Limit theory for the random on-line nearest-neighbor graph

In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝd is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on unif...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Random structures & algorithms Ročník 32; číslo 2; s. 125 - 156
Hlavní autori: Penrose, Mathew D., Wade, Andrew R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2008
Predmet:
ISSN:1042-9832, 1098-2418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝd is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on uniform random points in (0,1)d. In particular, for d = 1 and weight exponent α > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed‐point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest‐neighbor (directed) graph on uniform random points in the unit interval. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008
AbstractList In the on-line nearest-neighbor graph (ONG), each point after the first in a sequence of points in d is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large-sample asymptotic behavior of the total power-weighted length of the ONG on uniform random points in (0,1)d. In particular, for d = 1 and weight exponent > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed-point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest-neighbor (directed) graph on uniform random points in the unit interval.
In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝd is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on uniform random points in (0,1)d. In particular, for d = 1 and weight exponent α > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed‐point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest‐neighbor (directed) graph on uniform random points in the unit interval. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008
In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝ d is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on uniform random points in (0,1) d . In particular, for d = 1 and weight exponent α > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed‐point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest‐neighbor (directed) graph on uniform random points in the unit interval. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008
Author Penrose, Mathew D.
Wade, Andrew R.
Author_xml – sequence: 1
  givenname: Mathew D.
  surname: Penrose
  fullname: Penrose, Mathew D.
  email: m.d.penrose@bath.ac.uk
  organization: Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, England
– sequence: 2
  givenname: Andrew R.
  surname: Wade
  fullname: Wade, Andrew R.
  email: andrew.wade@bris.ac.uk
  organization: Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, England
BookMark eNp9kE1PAjEURRuDiYAu_AezMnEx0I_ptOOOEAWVaCIYl01neAPVocV2iPLvHURdmOjq3cU5Ny-3g1rWWUDolOAewZj2fdA9ionkB6hNcCZjmhDZ2uWExplk9Ah1QnjGGAtGWRtdTMzK1FG9BOe3Uen8LkZe27lbRc7GlbEQWdAeQh1bMItl3jALr9fLY3RY6irAydftosery9lwHE_uR9fDwSQumGA8ZsBzRtOEgNSc0JzOc-CQQZ5qzliSiTRLSq6ZZKksJNE8mQta4HLHJ4WWrIvO9r1r7143zR9qZUIBVaUtuE1QjAiRpjRtwPM9WHgXgodSrb1Zab9VBKvdOqpZR32u07D9X2xhal0bZ2uvTfWf8WYq2P5drR6mg28j3hsm1PD-Y2j_olLBBFdPdyM1vskmUyJm6pZ9AAtBhm8
CitedBy_id crossref_primary_10_1017_S0001867800050394
crossref_primary_10_1214_25_AAP2153
crossref_primary_10_1080_15598608_2008_10411876
crossref_primary_10_1007_s00440_024_01268_2
crossref_primary_10_1016_j_spa_2008_09_006
crossref_primary_10_1017_S0001867800007709
crossref_primary_10_1239_aap_1282924058
crossref_primary_10_1239_aap_1427814581
crossref_primary_10_3150_24_BEJ1771
crossref_primary_10_1214_21_AAP1768
Cites_doi 10.1002/9780470316962
10.1214/aoap/1034968141
10.1016/0304-4149(92)90035-O
10.1007/BF02679611
10.1007/BFb0093472
10.1214/aoms/1177729030
10.1214/aoap/1015345393
10.1214/aoap/1075828056
10.1239/aap/1183667613
10.1111/j.2517-6161.1965.tb00602.x
10.1137/S003614450342480
10.1214/105051605000000142
10.1080/00018730110112519
10.1007/3-540-45061-0_57
10.1093/acprof:oso/9780198506263.001.0001
10.1137/1.9781611970029
10.1214/aoap/1042765669
10.1007/3-540-45465-9_11
10.1239/aap/1151337075
10.1142/9789812567673_0003
10.1214/009117905000000206
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20185
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 156
ExternalDocumentID 10_1002_rsa_20185
RSA20185
ark_67375_WNG_HJ9LS17T_K
Genre article
GrantInformation_xml – fundername: EPSRC
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWM
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3735-3e5b32641e8a512b2dbe5e9eb6a533497694f5a38368c81a54d72c0f1e8a4ca83
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Wed Oct 01 11:45:31 EDT 2025
Sat Nov 29 02:48:10 EST 2025
Tue Nov 18 20:41:35 EST 2025
Wed Jan 22 17:04:33 EST 2025
Sun Sep 21 06:19:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-3e5b32641e8a512b2dbe5e9eb6a533497694f5a38368c81a54d72c0f1e8a4ca83
Notes EPSRC
ArticleID:RSA20185
ark:/67375/WNG-HJ9LS17T-K
istex:448C7BC01C0D4F7DD8D7FE4C622D3DB8E160B24C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://durham-repository.worktribe.com/output/1472565
PQID 31776626
PQPubID 23500
PageCount 32
ParticipantIDs proquest_miscellaneous_31776626
crossref_primary_10_1002_rsa_20185
crossref_citationtrail_10_1002_rsa_20185
wiley_primary_10_1002_rsa_20185_RSA20185
istex_primary_ark_67375_WNG_HJ9LS17T_K
PublicationCentury 2000
PublicationDate 2008-03
March 2008
2008-03-00
20080301
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Random structures & algorithms
PublicationTitleAlternate Random Struct. Alg
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References P. Billingsley, Convergence of probability measures, 2nd edition, Wiley, New York, 1999.
A. R. Wade, Explicit laws of large numbers for random nearest-neighbour type graphs, Adv Appl Probab 39 (2007), 326-342.
M. D. Penrose, J. E. Yukich, Weak laws of large numbers in geometric probability, Ann Appl Probab 13 (2003), 277-303.
R. Pyke, Spacings, J Royal Stat Soc Ser B 27 (1965), 395-449.
S. T. Rachev, Probability metrics and the stability of stochastic models, Wiley, Chichester, 1991.
R. Neininger, L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures, Ann Appl Probab 14 (2004), 378-418.
J. M. Steele, Probability theory and combinatorial optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.
M. D. Penrose, A. R. Wade, On the total length of the random minimal directed spanning tree, Adv Appl Probab 38 (2006), 336-372.
M. Penrose, Random geometric graphs (Oxford studies in probability, Vol. 6), Clarendon Press, Oxford, 2003.
M. D. Penrose, Multivariate spatial central limit theorems with applications to percolation and spatial graphs, Ann Probab 33 (2005), 1945-1991.
J. Bertoin, A. Gnedin, Asymptotic laws for nonconservative selfsimilar fragmentations, Electr J Probab 9 (2004), 575-593.
S. N. Dorogovstev, J. F. F. Medes, Evolution of networks, Adv Phys 51 (2002), 1079-1187.
M. Abramowitz, I. A. Stegun, Eds. Handbook of mathematical functions, National Bureau of Standards (Applied mathematics series, Vol. 55), U.S. Government Printing Office, Washington, DC, 1965.
K. Huang, Statistical mechanics, 2nd edition, Wiley, New York, 1987.
H. Kesten, S. Lee, The central limit theorem for weighted minimal spanning trees on random points, Ann Appl Probab 6 (1996), 495-527.
U. Rösler, A fixed point theorem for distributions, Stoch Process Appl 42 (1992), 195-214.
M. E. J. Newman, The structure and function of complex networks, SIAM Rev 45 (2003), 167-256.
D. J. Aldous, A. Bandyopadhyay, A survey of max-type recursive distributional equations, Ann Appl Probab 15 (2005), 1047-1110.
M. D. Penrose, J. E. Yukich, Central limit theorems for some graphs in computational geometry, Ann Appl Probab 11 (2001), 1005-1041.
U. Rösler, L. Rüschendorf, The contraction method for recursive algorithms, Algorithmica 29 (2001), 3-33.
J. E. Yukich, Probability theory of classical Euclidean optimization problems (Lecture notes in mathematics, Vol. 1675), Springer, Berlin, 1998.
D. A. Darling, On a class of problems related to the random division of an interval, Ann Math Stats 24 (1953), 239-253.
2007; 39
1965; 55
2002; 51
2004; 14
2006; 38
2004; 9
1987
2003; 13
1998
1997
2005
2003
2002
1991
2001; 29
2005; 15
2001; 11
1992; 42
1965; 27
1953; 24
2005; 33
1996; 6
1999
2003; 45
Bertoin J. (e_1_2_1_5_2) 2004; 9
Rachev S. T. (e_1_2_1_22_2) 1991
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
Bollobás B. (e_1_2_1_7_2) 2003
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
Abramowitz M. (e_1_2_1_2_2) 1965
e_1_2_1_4_2
Huang K. (e_1_2_1_11_2) 1987
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
Pyke R. (e_1_2_1_21_2) 1965; 27
e_1_2_1_16_2
e_1_2_1_13_2
Penrose M. D. (e_1_2_1_17_2) 2006; 38
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: M. D. Penrose, Multivariate spatial central limit theorems with applications to percolation and spatial graphs, Ann Probab 33 (2005), 1945-1991.
– reference: P. Billingsley, Convergence of probability measures, 2nd edition, Wiley, New York, 1999.
– reference: U. Rösler, L. Rüschendorf, The contraction method for recursive algorithms, Algorithmica 29 (2001), 3-33.
– reference: K. Huang, Statistical mechanics, 2nd edition, Wiley, New York, 1987.
– reference: S. N. Dorogovstev, J. F. F. Medes, Evolution of networks, Adv Phys 51 (2002), 1079-1187.
– reference: J. Bertoin, A. Gnedin, Asymptotic laws for nonconservative selfsimilar fragmentations, Electr J Probab 9 (2004), 575-593.
– reference: D. J. Aldous, A. Bandyopadhyay, A survey of max-type recursive distributional equations, Ann Appl Probab 15 (2005), 1047-1110.
– reference: S. T. Rachev, Probability metrics and the stability of stochastic models, Wiley, Chichester, 1991.
– reference: M. Penrose, Random geometric graphs (Oxford studies in probability, Vol. 6), Clarendon Press, Oxford, 2003.
– reference: M. E. J. Newman, The structure and function of complex networks, SIAM Rev 45 (2003), 167-256.
– reference: R. Neininger, L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures, Ann Appl Probab 14 (2004), 378-418.
– reference: J. E. Yukich, Probability theory of classical Euclidean optimization problems (Lecture notes in mathematics, Vol. 1675), Springer, Berlin, 1998.
– reference: H. Kesten, S. Lee, The central limit theorem for weighted minimal spanning trees on random points, Ann Appl Probab 6 (1996), 495-527.
– reference: U. Rösler, A fixed point theorem for distributions, Stoch Process Appl 42 (1992), 195-214.
– reference: J. M. Steele, Probability theory and combinatorial optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.
– reference: M. D. Penrose, J. E. Yukich, Central limit theorems for some graphs in computational geometry, Ann Appl Probab 11 (2001), 1005-1041.
– reference: M. Abramowitz, I. A. Stegun, Eds. Handbook of mathematical functions, National Bureau of Standards (Applied mathematics series, Vol. 55), U.S. Government Printing Office, Washington, DC, 1965.
– reference: M. D. Penrose, J. E. Yukich, Weak laws of large numbers in geometric probability, Ann Appl Probab 13 (2003), 277-303.
– reference: R. Pyke, Spacings, J Royal Stat Soc Ser B 27 (1965), 395-449.
– reference: D. A. Darling, On a class of problems related to the random division of an interval, Ann Math Stats 24 (1953), 239-253.
– reference: M. D. Penrose, A. R. Wade, On the total length of the random minimal directed spanning tree, Adv Appl Probab 38 (2006), 336-372.
– reference: A. R. Wade, Explicit laws of large numbers for random nearest-neighbour type graphs, Adv Appl Probab 39 (2007), 326-342.
– start-page: 725
  year: 2003
  end-page: 738
– volume: 39
  start-page: 326
  year: 2007
  end-page: 342
  article-title: Explicit laws of large numbers for random nearest‐neighbour type graphs
  publication-title: Adv Appl Probab
– year: 2005
– volume: 33
  start-page: 1945
  year: 2005
  end-page: 1991
  article-title: Multivariate spatial central limit theorems with applications to percolation and spatial graphs
  publication-title: Ann Probab
– year: 1987
– volume: 14
  start-page: 378
  year: 2004
  end-page: 418
  article-title: A general limit theorem for recursive algorithms and combinatorial structures
  publication-title: Ann Appl Probab
– year: 2003
– volume: 42
  start-page: 195
  year: 1992
  end-page: 214
  article-title: A fixed point theorem for distributions
  publication-title: Stoch Process Appl
– volume: 27
  start-page: 395
  year: 1965
  end-page: 449
  article-title: Spacings
  publication-title: J Royal Stat Soc Ser B
– volume: 51
  start-page: 1079
  year: 2002
  end-page: 1187
  article-title: Evolution of networks
  publication-title: Adv Phys
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev
– start-page: 37
  year: 2005
  end-page: 58
– volume: 13
  start-page: 277
  year: 2003
  end-page: 303
  article-title: Weak laws of large numbers in geometric probability
  publication-title: Ann Appl Probab
– volume: 55
  year: 1965
– year: 1998
– volume: 29
  start-page: 3
  year: 2001
  end-page: 33
  article-title: The contraction method for recursive algorithms
  publication-title: Algorithmica
– volume: 6
  start-page: 495
  year: 1996
  end-page: 527
  article-title: The central limit theorem for weighted minimal spanning trees on random points
  publication-title: Ann Appl Probab
– volume: 24
  start-page: 239
  year: 1953
  end-page: 253
  article-title: On a class of problems related to the random division of an interval
  publication-title: Ann Math Stats
– start-page: 110
  year: 2002
  end-page: 122
– year: 1997
– volume: 15
  start-page: 1047
  year: 2005
  end-page: 1110
  article-title: A survey of max‐type recursive distributional equations
  publication-title: Ann Appl Probab
– volume: 9
  start-page: 575
  year: 2004
  end-page: 593
  article-title: Asymptotic laws for nonconservative selfsimilar fragmentations
  publication-title: Electr J Probab
– volume: 38
  start-page: 336
  year: 2006
  end-page: 372
  article-title: On the total length of the random minimal directed spanning tree
  publication-title: Adv Appl Probab
– start-page: 1
  year: 2003
  end-page: 34
– year: 1991
– volume: 11
  start-page: 1005
  year: 2001
  end-page: 1041
  article-title: Central limit theorems for some graphs in computational geometry
  publication-title: Ann Appl Probab
– year: 1999
– ident: e_1_2_1_6_2
  doi: 10.1002/9780470316962
– ident: e_1_2_1_12_2
  doi: 10.1214/aoap/1034968141
– ident: e_1_2_1_23_2
  doi: 10.1016/0304-4149(92)90035-O
– ident: e_1_2_1_24_2
  doi: 10.1007/BF02679611
– ident: e_1_2_1_29_2
  doi: 10.1007/BFb0093472
– ident: e_1_2_1_8_2
  doi: 10.1214/aoms/1177729030
– ident: e_1_2_1_18_2
  doi: 10.1214/aoap/1015345393
– ident: e_1_2_1_13_2
  doi: 10.1214/aoap/1075828056
– ident: e_1_2_1_27_2
  doi: 10.1239/aap/1183667613
– volume: 27
  start-page: 395
  year: 1965
  ident: e_1_2_1_21_2
  article-title: Spacings
  publication-title: J Royal Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1965.tb00602.x
– ident: e_1_2_1_28_2
– volume-title: Handbook of mathematical functions, National Bureau of Standards
  year: 1965
  ident: e_1_2_1_2_2
– ident: e_1_2_1_14_2
  doi: 10.1137/S003614450342480
– ident: e_1_2_1_3_2
  doi: 10.1214/105051605000000142
– volume-title: Statistical mechanics
  year: 1987
  ident: e_1_2_1_11_2
– ident: e_1_2_1_9_2
  doi: 10.1080/00018730110112519
– ident: e_1_2_1_4_2
  doi: 10.1007/3-540-45061-0_57
– ident: e_1_2_1_15_2
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– ident: e_1_2_1_25_2
  doi: 10.1137/1.9781611970029
– ident: e_1_2_1_19_2
  doi: 10.1214/aoap/1042765669
– ident: e_1_2_1_26_2
– volume-title: Probability metrics and the stability of stochastic models
  year: 1991
  ident: e_1_2_1_22_2
– ident: e_1_2_1_10_2
  doi: 10.1007/3-540-45465-9_11
– volume: 38
  start-page: 336
  year: 2006
  ident: e_1_2_1_17_2
  article-title: On the total length of the random minimal directed spanning tree
  publication-title: Adv Appl Probab
  doi: 10.1239/aap/1151337075
– ident: e_1_2_1_20_2
  doi: 10.1142/9789812567673_0003
– ident: e_1_2_1_16_2
  doi: 10.1214/009117905000000206
– volume: 9
  start-page: 575
  year: 2004
  ident: e_1_2_1_5_2
  article-title: Asymptotic laws for nonconservative selfsimilar fragmentations
  publication-title: Electr J Probab
– start-page: 1
  volume-title: Handbook of graphs and networks
  year: 2003
  ident: e_1_2_1_7_2
SSID ssj0007323
Score 1.8517673
Snippet In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝd is joined by an edge to its nearest neighbor amongst...
In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ℝ d is joined by an edge to its nearest neighbor amongst...
In the on-line nearest-neighbor graph (ONG), each point after the first in a sequence of points in d is joined by an edge to its nearest neighbor amongst those...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125
SubjectTerms divide-and-conquer
fixed-point equation
nearest-neighbor graph
spatial network evolution
weak convergence
Title Limit theory for the random on-line nearest-neighbor graph
URI https://api.istex.fr/ark:/67375/WNG-HJ9LS17T-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20185
https://www.proquest.com/docview/31776626
Volume 32
WOSCitedRecordID wos000253204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB_0zgd9sGorPa26iJS-LN5mk9sNQkGqp-h5iH9a30KSzUFR9-T2FH3zI_gZ-0k6k71bFVoQfMvC7CZMJplfZmd-AdiQpiUYRW2M5TzkxjZD7SIdov0YaTMXp56O4Wcn6XbTiwt5PAFb41qYkh-iCrjRyvD7NS1wbYrNZ9LQQUG0QehuJqHO0G55Deo7J-3zTrURJzEr8-s5CyVa7phYqMk2q5dfuaM6afb-FdZ8iVi9y2l_eNdg52B2hDSD7dI05mHC5Qswc1TRtBYf4bsvbwp8MeNDgPCVmgF6r6x_HfTzP49P1HOQE89tMcTHnAKpaDWB57n-BOft3bMf--HoQoXQxkkswtgJg3CNRy7V6OgNy4wTTjrT0lSRi8hE8p7QeGhtpTaNtOBZwmyzR_Lc6jRehFrez91nCGwW2aagj-iIC2kl8eAbJ9OeZCzRrgHfxnpVdsQ2TpdeXKmSJ5kpVInyKmnAeiV6U1Js_Evoq5-cSkIPLiknLRHqV3dP7R_IzmmUnKnDBqyNZ0_hSqHfHzp3_dtCIVJKWnh-w6H5qfp_Z-rkdNs3lt4uugzTZSoJpad9gdpwcOtWYMreDX8Xg9WRaf4FwtnnZg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB_0rtD2wT-tpVdrXUqRvizeZpPbDYgg2utZ10P0rL6FJJuD0nav3J6lvvkR_Ix-ks5k79YKFQTfsjC7CZNJ5pfZmV8APkjTEYyiNsZyHnJj26F2kQ7Rfoy0uYtTT8fwNUv6_fT8XB7NwdasFqbih6gDbrQy_H5NC5wC0pu3rKHjkniD0N_MQ5OjGYkGNPeOu6dZvRMnMasS7DkLJZrujFmozTbrl-_4oyap9s8dsPkvZPU-p7v4uNEuwcIUawY7lXEsw5wrXsDzw5qotXwJ277AKfDljJcBAlhqBui_8tHPYFTcXF1T10FBTLflBB8LCqWi3QSe6XoFTrufBru9cHqlQmjjJBZh7IRBwMYjl2p09YblxgknneloqslFbCL5UGg8tnZSm0Za8Dxhtj0keW51Gr-CRjEq3GsIbB7ZtqCP6IgLaSUx4Rsn06FkLNGuBR9nilV2yjdO1178UBVTMlOoEuVV0oL3teivimTjf0IbfnZqCT3-TllpiVBn_c-q90VmJ1EyUActWJ9Nn8K1Qj9AdOFGF6VCrJR08ASHQ_NzdX9n6vhkxzfePFx0HZ72BoeZyvb7B6vwrEosoWS1t9CYjC_cGjyxvyffyvG7qZ3-BZ6h61Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-ypoz2Yd26laVbVzNK6YtpLEu2BaVQ1mXdkobSf8ubkGQFxlYnxGnZ3voR9hn3SXonJ94KHQz2JsPZEqc73U_y3U8AW9IkgtGpjbGch9zYdqhdpEO0HyNt7uLM0zFc9tJ-PxsM5EkD9ua1MBU_RH3gRp7h12tycDfOh7u_WUMnJfEGYbx5BE0uZIJu2Tw87Vz06pU4jVmVYM9ZKNF058xCbbZbv3wvHjVJtd_vgc0_IauPOZ2V_xvtU3gyw5rBQWUcz6DhilVYPq6JWsvnsO8LnAJfzvgjQABLzQDjVz66CkbFr9uf1HVQENNtOcXHgo5S0W4Cz3T9Ai4678_fHYWzKxVCG6exCGMnDAI2HrlMY6g3LDdOOOlMoqkmF7GJ5EOhcduaZDaLtOB5ymx7SPLc6ixeg4ViVLiXENg8sm1BH9ERqt9KYsI3TmZDyViqXQt25opVdsY3TtdefFMVUzJTqBLlVdKCt7XouCLZeEho289OLaEnXykrLRXqc_-DOvoke2dReq66LdicT59CX6EfILpwo-tSIVZKE9zB4dD8XP29M3V6duAb6_8uugmPTw47qvex330FS1VeCeWqvYaF6eTabcCivZl-KSdvZmZ6B0jO6tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+theory+for+the+random+on-line+nearest-neighbor+graph&rft.jtitle=Random+structures+%26+algorithms&rft.au=Penrose%2C+Mathew+D&rft.au=Wade%2C+Andrew+R&rft.date=2008-03-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=32&rft.issue=2&rft.spage=125&rft.epage=156&rft_id=info:doi/10.1002%2Frsa.20185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon