Iron‐Catalyzed Allylic C(sp3)−H Silylation: Spin‐Crossover‐Efficiency‐Determined Chemoselectivity

The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathwa...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 63; no. 21; pp. e202402044 - n/a
Main Authors: He, Peng, Guan, Mu‐Han, Hu, Meng‐Yang, Zhou, Yuan‐Jun, Huang, Ming‐Yao, Zhu, Shou‐Fei
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 21.05.2024
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies. An iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction was developed in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. This chemoselectivity, governed by the spin‐crossover efficiency, indicates an unexpected dimension in spin effects.
AbstractList The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.
The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies. An iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction was developed in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. This chemoselectivity, governed by the spin‐crossover efficiency, indicates an unexpected dimension in spin effects.
The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies.
The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp )-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp )-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp )-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.
The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C( sp 3 )−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C( sp 3 )−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C( sp 3 )−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies.
Author Hu, Meng‐Yang
Huang, Ming‐Yao
Zhou, Yuan‐Jun
Zhu, Shou‐Fei
He, Peng
Guan, Mu‐Han
Author_xml – sequence: 1
  givenname: Peng
  surname: He
  fullname: He, Peng
  organization: Nankai University
– sequence: 2
  givenname: Mu‐Han
  surname: Guan
  fullname: Guan, Mu‐Han
  organization: Nankai University
– sequence: 3
  givenname: Meng‐Yang
  surname: Hu
  fullname: Hu, Meng‐Yang
  organization: Nankai University
– sequence: 4
  givenname: Yuan‐Jun
  surname: Zhou
  fullname: Zhou, Yuan‐Jun
  organization: Nankai University
– sequence: 5
  givenname: Ming‐Yao
  surname: Huang
  fullname: Huang, Ming‐Yao
  organization: Nankai University
– sequence: 6
  givenname: Shou‐Fei
  orcidid: 0000-0002-6055-3139
  surname: Zhu
  fullname: Zhu, Shou‐Fei
  email: sfzhu@nankai.edu.cn
  organization: Haihe Laboratory of Sustainable Chemical Transformations
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38469657$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URB7QUqKVaEIxi19jz9CthiVZKYIiUFsez7Vw8IwXezZoUqWkRPmJ-SV4swlIkRCV77W-c2ydc4j2hjAAQi8JnhOM6Vs9OJhTTDmmmPMn6ICUlBRMSraXZ85YIauS7KPDlC4yX1VYPEP7rOKiFqU8QN9WMQy3178aPWo_XUE3W3g_eWdmzXFasze3P29OZ-cuX-nRheHd7Hzt7vgYUgqXEPO8tNYZB4OZ8vIeRoi9G7JT8xX6kMCDGd2lG6fn6KnVPsGL-_MIffmw_NycFmefTlbN4qwwTDJedK0lVW3yQiqBjSSc1KZlLS855oK2rJJMC6g7xmtru05SSzUBy4kVUgBhR-h457uO4fsG0qh6lwx4rwcIm6RoXQpSVpiUGX39CL0Imzjk3ymGS1ZX-e0t9eqe2rQ9dGodXa_jpB5izADfAWYbSwSrjBvvAhujdl4RrLZtqW1b6k9bWTZ_JHtw_qeg3gl-OA_Tf2i1-Lha_tX-Bp9Zq8k
CitedBy_id crossref_primary_10_1039_D5SC03755G
crossref_primary_10_1002_celc_202500023
crossref_primary_10_1021_acscatal_5c04028
crossref_primary_10_1002_cctc_202500127
crossref_primary_10_1039_D5QO00740B
crossref_primary_10_1055_a_2646_8445
crossref_primary_10_1021_acs_inorgchem_5c02766
crossref_primary_10_1021_jacs_5c11470
crossref_primary_10_1021_jacs_5c02158
crossref_primary_10_1093_nsr_nwae217
crossref_primary_10_1021_acs_organomet_5c00157
crossref_primary_10_1002_chem_202401440
Cites_doi 10.1021/jacs.0c09083
10.1016/j.xcrp.2021.100454
10.1002/cjoc.202100449
10.1021/jp068576j
10.1021/acscatal.1c05870
10.1021/acscatal.0c03535
10.1055/s-0034-1380435
10.1002/9781118788301
10.1021/cr5006414
10.1021/ar990028j
10.1021/jacs.7b06086
10.1007/128_2009_14
10.1021/acs.chemrev.8b00507
10.1126/science.aac7440
10.31635/ccschem.023.202303412
10.1016/j.checat.2021.05.002
10.1021/jacs.1c00856
10.1038/s41467-017-02472-6
10.3866/PKU.WHXB201810052
10.1039/b200675h
10.1021/jacs.0c07300
10.1039/D1SC06727C
10.1039/D2SC02160A
10.1021/cr100198w
10.1039/D0CS00688B
10.1002/9783527699087
10.1021/cr500425u
10.1021/jacs.1c11072
10.6023/cjoc202109017
10.1021/jacs.9b02127
10.1021/acscatal.8b01972
10.1039/D0CS01392G
10.1093/nsr/nwad324
10.1021/acs.accounts.5b00036
10.1039/C6CC09244F
10.1126/science.abq8663
10.1021/jacs.5b12150
10.1021/jacs.8b00245
10.1021/ar600042c
10.1002/9783527346028
10.1002/asia.202200104
10.1002/anie.202007930
10.1002/ejic.201100787
10.1002/wcms.1154
10.6023/cjoc201903078
10.1021/acs.chemrev.6b00772
10.1016/j.trechm.2019.07.003
10.1002/ajoc.201700225
10.1021/om400325x
10.1007/s11426-015-5375-0
10.1038/nchem.2417
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202402044
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38469657
10_1002_anie_202402044
ANIE202402044
Genre article
Journal Article
GrantInformation_xml – fundername: New Cornerstone Science Foundation through XPLORER PRIZE
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 22001129, 92256301, 22221002
– fundername: National Key R&D Program of China
  funderid: 2021YFA1500200
– fundername: National Key R&D Program of China
  grantid: 2021YFA1500200
– fundername: National Natural Science Foundation of China
  grantid: 22001129, 92256301, 22221002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3734-dbf189cc371860c71419cb3b4540462b3873a6e9d349ffdd72f2a1ef41f676e13
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001196249500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 12:14:47 EST 2025
Tue Oct 07 07:21:48 EDT 2025
Wed Feb 19 02:07:26 EST 2025
Sat Nov 29 08:07:46 EST 2025
Tue Nov 18 21:44:11 EST 2025
Wed Jan 22 17:20:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords iron catalysis
spin crossover
spin effects
spin
C−H bond silylation
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-dbf189cc371860c71419cb3b4540462b3873a6e9d349ffdd72f2a1ef41f676e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6055-3139
PMID 38469657
PQID 3053984195
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2956158015
proquest_journals_3053984195
pubmed_primary_38469657
crossref_citationtrail_10_1002_anie_202402044
crossref_primary_10_1002_anie_202402044
wiley_primary_10_1002_anie_202402044_ANIE202402044
PublicationCentury 2000
PublicationDate May 21, 2024
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: May 21, 2024
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2015; 58
2012; 2012
2018; 140
2021; 2
2020; 142
2019; 35
2019; 39
2020; 59
2024; 11
2022; 42
2015; 349
2020; 10
2021; 143
2021; 50
2021; 1
2019; 141
2003; 32
2011; 111
2017; 139
2022; 377
2017; 117
2022; 144
2015; 48
2017; 53
2018; 9
2018; 8
2015; 47
2021; 54
2014; 4
2020; 2
2015; 115
2024; 6
2013; 32
2021
2007; 111
2000; 33
2021; 39
2022; 12
2019
2022; 13
2019; 119
2016; 138
2014
2007; 40
2010; 292
2016; 8
2022; 17
e_1_2_11_55_2
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_13_2
e_1_2_11_51_1
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_53_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_1
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_48_2
e_1_2_11_29_2
e_1_2_11_60_1
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_24_2
e_1_2_11_62_1
e_1_2_11_41_2
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_2
e_1_2_11_59_2
e_1_2_11_19_2
e_1_2_11_38_2
He P. (e_1_2_11_28_2) 2021; 54
e_1_2_11_31_2
e_1_2_11_56_2
e_1_2_11_50_2
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_33_2
e_1_2_11_52_2
e_1_2_11_10_2
e_1_2_11_54_1
e_1_2_11_5_2
e_1_2_11_3_2
e_1_2_11_26_1
e_1_2_11_47_2
e_1_2_11_1_1
e_1_2_11_49_2
e_1_2_11_61_1
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_65_1
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_18_1
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_58_2
e_1_2_11_37_2
e_1_2_11_39_1
References_xml – volume: 9
  start-page: 221
  year: 2018
  end-page: 231
  publication-title: Nat. Commun.
– volume: 8
  start-page: 157
  year: 2016
  end-page: 161
  publication-title: Nat. Chem.
– volume: 50
  start-page: 5062
  year: 2021
  end-page: 5085
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 4741
  year: 2013
  end-page: 4751
  publication-title: Organometallics
– volume: 142
  start-page: 15527
  year: 2020
  end-page: 15535
  publication-title: J. Am. Chem. Soc.
– year: 2021
– volume: 13
  start-page: 2721
  year: 2022
  end-page: 2728
  publication-title: Chem. Sci.
– volume: 111
  start-page: 1293
  year: 2011
  end-page: 1314
  publication-title: Chem. Rev.
– volume: 39
  start-page: 3211
  year: 2021
  end-page: 3218
  publication-title: Chin. J. Chem.
– volume: 2
  start-page: 13
  year: 2020
  end-page: 27
  publication-title: Trends Chem.
– volume: 53
  start-page: 1245
  year: 2017
  end-page: 1248
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1415
  year: 2017
  end-page: 1420
  publication-title: Asian J. Org. Chem.
– year: 2014
– volume: 58
  start-page: 1266
  year: 2015
  end-page: 1279
  publication-title: Sci. China Chem.
– volume: 139
  start-page: 15564
  year: 2017
  end-page: 15567
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 12454
  year: 2020
  end-page: 12465
  publication-title: ACS Catal.
– volume: 138
  start-page: 3715
  year: 2016
  end-page: 3730
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2024
  publication-title: Natl. Sci. Rev.
– volume: 32
  start-page: 1
  year: 2003
  end-page: 8
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 16894
  year: 2020
  end-page: 16902
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 19115
  year: 2020
  end-page: 19120
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 537
  year: 2024
  end-page: 584
  publication-title: CCS Chem.
– volume: 2012
  start-page: 479
  year: 2012
  end-page: 483
  publication-title: Eur. J. Inorg. Chem.
– volume: 144
  start-page: 515
  year: 2022
  end-page: 526
  publication-title: J. Am. Chem. Soc.
– volume: 292
  start-page: 35
  year: 2010
  end-page: 56
  publication-title: Top. Curr. Chem.
– volume: 17
  year: 2022
  publication-title: Chem. Asian J.
– volume: 117
  start-page: 9086
  year: 2017
  end-page: 9139
  publication-title: Chem. Rev.
– year: 2019
– volume: 1
  start-page: 631
  year: 2021
  end-page: 647
  publication-title: Chem. Catal.
– volume: 33
  start-page: 139
  year: 2000
  end-page: 145
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 1696
  year: 2015
  end-page: 1702
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 100454
  year: 2021
  end-page: 100463
  publication-title: Cell Rep. Phys. Sci.
– volume: 35
  start-page: 940
  year: 2019
  end-page: 953
  publication-title: Acta Phys. -Chim. Sin.
– volume: 13
  start-page: 7873
  year: 2022
  end-page: 7879
  publication-title: Chem. Sci.
– volume: 39
  start-page: 1511
  year: 2019
  end-page: 1521
  publication-title: Chin. J. Org. Chem.
– volume: 377
  start-page: 1323
  year: 2022
  end-page: 1328
  publication-title: Science
– volume: 47
  start-page: 2347
  year: 2015
  end-page: 2366
  publication-title: Synthesis
– volume: 50
  start-page: 243
  year: 2021
  end-page: 472
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 323
  year: 2022
  end-page: 343
  publication-title: Chin. J. Org. Chem.
– volume: 115
  start-page: 8946
  year: 2015
  end-page: 8975
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 14
  publication-title: WIREs Comput. Mol. Sci.
– volume: 349
  start-page: 960
  year: 2015
  end-page: 963
  publication-title: Science
– volume: 143
  start-page: 3070
  year: 2021
  end-page: 3074
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 532
  year: 2007
  end-page: 542
  publication-title: Acc. Chem. Res.
– volume: 141
  start-page: 4579
  year: 2019
  end-page: 4583
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 3170
  year: 2015
  end-page: 3387
  publication-title: Chem. Rev.
– volume: 8
  start-page: 9907
  year: 2018
  end-page: 9925
  publication-title: ACS Catal.
– volume: 12
  start-page: 2581
  year: 2022
  end-page: 2588
  publication-title: ACS Catal.
– volume: 111
  start-page: 8789
  year: 2007
  end-page: 8795
  publication-title: J. Phys. Chem. C
– volume: 140
  start-page: 3443
  year: 2018
  end-page: 3453
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 2192
  year: 2019
  end-page: 2452
  publication-title: Chem. Rev.
– volume: 54
  start-page: 49
  year: 2021
  end-page: 66
  publication-title: Synthesis
– ident: e_1_2_11_33_2
  doi: 10.1021/jacs.0c09083
– ident: e_1_2_11_21_2
  doi: 10.1016/j.xcrp.2021.100454
– ident: e_1_2_11_27_2
  doi: 10.1002/cjoc.202100449
– ident: e_1_2_11_40_1
– ident: e_1_2_11_54_1
– ident: e_1_2_11_3_2
  doi: 10.1021/jp068576j
– ident: e_1_2_11_38_2
  doi: 10.1021/acscatal.1c05870
– ident: e_1_2_11_25_2
  doi: 10.1021/acscatal.0c03535
– ident: e_1_2_11_42_2
  doi: 10.1055/s-0034-1380435
– ident: e_1_2_11_2_2
  doi: 10.1002/9781118788301
– ident: e_1_2_11_41_2
  doi: 10.1021/cr5006414
– ident: e_1_2_11_9_2
  doi: 10.1021/ar990028j
– ident: e_1_2_11_24_2
  doi: 10.1021/jacs.7b06086
– ident: e_1_2_11_53_2
  doi: 10.1007/128_2009_14
– ident: e_1_2_11_59_2
  doi: 10.1021/acs.chemrev.8b00507
– ident: e_1_2_11_23_2
  doi: 10.1126/science.aac7440
– ident: e_1_2_11_29_2
  doi: 10.31635/ccschem.023.202303412
– ident: e_1_2_11_16_2
  doi: 10.1016/j.checat.2021.05.002
– ident: e_1_2_11_36_1
– ident: e_1_2_11_62_1
  doi: 10.1021/jacs.1c00856
– ident: e_1_2_11_31_2
  doi: 10.1038/s41467-017-02472-6
– ident: e_1_2_11_52_2
  doi: 10.3866/PKU.WHXB201810052
– ident: e_1_2_11_11_2
  doi: 10.1039/b200675h
– ident: e_1_2_11_15_2
  doi: 10.1021/jacs.0c07300
– ident: e_1_2_11_22_1
– ident: e_1_2_11_30_1
– ident: e_1_2_11_34_2
  doi: 10.1039/D1SC06727C
– ident: e_1_2_11_35_1
  doi: 10.1039/D2SC02160A
– ident: e_1_2_11_58_2
  doi: 10.1021/cr100198w
– ident: e_1_2_11_6_2
  doi: 10.1039/D0CS00688B
– ident: e_1_2_11_5_2
  doi: 10.1002/9783527699087
– ident: e_1_2_11_7_2
  doi: 10.1021/cr500425u
– ident: e_1_2_11_37_2
  doi: 10.1021/jacs.1c11072
– ident: e_1_2_11_47_2
  doi: 10.6023/cjoc202109017
– ident: e_1_2_11_32_2
  doi: 10.1021/jacs.9b02127
– volume: 54
  start-page: 49
  year: 2021
  ident: e_1_2_11_28_2
  publication-title: Synthesis
– ident: e_1_2_11_57_1
– ident: e_1_2_11_12_1
– ident: e_1_2_11_51_1
– ident: e_1_2_11_8_1
– ident: e_1_2_11_14_2
  doi: 10.1021/acscatal.8b01972
– ident: e_1_2_11_46_2
  doi: 10.1039/D0CS01392G
– ident: e_1_2_11_39_1
  doi: 10.1093/nsr/nwad324
– ident: e_1_2_11_13_2
  doi: 10.1021/acs.accounts.5b00036
– ident: e_1_2_11_20_2
  doi: 10.1039/C6CC09244F
– ident: e_1_2_11_60_1
  doi: 10.1126/science.abq8663
– ident: e_1_2_11_19_2
  doi: 10.1021/jacs.5b12150
– ident: e_1_2_11_55_2
  doi: 10.1021/jacs.8b00245
– ident: e_1_2_11_1_1
– ident: e_1_2_11_10_2
  doi: 10.1021/ar600042c
– ident: e_1_2_11_26_1
– ident: e_1_2_11_63_1
  doi: 10.1002/9783527346028
– ident: e_1_2_11_4_1
– ident: e_1_2_11_18_1
– ident: e_1_2_11_48_2
  doi: 10.1002/asia.202200104
– ident: e_1_2_11_50_2
  doi: 10.1002/anie.202007930
– ident: e_1_2_11_56_2
  doi: 10.1002/ejic.201100787
– ident: e_1_2_11_65_1
  doi: 10.1002/wcms.1154
– ident: e_1_2_11_44_2
  doi: 10.6023/cjoc201903078
– ident: e_1_2_11_61_1
  doi: 10.1021/acs.chemrev.6b00772
– ident: e_1_2_11_45_2
  doi: 10.1016/j.trechm.2019.07.003
– ident: e_1_2_11_64_1
  doi: 10.1002/ajoc.201700225
– ident: e_1_2_11_17_1
  doi: 10.1021/om400325x
– ident: e_1_2_11_43_2
  doi: 10.1007/s11426-015-5375-0
– ident: e_1_2_11_49_2
  doi: 10.1038/nchem.2417
SSID ssj0028806
Score 2.545195
Snippet The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H...
The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C( sp 3...
The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp )-H...
The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202402044
SubjectTerms Alkenes
Alkynes
Catalysts
C−H bond silylation
Hydrosilylation
Iron
iron catalysis
Reaction kinetics
spin
spin crossover
spin effects
Substrates
Title Iron‐Catalyzed Allylic C(sp3)−H Silylation: Spin‐Crossover‐Efficiency‐Determined Chemoselectivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202402044
https://www.ncbi.nlm.nih.gov/pubmed/38469657
https://www.proquest.com/docview/3053984195
https://www.proquest.com/docview/2956158015
Volume 63
WOSCitedRecordID wos001196249500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG9NH13mzS4UGh7ELEetqzcls0uCYSlNA3szciyBEsW77JOCumpxx5Lf2J-STSy1-1SSqG9SfbYesyMNHrMNwBvEqUdi60jXGSKCG1KkgnNiREyzmRJlS0DZP6pnEyy6VR9-MWLv8GH6DbcUDPCeI0Krov64CdoKHpg-_Udng7EQmzBNvPCm_Rg--jj-Py0W3R5-Ww8jDgnGIh-DdwYs4PNP2xOTL9Zm5vGa5h9xjv_X--H8KC1PKNBIyqP4I6tHsO94Trg2xO4OFktqpuv34e4o3P9xZbRYD6_ns9MNHxXL_n7m28_jqOzmX8UuHkYnS1ngR7bgzdBfXoUECnQndNnjtqrNv5PWMyiDjF3QrSKp3A-Hn0aHpM2FgMxXHJBysLRTBmfoVkaG0kFVabgBQL4iZQVPJNcp1aVXCjnylIyxzS1TlCXytRS_gx61aKyLyAy2hpaaKs5c8I5PHcsPa1LC2MwcnAfyJoRuWmByjFexjxvIJZZjl2Yd13Yh7cd_bKB6Pgj5d6ar3mrqnXuBzyuMt-cpA-vu9e-6_HkRFd2cVXnDN1_Ez-Ze5rnjTx0RXFvwak0kX1gge1_qUM-mJyMutzLf_loF-5jGu8wMLoHvcvVlX0Fd83ny1m92octOc32WzW4BW8hC8c
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagRSoX3oXQFhYJCThYXT-yXnOL0kSJCBGirdSb5fVDiog2UbZFKieOHBE_sb-kHu9mqwghJMRt7Z1dP2Zsj-2ZbxB63ZXa09R5zHguMdfG4pxrhg0XaS4skc5GyPyJmE7zszP5qbEmBF-YGh-iPXCDkRHnaxjgcCB9eIMaCi7YYYMH1wMp57fRNg-yFIR8--jz8HTS7rqCgNYuRoxhiES_Rm5M6eHmHzZXpt_UzU3tNS4_w_v_oeIP0L1G90x6tbA8RLdc-Qjt9Nch3x6jL-PVorz6_rMPZzqX35xNevP55Xxmkv7basneXf34NUqOZyEr8vN9crycRXpoENiChudBxKQAh86QOGqMbcKfoJhFFaPuxHgVT9DpcHDSH-EmGgM2TDCObeFJLk1IkDxLjSCcSFOwAiD8eEYLlgumMyct49J7awX1VBPnOfGZyBxhu2irXJTuGUqMdoYU2mlGPfcebh5toPVZYQzEDu4gvOaEMg1UOUTMmKsaZJkq6ELVdmEHvWnplzVIxx8p99eMVc1grVSY8pjMQ3O6HfSqfR26Hu5OdOkWF5Wi4ADcDct5oHlaC0RbFAs6nMy6ooNo5Ptf6qB60_GgTT3_l49eop3RyceJmoynH_bQXcgHiwZK9tHW-erCHaA75uv5rFq9aEbDNR2eDs8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEX3oUtBYKEBBysxo-NY26rfagrVquKUqm3yPFDWnWVXW1apHLiyBHxE_tL6kmyQSuEkBC32JnEj_HYY3vmG4A3PaU9i50nXKSKCG0sSYXmxAgZp9JS5WwFmT-Vs1l6eqqOGmtC9IWp8SHaAzeUjGq-RgF3K-sPfqGGogt22ODh9UAsxE3YERhJpgM7w0_jk2m76woDtHYx4pxgJPoNcmPMDrb_sL0y_aZubmuv1fIzvv8fKv4A7jW6Z9SvB8tDuOGKR3BnsAn59hjOJutlcfXtxwDPdC6_Ohv1F4vLxdxEg3flir-_-v7zMDqeh6yKnx-i49W8oscGoS1oeB5VmBTo0BkSw8bYJvwJi1mWVdSdKl7FEzgZjz4PDkkTjYEYLrkgNvc0VSYkaJrERlJBlcl5jhB-ImE5TyXXiVOWC-W9tZJ5pqnzgvpEJo7yXegUy8I9g8hoZ2iunebMC-_x5tEGWp_kxmDs4C6QDScy00CVY8SMRVaDLLMMuzBru7ALb1v6VQ3S8UfK_Q1js0ZYyyxMeVyloTm9LrxuX4eux7sTXbjlRZkxdADuheU80DytB0RbFA86nEp6sgus4vtf6pD1Z5NRm9r7l49ewe2j4TibTmYfn8NdzEaDBkb3oXO-vnAv4Jb5cj4v1y8bYbgGlBIOSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%E2%80%90Catalyzed+Allylic+C%28+sp+3+%29%E2%88%92H+Silylation%3A+Spin%E2%80%90Crossover%E2%80%90Efficiency%E2%80%90Determined+Chemoselectivity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=He%2C+Peng&rft.au=Guan%2C+Mu%E2%80%90Han&rft.au=Hu%2C+Meng%E2%80%90Yang&rft.au=Zhou%2C+Yuan%E2%80%90Jun&rft.date=2024-05-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=21&rft_id=info:doi/10.1002%2Fanie.202402044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202402044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon