.1002/adma.201500281 – ident: e_1_2_4_5_6 doi: 10.1002/adma.201605050 – ident: e_1_2_4_6_1 doi: 10.1016/j.snb.2016.05.027 – ident: e_1_2_4_5_10 doi: 10.1002/adma.201703678 – ident: e_1_2_4_5_5 doi: 10.1038/nmat4635 – ident: e_1_2_4_8_1 doi: 10.1002/anie.201412475 – ident: e_1_2_4_10_2 doi: 10.1038/nature09963 – ident: e_1_2_4_10_9 doi: 10.1002/adfm.201606339 – ident: e_1_2_4_2_1 doi: 10.1021/am900074v – ident: e_1_2_4_5_9 doi: 10.1002/adma.201604209 – ident: e_1_2_4_5_8 doi: 10.1038/nature23673 – ident: e_1_2_4_17_1 doi: 10.1021/la0521037 – ident: e_1_2_4_10_4 doi: 10.1002/adma.201203865 – ident: e_1_2_4_10_1 doi: 10.1038/nature06669 – ident: e_1_2_4_1_1 doi: 10.1038/386143a0 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201870073 – ident: e_1_2_4_1_5 doi: 10.1002/adfm.201802585 |
| SSID | ssj0009606 |
| Score | 2.6508744 |
| Snippet | Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1805496 |
| SubjectTerms | angle‐independent Cerium Chlorides Color Elastomers Elongated structure Healing Materials science Mechanical properties metallosupramolecular coordination Modulus of elasticity Nanoparticles Optical coatings Optical properties photonic crystals Photonics Polydimethylsiloxane self‐healing Silicon dioxide Wearable technology |
| Title | Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201805496 https://www.ncbi.nlm.nih.gov/pubmed/30548887 https://www.proquest.com/docview/2177157904 https://www.proquest.com/docview/2157652800 |
| Volume | 31 |
| WOSCitedRecordID | wos000459630600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-thQd4YBt_RhhDnoTEk0XqxLHzWBWqTQKEYEh9ixzbAaQurdp00t74CHxGPgnnJE2pEELa3hLZTizbd_c7n_07gEPNUWh4ain3WUpDZWIqscM0ROdBo8lVMigvCp-Jiws5GMSXL27xV_wQzYabk4xSXzsBV-n0eEEaqkzJG9SRCDriqAUrDBcvb8PKyVX_5mxBvBuV-TVdvI_GUSjnxI0-O17-wrJheoU2l8FraX36H_-_359go0aepFstlc_wweabsP6Cj3ALsnNbuED8dDaeqN_zxLnk8m5UOAZdcopQuxi5nW7i9m_JtR1mTw-P7ioTtic9NLzlWdu_ROWGdPPbocXin02m3YL0UNdOtuGmf_qr94PWiRioDkQQUaUyRC5GKBf09LmJjLYS9SLjLDJcZFlmjcv5q3GqTcYyJjrMCERCGsGP9nWwA-18lNtdID7CF6Edo42UoeRR2ol8pkN0glLf4HrygM5nIdE1S7lLljFMKn5llrjxS5rx8-CoqT-u-DnerLk_n9SkltNpgg6Z6HAR-6EH35tilDAXNlG5Hc1cHfTJOENk7cGXajE0v8LRQA0ohQesnPN3-pB0T867zdvevzT6Cmv4HJcHx-U-tIvJzH6DVf2nuJ9ODqAlBvKgloFngLEIWg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTtswFD5iMGnjYrCNQTYGnjRpVxapG8fOZVWoQGsrxEDiLnJtByZ1KWpTpN3tEXhGnmTnJGlYNU1IE5eJ7cSyz8_nY_s7AJ-tRKWRI89lKEY8Mi7hGjvMI1w8WHS5RrfLi8J9NRzqy8vktD5NSHdhKn6IJuBGmlHaa1JwCkgfPLCGGlcSB7U0oo4kfgZrEcoSCvna4Vnvov_AvBuXCTZpw48ncaQXzI2hOFj-wrJn-gtuLqPX0v30Np6g45vwqsaerFMJy2tY8fkbWP-DkfAtZANf0Fb8bH4zNT8WqXPZ6fWkIA5ddoRgu5hQrJtRBJd98-Ps_tcdXWbC9qyLrrc8bfuTmdyxTn419lh80uTaLVgXre10Cy56R-fdY16nYuC2rdoxNyZD7OKUoW3PULrYWa_RMgopYidVlmXeUdZfi5PtMpEJ1RJOIRayCH9saNvvYDWf5H4HWIgARlnitNE60jIeteJQ2AiXQaPQoUQFwBfTkNqap5zSZYzTimFZpDR-aTN-AXxp6t9UDB3_rLm7mNW01tRZiksy1ZIqCaMAPjXFqGO0cWJyP5lTHVyVSYHYOoDtShqaX-FooA3UKgBRTvojfUg7h4NO8_T-fxrtw4vj80E_7Z8Mv36Al_g-KY-R611YLaZz_xGe29vi-2y6V6vCbxhLC2I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9BhxA8jP8QNsBISDxZS904dh6rdhUTXVUBk_YWuf4zkEpatSnS3vYR-Ix8Eu6SNKNCCAnxmNhOLJ_v_Duf_TuAN1ai0siZ5zIWM54Yl3GNHeYJOg8Wl1yje9VF4bGaTPT5eTZtThPSXZiaH6LdcCPNqOw1KbhfunB0zRpqXEUc1NWIOrL0JuwllEmmA3vDD6Oz8TXzblol2KSAH8_SRG-ZG2NxtPuF3ZXpN7i5i16r5Wd07z90_D7sN9iT9evJ8gBu-OIh3P2FkfARhFNfUih-vVmuzNdt6lw2_bwoiUOXHSPYLhe0181oB5d99PPw4-o7XWbC9myAS2912vaSmcKxfnEx91h80ubaLdkAre3qMZyNjj8N3vEmFQO3PdVLuTEBsYtThsKesXSps16jZRRSpE6qEIJ3lPXXorBdEEGornAKsZBF-GNj23sCnWJR-GfAYgQwyhKnjdaJlumsm8bCJugGzWKHMyoCvhVDbhueckqXMc9rhmWR0_jl7fhF8Latv6wZOv5Y83Ar1bzR1HWOLpnqSpXFSQSv22LUMQqcmMIvNlQHvTIpEFtH8LSeDe2vcDTQBmoVgaiE_pc-5P3hab99ev4vjV7B7elwlI9PJu8P4A6-zqpT5PoQOuVq41_ALfut_LJevWw04SeSrQrd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallosupramolecular+Photonic+Elastomers+with+Self-Healing+Capability+and+Angle-Independent+Color&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Haiying&rft.au=Lyu%2C+Quanqian&rft.au=Xie%2C+Zhanjun&rft.au=Li%2C+Miaomiao&rft.date=2019-02-08&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=6&rft.spage=e1805496&rft_id=info:doi/10.1002%2Fadma.201805496&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |