Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc‐Organic Batteries

The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 63; H. 29; S. e202406465 - n/a
Hauptverfasser: Guo, Jun, Du, Jia‐Yi, Liu, Wan‐Qiang, Huang, Gang, Zhang, Xin‐Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 15.07.2024
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs. A series of quinone‐based small molecules with progressive hydrogen bond (H‐bond) numbers has been rationally designed to reveal the real effects of H‐bond on the electrochemical performance of organic electrode materials (OEMs) in rechargeable aqueous zinc‐organic batteries (ZOBs). The appropriate number of H‐bonds in OEM improves its structure stability and utilization of active sites and reduces the battery polarization, contributing to the construction of high‐performance ZOBs.
AbstractList The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g at a record-high mass loading of 66.2 mg cm and 100 % capacity retention after 1500 cycles at 5 A g . In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.
The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g −1 at a record‐high mass loading of 66.2 mg cm −2 and 100 % capacity retention after 1500 cycles at 5 A g −1 . In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs.
The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs.
The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc‐organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone‐based small molecules with a H‐bond evolution model has been rationally selected to disclose the regulation and equilibration of H‐bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H‐bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5‐diaminocyclohexa‐2,5‐diene‐1,4‐dione (DABQ) with elaborately designed H‐bond structure exhibits a capacity of 193.3 mAh g−1 at a record‐high mass loading of 66.2 mg cm−2 and 100 % capacity retention after 1500 cycles at 5 A g−1. In addition, the DABQ//Zn battery also possesses air‐rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H‐bond to liberate the performance of OEMs. A series of quinone‐based small molecules with progressive hydrogen bond (H‐bond) numbers has been rationally designed to reveal the real effects of H‐bond on the electrochemical performance of organic electrode materials (OEMs) in rechargeable aqueous zinc‐organic batteries (ZOBs). The appropriate number of H‐bonds in OEM improves its structure stability and utilization of active sites and reduces the battery polarization, contributing to the construction of high‐performance ZOBs.
The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.
Author Zhang, Xin‐Bo
Huang, Gang
Guo, Jun
Du, Jia‐Yi
Liu, Wan‐Qiang
Author_xml – sequence: 1
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jia‐Yi
  surname: Du
  fullname: Du, Jia‐Yi
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Wan‐Qiang
  surname: Liu
  fullname: Liu, Wan‐Qiang
  email: wqliu1979@126.com
  organization: Changchun University of Science and Technology
– sequence: 4
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  email: ghuang@ciac.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xin‐Bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin‐Bo
  email: xbzhang@ciac.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38705847$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEURkVJqBO32y7DQDfZjCuNpLny0gnOD4QaQrvpRsiaK0dmrEmlcYJ3eYQ8Y56kMo5bCIQuhAQ65_Jxv2NyELqAhHxhdMQorb6Z4HFU0UrQWtTyAzlismIlB-AH-S04L0FJNiDHKS0zrxStP5IBV0ClEnBEZrf4gKb1YVFcbZrYLTAUZ11oiqlzaPvCh-IW7Z2JCzTzFovJ7zV261T88sG-PD3P4iInsMWZ6XuMHtMncuhMm_Dz6z0kPy-mP86vypvZ5fX55Ka0HLgswTZjgcZYsA5UJVzD59SBG1ugFCxVKMC4hjIHorIGpFP5Lx-0tWSy5kNyupt7H7scKfV65ZPFtjVhm09zKpmopKAqo1_foMtuHUNOlymoayUYyEydvFLr-QobfR_9ysSN3q8qA2IH2NilFNFp63vT-y700fhWM6q3jehtI_pvI1kbvdH2k98Vxjvh0be4-Q-tJ9-vp__cP3FBniw
CitedBy_id crossref_primary_10_1002_adfm_202421240
crossref_primary_10_1002_ange_202418237
crossref_primary_10_1016_j_cej_2025_166985
crossref_primary_10_1021_acs_energyfuels_5c00838
crossref_primary_10_1002_batt_202400440
crossref_primary_10_1002_anie_202416845
crossref_primary_10_1002_aenm_202502217
crossref_primary_10_1002_aenm_202500316
crossref_primary_10_1016_j_est_2024_113528
crossref_primary_10_1039_D5TA01767J
crossref_primary_10_1002_ange_202424494
crossref_primary_10_1016_j_jcis_2025_138453
crossref_primary_10_1021_acsaem_5c01195
crossref_primary_10_1002_anie_202424494
crossref_primary_10_1002_batt_202400735
crossref_primary_10_1002_adfm_202413456
crossref_primary_10_1002_ange_202416845
crossref_primary_10_1021_acsenergylett_5c00491
crossref_primary_10_1002_adfm_202422081
crossref_primary_10_1002_adfm_202505318
crossref_primary_10_1002_smll_202501112
crossref_primary_10_1038_s44359_025_00079_5
crossref_primary_10_1002_anie_202418237
crossref_primary_10_1021_acssuschemeng_5c04021
crossref_primary_10_1002_smtd_202401188
crossref_primary_10_1039_D5MH00859J
crossref_primary_10_1016_j_materresbull_2025_113775
crossref_primary_10_1021_acssuschemeng_5c04687
crossref_primary_10_1002_adfm_202517715
crossref_primary_10_1002_adfm_202421858
crossref_primary_10_1021_jacs_5c08566
crossref_primary_10_1002_adfm_202500615
crossref_primary_10_1039_D5CC04203H
crossref_primary_10_1039_D4SC04685D
crossref_primary_10_1016_j_jcis_2025_138818
Cites_doi 10.1002/aenm.202201347
10.1038/s41563-020-00869-1
10.1021/jacs.1c09290
10.1002/anie.202211478
10.1016/j.chempr.2018.09.005
10.1016/j.eurpolymj.2022.111260
10.1002/anie.202208513
10.1002/sus2.16
10.1002/chem.201700063
10.1016/j.polymer.2021.123488
10.1126/science.abm8962
10.1002/adma.202004998
10.1039/D0EE01723J
10.1002/anie.202106238
10.1002/anie.202116059
10.1002/adsc.201800205
10.1002/adfm.201804975
10.1038/s41467-021-24701-9
10.1016/j.chempr.2022.05.001
10.1002/anie.202108388
10.1016/j.ensm.2020.05.021
10.1002/adma.202209129
10.1126/sciadv.aao1761
10.1021/jacs.2c01485
10.1016/j.isci.2020.100995
10.1002/anie.202116289
10.1126/sciadv.adf4589
10.1002/anie.201902185
10.1038/s41570-020-0160-9
10.1021/acsenergylett.0c02604
10.1016/j.ensm.2021.05.002
10.1016/j.apcatb.2021.120061
10.1002/anie.202208821
10.1016/j.polymer.2018.05.001
10.1002/anie.202217710
10.1039/c3ee40709h
10.1002/anie.202209642
10.1038/s41586-021-03399-1
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202406465
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38705847
10_1002_anie_202406465
ANIE202406465
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: Grant 52271140, 52171194
– fundername: National Key R&D program of China
  funderid: Grant 2022YFB2402200
– fundername: National Natural Science Foundation of China Excellent Young Scientists
  funderid: Overseas
– fundername: Youth Innovation Promotion Association CAS
  funderid: Grant 2020230
– fundername: Jilin Province Science and Technology Development Plan Funding Project
  funderid: Grant YDZJ202301ZYTS545
– fundername: Jilin Province Science and Technology Development Plan Funding Project
  grantid: Grant YDZJ202301ZYTS545
– fundername: National Key R&D program of China
  grantid: Grant 2022YFB2402200
– fundername: Youth Innovation Promotion Association CAS
  grantid: Grant 2020230
– fundername: National Natural Science Foundation of China Excellent Young Scientists
  grantid: Overseas
– fundername: National Natural Science Foundation of China
  grantid: Grant 52271140, 52171194
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-7cd94eaac7cf7824fd3b0f7f9c7007c08e47afd01f742ca75f8f9c8f9ec651563
IEDL.DBID DRFUL
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 13:20:55 EST 2025
Tue Oct 07 07:27:10 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Tue Nov 18 20:07:16 EST 2025
Sat Nov 29 03:04:19 EST 2025
Wed Jan 22 17:18:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Aqueous Zinc-Organic Batteries
Air-Rechargeable
Organic Electrode Materials
Quinone
Hydrogen Bond
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-7cd94eaac7cf7824fd3b0f7f9c7007c08e47afd01f742ca75f8f9c8f9ec651563
Notes These authors contributed equally
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5806-159X
PMID 38705847
PQID 3076684175
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_3051425408
proquest_journals_3076684175
pubmed_primary_38705847
crossref_citationtrail_10_1002_anie_202406465
crossref_primary_10_1002_anie_202406465
wiley_primary_10_1002_anie_202406465_ANIE202406465
PublicationCentury 2000
PublicationDate July 15, 2024
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: July 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 376
2018; 28
2021; 6
2022; 173
2021; 20
2018; 360
2018; 146
2023; 9
2019; 58
2017; 23
2020; 13
2021; 143
2021; 1
2013; 6
2022; 144
2023; 62
2020; 4
2021; 12
2021; 33
2018; 4
2020; 30
2022; 61
2022; 8
2021; 218
2022; 12
2021; 291
2022; 35
2021; 593
2020; 23
2021; 60
2021; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 12
  start-page: 4424
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  start-page: 643
  year: 2021
  end-page: 649
  publication-title: ACS Energy Lett.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 127
  year: 2020
  end-page: 142
  publication-title: Nat. Chem. Rev.
– volume: 13
  start-page: 2515
  year: 2020
  end-page: 2523
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2204
  year: 2022
  end-page: 2216
  publication-title: Chem
– volume: 58
  start-page: 7020
  year: 2019
  end-page: 7024
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 291
  year: 2021
  publication-title: Appl. Catal. B
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 20826
  year: 2021
  end-page: 20832
  publication-title: Angew. Chem. Int. Ed.
– volume: 376
  start-page: 517
  year: 2022
  end-page: 521
  publication-title: Science
– volume: 4
  start-page: 2786
  year: 2018
  end-page: 2813
  publication-title: Chem
– volume: 218
  year: 2021
  publication-title: Polymer
– volume: 144
  start-page: 10301
  year: 2022
  end-page: 10308
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 665
  year: 2021
  end-page: 673
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  start-page: 337
  year: 2020
  end-page: 345
  publication-title: Energy Storage Mater.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 60
  start-page: 21952
  year: 2021
  end-page: 21958
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 31
  year: 2021
  end-page: 40
  publication-title: Energy Storage Mater.
– volume: 143
  start-page: 19178
  year: 2021
  end-page: 19186
  publication-title: J. Am. Chem. Soc.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 241
  year: 2021
  end-page: 254
  publication-title: SusMat
– volume: 6
  start-page: 2280
  year: 2013
  end-page: 2301
  publication-title: Energy Environ. Sci.
– volume: 593
  start-page: 61
  year: 2021
  end-page: 66
  publication-title: Nature
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 146
  start-page: 133
  year: 2018
  end-page: 141
  publication-title: Polymer
– volume: 23
  start-page: 2560
  year: 2017
  end-page: 2565
  publication-title: Chem. Eur. J.
– volume: 360
  start-page: 2076
  year: 2018
  end-page: 2086
  publication-title: Adv. Synth. Catal.
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 173
  year: 2022
  publication-title: Eur. Polym. J.
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.202201347
– ident: e_1_2_7_7_1
  doi: 10.1038/s41563-020-00869-1
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.1c09290
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202211478
– ident: e_1_2_7_9_1
  doi: 10.1016/j.chempr.2018.09.005
– ident: e_1_2_7_25_1
  doi: 10.1016/j.eurpolymj.2022.111260
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202208513
– ident: e_1_2_7_3_1
  doi: 10.1002/sus2.16
– ident: e_1_2_7_19_1
  doi: 10.1002/chem.201700063
– ident: e_1_2_7_23_1
  doi: 10.1016/j.polymer.2021.123488
– ident: e_1_2_7_1_1
  doi: 10.1126/science.abm8962
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.202004998
– ident: e_1_2_7_5_1
  doi: 10.1039/D0EE01723J
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202106238
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202116059
– ident: e_1_2_7_20_1
  doi: 10.1002/adsc.201800205
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201804975
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-021-24701-9
– ident: e_1_2_7_32_1
  doi: 10.1016/j.chempr.2022.05.001
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202108388
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ensm.2020.05.021
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.202209129
– ident: e_1_2_7_30_1
  doi: 10.1126/sciadv.aao1761
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.2c01485
– ident: e_1_2_7_28_1
  doi: 10.1016/j.isci.2020.100995
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.202116289
– ident: e_1_2_7_13_1
  doi: 10.1126/sciadv.adf4589
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201902185
– ident: e_1_2_7_12_1
  doi: 10.1038/s41570-020-0160-9
– ident: e_1_2_7_26_1
  doi: 10.1021/acsenergylett.0c02604
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ensm.2021.05.002
– ident: e_1_2_7_22_1
  doi: 10.1016/j.apcatb.2021.120061
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202208821
– ident: e_1_2_7_24_1
  doi: 10.1016/j.polymer.2018.05.001
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202217710
– ident: e_1_2_7_8_1
  doi: 10.1039/c3ee40709h
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202209642
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-021-03399-1
SSID ssj0028806
Score 2.5994816
Snippet The surrounding hydrogen bond (H‐bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to...
The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202406465
SubjectTerms Air-Rechargeable
Aqueous Zinc-Organic Batteries
Electrode materials
Hydrogen Bond
Hydrogen bonds
Organic Electrode Materials
Quinone
Quinones
Zinc
Title Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc‐Organic Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202406465
https://www.ncbi.nlm.nih.gov/pubmed/38705847
https://www.proquest.com/docview/3076684175
https://www.proquest.com/docview/3051425408
Volume 63
WOSCitedRecordID wos001247883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB2sFfTF-yVaywqCT6FpNs2mj0VbFKRKsVJ8CZvNLhQklVYF3_wEv9EvcaabRouIoA-BhN0km9nLnLNhzgAc8xQZmqd914iGdAOlQleaJHQNYnGR1LXm0w3920vR7UaDQfP6SxS_1YcoNtxoZkzXa5rgMpnUPkVDKQIb-R15pCBslKBMkVVIv8pnvU7_siBdOD5thBHnLiWinwk3en5t_gnzjukb2pwHr1Pv01n7f7vXYTVHnqxlh8oGLOhsE5ZPZwnftuCqp58RNqIvY-cv6XiEQ4tR1mFmFY7ZMGMIMklZSVO8FWth00dPE3Y3zNT765uN6lTMKnYiAd-Gfqd9c3ru5vkWXMUFKVeqtBloKRVJFUV-YFKeeEaYphKIJJQX6UBIk3p1g3xaSdEwEZbhoRUlVA_5Dixmo0zvAUuFQdhu0EX6Er9SJn4ScWRmqmlCqQPjgDszdqxyMXLKiXEfWxllPyYzxYWZHDgp6j9YGY4fa1ZmfRfn03ES40IWhlGAUMmBo6IYzUt_R2RGxsI6iB2RLnuRA7u2z4tXcVzV6H-yA_60a39pQ9zqXrSLq_2_3HQAK3ROu8j1RgUWH8dP-hCW1PPjcDKuQkkMomo-1D8Axxz9_A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CvXi-xGfKwiegmk2zabHopaKtYqoFC9hs9mFgqTSh-DNn-Bv9Jc4000jRUQQDzkku0k2s4_5ZjbzDcART9FC87TvGlGVbqBU6EqThK5BLC6SitZ87NB_aIl2O-p0ajf534QUC2P5IQqHG82M8XpNE5wc0idfrKEUgo0GHqmkIKzOwlwQchGVYO7stnHfKqwuHKA2xIhzlzLRT5gbPf9k-gnTmukb3JxGr2P101j6h4Yvw2KOPVndDpYVmNHZKpRPJynf1uD6Vr8gcERtxpqvab-Hg4tR3mFmOY5ZN2MIM4lbSVPEFatj23ujAXvsZurj7d3GdSpmOTvRBF-H-8b53WnTzTMuuIoL4q5UaS3QUioiK4r8wKQ88YwwNSUQSygv0oGQJvUqBi1qJUXVRFiGh1aUUj3kG1DKepneApYKg8DdoJL0JX6lTPwk4mibqZoJpQ6MA-5E2rHK6cgpK8ZTbImU_ZjEFBdicuC4qP9siTh-rLk76bw4n5CDGJeyMIwCBEsOHBbFKF7aH5EZCQvrIHpEg9mLHNi0nV68iuO6RjvKDvjjvv2lDXG9fXFenG3_5aYDKDfvrlpx66J9uQMLdJ18ypXqLpSG_ZHeg3n1MuwO-vv5iP8EB2QBEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED62ZKx72dqt7dylqwaDPZk6lmzZjyFtaFlIQ1hG2YuRZQkCxSlJE-hbf0J_Y39J7yLHI4xRKH3wgy3Zlk8n3XeS7zuA77xADy0woW9lpHyhdewrm8e-RSwu87YxfLWg_7svB4Pk8jIdVn8TUiyM44eoF9xoZKzmaxrg5rqwx39ZQykEGx08Mkkijl5DU0RpJBrQPBn1xv3a60IFdSFGnPuUiX7N3BiEx5tP2LRM_8DNTfS6Mj-9Dy_Q8G14X2FP1nHKsgOvTPkRtrrrlG-f4GJklggc0Zqxs9tiNkXlYpR3mDmOYzYpGcJM4lYyFHHFOtj26WLO_kxK_XB37-I6NXOcneiC78K4d_qre-ZXGRd8zSVxV-oiFUYpTWRFSShswfPASptqiVhCB4kRUtkiaFv0qLWSkU2wDA-jKaV6zPegUU5L8xlYIS0Cd4tGMlT4lSoP84Sjb6ZTGysjrAf-WtqZrujIKSvGVeaIlMOMxJTVYvLgR13_2hFx_Ldma915WTUg5xlOZXGcCARLHnyri1G8tD-iShIW1kH0iA5zkHiw7zq9fhXHeY12lD0IV337RBuyzuD8tD47eM5NR_B2eNLL-ueDn1_gHV2mJeV21ILGzWxhDuGNXt5M5rOvlcI_ApAVAI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+Hydrogen+Bond+Effect+in+Rechargeable+Aqueous+Zinc-Organic+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Jun&rft.au=Du%2C+Jia-Yi&rft.au=Liu%2C+Wan-Qiang&rft.au=Huang%2C+Gang&rft.date=2024-07-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft.spage=e202406465&rft_id=info:doi/10.1002%2Fanie.202406465&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon