Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc‐Organic Batteries
The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed...
Gespeichert in:
| Veröffentlicht in: | Angewandte Chemie International Edition Jg. 63; H. 29; S. e202406465 - n/a |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
15.07.2024
|
| Ausgabe: | International ed. in English |
| Schlagworte: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs.
A series of quinone‐based small molecules with progressive hydrogen bond (H‐bond) numbers has been rationally designed to reveal the real effects of H‐bond on the electrochemical performance of organic electrode materials (OEMs) in rechargeable aqueous zinc‐organic batteries (ZOBs). The appropriate number of H‐bonds in OEM improves its structure stability and utilization of active sites and reduces the battery polarization, contributing to the construction of high‐performance ZOBs. |
|---|---|
| AbstractList | The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g
at a record-high mass loading of 66.2 mg cm
and 100 % capacity retention after 1500 cycles at 5 A g
. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs. The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g −1 at a record‐high mass loading of 66.2 mg cm −2 and 100 % capacity retention after 1500 cycles at 5 A g −1 . In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs. The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs. The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs. A series of quinone‐based small molecules with progressive hydrogen bond (H‐bond) numbers has been rationally designed to reveal the real effects of H‐bond on the electrochemical performance of organic electrode materials (OEMs) in rechargeable aqueous zinc‐organic batteries (ZOBs). The appropriate number of H‐bonds in OEM improves its structure stability and utilization of active sites and reduces the battery polarization, contributing to the construction of high‐performance ZOBs. The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs. |
| Author | Zhang, Xin‐Bo Huang, Gang Guo, Jun Du, Jia‐Yi Liu, Wan‐Qiang |
| Author_xml | – sequence: 1 givenname: Jun surname: Guo fullname: Guo, Jun organization: Chinese Academy of Sciences – sequence: 2 givenname: Jia‐Yi surname: Du fullname: Du, Jia‐Yi organization: Chinese Academy of Sciences – sequence: 3 givenname: Wan‐Qiang surname: Liu fullname: Liu, Wan‐Qiang email: wqliu1979@126.com organization: Changchun University of Science and Technology – sequence: 4 givenname: Gang surname: Huang fullname: Huang, Gang email: ghuang@ciac.ac.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Xin‐Bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin‐Bo email: xbzhang@ciac.ac.cn organization: Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38705847$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1qGzEURkVJqBO32y7DQDfZjCuNpLny0gnOD4QaQrvpRsiaK0dmrEmlcYJ3eYQ8Y56kMo5bCIQuhAQ65_Jxv2NyELqAhHxhdMQorb6Z4HFU0UrQWtTyAzlismIlB-AH-S04L0FJNiDHKS0zrxStP5IBV0ClEnBEZrf4gKb1YVFcbZrYLTAUZ11oiqlzaPvCh-IW7Z2JCzTzFovJ7zV261T88sG-PD3P4iInsMWZ6XuMHtMncuhMm_Dz6z0kPy-mP86vypvZ5fX55Ka0HLgswTZjgcZYsA5UJVzD59SBG1ugFCxVKMC4hjIHorIGpFP5Lx-0tWSy5kNyupt7H7scKfV65ZPFtjVhm09zKpmopKAqo1_foMtuHUNOlymoayUYyEydvFLr-QobfR_9ysSN3q8qA2IH2NilFNFp63vT-y700fhWM6q3jehtI_pvI1kbvdH2k98Vxjvh0be4-Q-tJ9-vp__cP3FBniw |
| CitedBy_id | crossref_primary_10_1002_adfm_202421240 crossref_primary_10_1002_ange_202418237 crossref_primary_10_1016_j_cej_2025_166985 crossref_primary_10_1021_acs_energyfuels_5c00838 crossref_primary_10_1002_batt_202400440 crossref_primary_10_1002_anie_202416845 crossref_primary_10_1002_aenm_202502217 crossref_primary_10_1002_aenm_202500316 crossref_primary_10_1016_j_est_2024_113528 crossref_primary_10_1039_D5TA01767J crossref_primary_10_1002_ange_202424494 crossref_primary_10_1016_j_jcis_2025_138453 crossref_primary_10_1021_acsaem_5c01195 crossref_primary_10_1002_anie_202424494 crossref_primary_10_1002_batt_202400735 crossref_primary_10_1002_adfm_202413456 crossref_primary_10_1002_ange_202416845 crossref_primary_10_1021_acsenergylett_5c00491 crossref_primary_10_1002_adfm_202422081 crossref_primary_10_1002_adfm_202505318 crossref_primary_10_1002_smll_202501112 crossref_primary_10_1038_s44359_025_00079_5 crossref_primary_10_1002_anie_202418237 crossref_primary_10_1021_acssuschemeng_5c04021 crossref_primary_10_1002_smtd_202401188 crossref_primary_10_1039_D5MH00859J crossref_primary_10_1016_j_materresbull_2025_113775 crossref_primary_10_1021_acssuschemeng_5c04687 crossref_primary_10_1002_adfm_202517715 crossref_primary_10_1002_adfm_202421858 crossref_primary_10_1021_jacs_5c08566 crossref_primary_10_1002_adfm_202500615 crossref_primary_10_1039_D5CC04203H crossref_primary_10_1039_D4SC04685D crossref_primary_10_1016_j_jcis_2025_138818 |
| Cites_doi | 10.1002/aenm.202201347 10.1038/s41563-020-00869-1 10.1021/jacs.1c09290 10.1002/anie.202211478 10.1016/j.chempr.2018.09.005 10.1016/j.eurpolymj.2022.111260 10.1002/anie.202208513 10.1002/sus2.16 10.1002/chem.201700063 10.1016/j.polymer.2021.123488 10.1126/science.abm8962 10.1002/adma.202004998 10.1039/D0EE01723J 10.1002/anie.202106238 10.1002/anie.202116059 10.1002/adsc.201800205 10.1002/adfm.201804975 10.1038/s41467-021-24701-9 10.1016/j.chempr.2022.05.001 10.1002/anie.202108388 10.1016/j.ensm.2020.05.021 10.1002/adma.202209129 10.1126/sciadv.aao1761 10.1021/jacs.2c01485 10.1016/j.isci.2020.100995 10.1002/anie.202116289 10.1126/sciadv.adf4589 10.1002/anie.201902185 10.1038/s41570-020-0160-9 10.1021/acsenergylett.0c02604 10.1016/j.ensm.2021.05.002 10.1016/j.apcatb.2021.120061 10.1002/anie.202208821 10.1016/j.polymer.2018.05.001 10.1002/anie.202217710 10.1039/c3ee40709h 10.1002/anie.202209642 10.1038/s41586-021-03399-1 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202406465 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 38705847 10_1002_anie_202406465 ANIE202406465 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: Grant 52271140, 52171194 – fundername: National Key R&D program of China funderid: Grant 2022YFB2402200 – fundername: National Natural Science Foundation of China Excellent Young Scientists funderid: Overseas – fundername: Youth Innovation Promotion Association CAS funderid: Grant 2020230 – fundername: Jilin Province Science and Technology Development Plan Funding Project funderid: Grant YDZJ202301ZYTS545 – fundername: Jilin Province Science and Technology Development Plan Funding Project grantid: Grant YDZJ202301ZYTS545 – fundername: National Key R&D program of China grantid: Grant 2022YFB2402200 – fundername: Youth Innovation Promotion Association CAS grantid: Grant 2020230 – fundername: National Natural Science Foundation of China Excellent Young Scientists grantid: Overseas – fundername: National Natural Science Foundation of China grantid: Grant 52271140, 52171194 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c3735-7cd94eaac7cf7824fd3b0f7f9c7007c08e47afd01f742ca75f8f9c8f9ec651563 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 13:20:55 EST 2025 Tue Oct 07 07:27:10 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Tue Nov 18 20:07:16 EST 2025 Sat Nov 29 03:04:19 EST 2025 Wed Jan 22 17:18:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | Aqueous Zinc-Organic Batteries Air-Rechargeable Organic Electrode Materials Quinone Hydrogen Bond |
| Language | English |
| License | 2024 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3735-7cd94eaac7cf7824fd3b0f7f9c7007c08e47afd01f742ca75f8f9c8f9ec651563 |
| Notes | These authors contributed equally ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5806-159X |
| PMID | 38705847 |
| PQID | 3076684175 |
| PQPubID | 946352 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3051425408 proquest_journals_3076684175 pubmed_primary_38705847 crossref_citationtrail_10_1002_anie_202406465 crossref_primary_10_1002_anie_202406465 wiley_primary_10_1002_anie_202406465_ANIE202406465 |
| PublicationCentury | 2000 |
| PublicationDate | July 15, 2024 |
| PublicationDateYYYYMMDD | 2024-07-15 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 15, 2024 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2022; 376 2018; 28 2021; 6 2022; 173 2021; 20 2018; 360 2018; 146 2023; 9 2019; 58 2017; 23 2020; 13 2021; 143 2021; 1 2013; 6 2022; 144 2023; 62 2020; 4 2021; 12 2021; 33 2018; 4 2020; 30 2022; 61 2022; 8 2021; 218 2022; 12 2021; 291 2022; 35 2021; 593 2020; 23 2021; 60 2021; 40 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
| References_xml | – volume: 12 start-page: 4424 year: 2021 publication-title: Nat. Commun. – volume: 6 start-page: 643 year: 2021 end-page: 649 publication-title: ACS Energy Lett. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 127 year: 2020 end-page: 142 publication-title: Nat. Chem. Rev. – volume: 13 start-page: 2515 year: 2020 end-page: 2523 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2204 year: 2022 end-page: 2216 publication-title: Chem – volume: 58 start-page: 7020 year: 2019 end-page: 7024 publication-title: Angew. Chem. Int. Ed. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 291 year: 2021 publication-title: Appl. Catal. B – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 20826 year: 2021 end-page: 20832 publication-title: Angew. Chem. Int. Ed. – volume: 376 start-page: 517 year: 2022 end-page: 521 publication-title: Science – volume: 4 start-page: 2786 year: 2018 end-page: 2813 publication-title: Chem – volume: 218 year: 2021 publication-title: Polymer – volume: 144 start-page: 10301 year: 2022 end-page: 10308 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 665 year: 2021 end-page: 673 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 start-page: 337 year: 2020 end-page: 345 publication-title: Energy Storage Mater. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 60 start-page: 21952 year: 2021 end-page: 21958 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 31 year: 2021 end-page: 40 publication-title: Energy Storage Mater. – volume: 143 start-page: 19178 year: 2021 end-page: 19186 publication-title: J. Am. Chem. Soc. – volume: 23 year: 2020 publication-title: iScience – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 241 year: 2021 end-page: 254 publication-title: SusMat – volume: 6 start-page: 2280 year: 2013 end-page: 2301 publication-title: Energy Environ. Sci. – volume: 593 start-page: 61 year: 2021 end-page: 66 publication-title: Nature – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 146 start-page: 133 year: 2018 end-page: 141 publication-title: Polymer – volume: 23 start-page: 2560 year: 2017 end-page: 2565 publication-title: Chem. Eur. J. – volume: 360 start-page: 2076 year: 2018 end-page: 2086 publication-title: Adv. Synth. Catal. – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 173 year: 2022 publication-title: Eur. Polym. J. – ident: e_1_2_7_11_1 doi: 10.1002/aenm.202201347 – ident: e_1_2_7_7_1 doi: 10.1038/s41563-020-00869-1 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.1c09290 – ident: e_1_2_7_34_1 doi: 10.1002/anie.202211478 – ident: e_1_2_7_9_1 doi: 10.1016/j.chempr.2018.09.005 – ident: e_1_2_7_25_1 doi: 10.1016/j.eurpolymj.2022.111260 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202208513 – ident: e_1_2_7_3_1 doi: 10.1002/sus2.16 – ident: e_1_2_7_19_1 doi: 10.1002/chem.201700063 – ident: e_1_2_7_23_1 doi: 10.1016/j.polymer.2021.123488 – ident: e_1_2_7_1_1 doi: 10.1126/science.abm8962 – ident: e_1_2_7_2_1 doi: 10.1002/adma.202004998 – ident: e_1_2_7_5_1 doi: 10.1039/D0EE01723J – ident: e_1_2_7_18_1 doi: 10.1002/anie.202106238 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202116059 – ident: e_1_2_7_20_1 doi: 10.1002/adsc.201800205 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201804975 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-021-24701-9 – ident: e_1_2_7_32_1 doi: 10.1016/j.chempr.2022.05.001 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202108388 – ident: e_1_2_7_17_1 doi: 10.1016/j.ensm.2020.05.021 – ident: e_1_2_7_27_1 doi: 10.1002/adma.202209129 – ident: e_1_2_7_30_1 doi: 10.1126/sciadv.aao1761 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.2c01485 – ident: e_1_2_7_28_1 doi: 10.1016/j.isci.2020.100995 – ident: e_1_2_7_36_1 doi: 10.1002/anie.202116289 – ident: e_1_2_7_13_1 doi: 10.1126/sciadv.adf4589 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201902185 – ident: e_1_2_7_12_1 doi: 10.1038/s41570-020-0160-9 – ident: e_1_2_7_26_1 doi: 10.1021/acsenergylett.0c02604 – ident: e_1_2_7_35_1 doi: 10.1016/j.ensm.2021.05.002 – ident: e_1_2_7_22_1 doi: 10.1016/j.apcatb.2021.120061 – ident: e_1_2_7_33_1 doi: 10.1002/anie.202208821 – ident: e_1_2_7_24_1 doi: 10.1016/j.polymer.2018.05.001 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202217710 – ident: e_1_2_7_8_1 doi: 10.1039/c3ee40709h – ident: e_1_2_7_31_1 doi: 10.1002/anie.202209642 – ident: e_1_2_7_6_1 doi: 10.1038/s41586-021-03399-1 |
| SSID | ssj0028806 |
| Score | 2.5994816 |
| Snippet | The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to... The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202406465 |
| SubjectTerms | Air-Rechargeable Aqueous Zinc-Organic Batteries Electrode materials Hydrogen Bond Hydrogen bonds Organic Electrode Materials Quinone Quinones Zinc |
| Title | Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc‐Organic Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202406465 https://www.ncbi.nlm.nih.gov/pubmed/38705847 https://www.proquest.com/docview/3076684175 https://www.proquest.com/docview/3051425408 |
| Volume | 63 |
| WOSCitedRecordID | wos001247883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB2sFfTF-yVaywqCT6FpNs2mj0VbFKRKsVJ8CZvNLhQklVYF3_wEv9EvcaabRouIoA-BhN0km9nLnLNhzgAc8xQZmqd914iGdAOlQleaJHQNYnGR1LXm0w3920vR7UaDQfP6SxS_1YcoNtxoZkzXa5rgMpnUPkVDKQIb-R15pCBslKBMkVVIv8pnvU7_siBdOD5thBHnLiWinwk3en5t_gnzjukb2pwHr1Pv01n7f7vXYTVHnqxlh8oGLOhsE5ZPZwnftuCqp58RNqIvY-cv6XiEQ4tR1mFmFY7ZMGMIMklZSVO8FWth00dPE3Y3zNT765uN6lTMKnYiAd-Gfqd9c3ru5vkWXMUFKVeqtBloKRVJFUV-YFKeeEaYphKIJJQX6UBIk3p1g3xaSdEwEZbhoRUlVA_5Dixmo0zvAUuFQdhu0EX6Er9SJn4ScWRmqmlCqQPjgDszdqxyMXLKiXEfWxllPyYzxYWZHDgp6j9YGY4fa1ZmfRfn03ES40IWhlGAUMmBo6IYzUt_R2RGxsI6iB2RLnuRA7u2z4tXcVzV6H-yA_60a39pQ9zqXrSLq_2_3HQAK3ROu8j1RgUWH8dP-hCW1PPjcDKuQkkMomo-1D8Axxz9_A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CvXi-xGfKwiegmk2zabHopaKtYqoFC9hs9mFgqTSh-DNn-Bv9Jc4000jRUQQDzkku0k2s4_5ZjbzDcART9FC87TvGlGVbqBU6EqThK5BLC6SitZ87NB_aIl2O-p0ajf534QUC2P5IQqHG82M8XpNE5wc0idfrKEUgo0GHqmkIKzOwlwQchGVYO7stnHfKqwuHKA2xIhzlzLRT5gbPf9k-gnTmukb3JxGr2P101j6h4Yvw2KOPVndDpYVmNHZKpRPJynf1uD6Vr8gcERtxpqvab-Hg4tR3mFmOY5ZN2MIM4lbSVPEFatj23ujAXvsZurj7d3GdSpmOTvRBF-H-8b53WnTzTMuuIoL4q5UaS3QUioiK4r8wKQ88YwwNSUQSygv0oGQJvUqBi1qJUXVRFiGh1aUUj3kG1DKepneApYKg8DdoJL0JX6lTPwk4mibqZoJpQ6MA-5E2rHK6cgpK8ZTbImU_ZjEFBdicuC4qP9siTh-rLk76bw4n5CDGJeyMIwCBEsOHBbFKF7aH5EZCQvrIHpEg9mLHNi0nV68iuO6RjvKDvjjvv2lDXG9fXFenG3_5aYDKDfvrlpx66J9uQMLdJ18ypXqLpSG_ZHeg3n1MuwO-vv5iP8EB2QBEw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED62ZKx72dqt7dylqwaDPZk6lmzZjyFtaFlIQ1hG2YuRZQkCxSlJE-hbf0J_Y39J7yLHI4xRKH3wgy3Zlk8n3XeS7zuA77xADy0woW9lpHyhdewrm8e-RSwu87YxfLWg_7svB4Pk8jIdVn8TUiyM44eoF9xoZKzmaxrg5rqwx39ZQykEGx08Mkkijl5DU0RpJBrQPBn1xv3a60IFdSFGnPuUiX7N3BiEx5tP2LRM_8DNTfS6Mj-9Dy_Q8G14X2FP1nHKsgOvTPkRtrrrlG-f4GJklggc0Zqxs9tiNkXlYpR3mDmOYzYpGcJM4lYyFHHFOtj26WLO_kxK_XB37-I6NXOcneiC78K4d_qre-ZXGRd8zSVxV-oiFUYpTWRFSShswfPASptqiVhCB4kRUtkiaFv0qLWSkU2wDA-jKaV6zPegUU5L8xlYIS0Cd4tGMlT4lSoP84Sjb6ZTGysjrAf-WtqZrujIKSvGVeaIlMOMxJTVYvLgR13_2hFx_Ldma915WTUg5xlOZXGcCARLHnyri1G8tD-iShIW1kH0iA5zkHiw7zq9fhXHeY12lD0IV337RBuyzuD8tD47eM5NR_B2eNLL-ueDn1_gHV2mJeV21ILGzWxhDuGNXt5M5rOvlcI_ApAVAI4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+Hydrogen+Bond+Effect+in+Rechargeable+Aqueous+Zinc-Organic+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Jun&rft.au=Du%2C+Jia-Yi&rft.au=Liu%2C+Wan-Qiang&rft.au=Huang%2C+Gang&rft.date=2024-07-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft.spage=e202406465&rft_id=info:doi/10.1002%2Fanie.202406465&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |