Iron‐Catalyzed Allylic C(sp3)−H Silylation: Spin‐Crossover‐Efficiency‐Determined Chemoselectivity
The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathwa...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 63; no. 21; pp. e202402044 - n/a |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
21.05.2024
|
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies.
An iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction was developed in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. This chemoselectivity, governed by the spin‐crossover efficiency, indicates an unexpected dimension in spin effects. |
|---|---|
| AbstractList | The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies. The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies. An iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction was developed in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. This chemoselectivity, governed by the spin‐crossover efficiency, indicates an unexpected dimension in spin effects. The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C(sp3)−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies. The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp )-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp )-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp )-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies. The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C( sp 3 )−H silylation/alkyne hydrosilylation reaction, in which the spin state of the open‐shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C( sp 3 )−H silylation reaction. This chemoselectivity, governed by the spin‐crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition‐metal‐catalyzed in situ silylation of allylic C( sp 3 )−H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate‐assisted C−H activation mechanism, a departure from known ligand‐assisted processes, offering a fresh perspective on C−H activation strategies. |
| Author | Hu, Meng‐Yang Huang, Ming‐Yao Zhou, Yuan‐Jun Zhu, Shou‐Fei He, Peng Guan, Mu‐Han |
| Author_xml | – sequence: 1 givenname: Peng surname: He fullname: He, Peng organization: Nankai University – sequence: 2 givenname: Mu‐Han surname: Guan fullname: Guan, Mu‐Han organization: Nankai University – sequence: 3 givenname: Meng‐Yang surname: Hu fullname: Hu, Meng‐Yang organization: Nankai University – sequence: 4 givenname: Yuan‐Jun surname: Zhou fullname: Zhou, Yuan‐Jun organization: Nankai University – sequence: 5 givenname: Ming‐Yao surname: Huang fullname: Huang, Ming‐Yao organization: Nankai University – sequence: 6 givenname: Shou‐Fei orcidid: 0000-0002-6055-3139 surname: Zhu fullname: Zhu, Shou‐Fei email: sfzhu@nankai.edu.cn organization: Haihe Laboratory of Sustainable Chemical Transformations |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38469657$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTtvFDEUhS0URB7QUqKVaEIxi19jz9CthiVZKYIiUFsez7Vw8IwXezZoUqWkRPmJ-SV4swlIkRCV77W-c2ydc4j2hjAAQi8JnhOM6Vs9OJhTTDmmmPMn6ICUlBRMSraXZ85YIauS7KPDlC4yX1VYPEP7rOKiFqU8QN9WMQy3178aPWo_XUE3W3g_eWdmzXFasze3P29OZ-cuX-nRheHd7Hzt7vgYUgqXEPO8tNYZB4OZ8vIeRoi9G7JT8xX6kMCDGd2lG6fn6KnVPsGL-_MIffmw_NycFmefTlbN4qwwTDJedK0lVW3yQiqBjSSc1KZlLS855oK2rJJMC6g7xmtru05SSzUBy4kVUgBhR-h457uO4fsG0qh6lwx4rwcIm6RoXQpSVpiUGX39CL0Imzjk3ymGS1ZX-e0t9eqe2rQ9dGodXa_jpB5izADfAWYbSwSrjBvvAhujdl4RrLZtqW1b6k9bWTZ_JHtw_qeg3gl-OA_Tf2i1-Lha_tX-Bp9Zq8k |
| CitedBy_id | crossref_primary_10_1039_D5SC03755G crossref_primary_10_1002_celc_202500023 crossref_primary_10_1021_acscatal_5c04028 crossref_primary_10_1002_cctc_202500127 crossref_primary_10_1039_D5QO00740B crossref_primary_10_1055_a_2646_8445 crossref_primary_10_1021_acs_inorgchem_5c02766 crossref_primary_10_1021_jacs_5c11470 crossref_primary_10_1021_jacs_5c02158 crossref_primary_10_1093_nsr_nwae217 crossref_primary_10_1021_acs_organomet_5c00157 crossref_primary_10_1002_chem_202401440 |
| Cites_doi | 10.1021/jacs.0c09083 10.1016/j.xcrp.2021.100454 10.1002/cjoc.202100449 10.1021/jp068576j 10.1021/acscatal.1c05870 10.1021/acscatal.0c03535 10.1055/s-0034-1380435 10.1002/9781118788301 10.1021/cr5006414 10.1021/ar990028j 10.1021/jacs.7b06086 10.1007/128_2009_14 10.1021/acs.chemrev.8b00507 10.1126/science.aac7440 10.31635/ccschem.023.202303412 10.1016/j.checat.2021.05.002 10.1021/jacs.1c00856 10.1038/s41467-017-02472-6 10.3866/PKU.WHXB201810052 10.1039/b200675h 10.1021/jacs.0c07300 10.1039/D1SC06727C 10.1039/D2SC02160A 10.1021/cr100198w 10.1039/D0CS00688B 10.1002/9783527699087 10.1021/cr500425u 10.1021/jacs.1c11072 10.6023/cjoc202109017 10.1021/jacs.9b02127 10.1021/acscatal.8b01972 10.1039/D0CS01392G 10.1093/nsr/nwad324 10.1021/acs.accounts.5b00036 10.1039/C6CC09244F 10.1126/science.abq8663 10.1021/jacs.5b12150 10.1021/jacs.8b00245 10.1021/ar600042c 10.1002/9783527346028 10.1002/asia.202200104 10.1002/anie.202007930 10.1002/ejic.201100787 10.1002/wcms.1154 10.6023/cjoc201903078 10.1021/acs.chemrev.6b00772 10.1016/j.trechm.2019.07.003 10.1002/ajoc.201700225 10.1021/om400325x 10.1007/s11426-015-5375-0 10.1038/nchem.2417 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202402044 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 38469657 10_1002_anie_202402044 ANIE202402044 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: New Cornerstone Science Foundation through XPLORER PRIZE – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 22001129, 92256301, 22221002 – fundername: National Key R&D Program of China funderid: 2021YFA1500200 – fundername: National Key R&D Program of China grantid: 2021YFA1500200 – fundername: National Natural Science Foundation of China grantid: 22001129, 92256301, 22221002 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c3734-dbf189cc371860c71419cb3b4540462b3873a6e9d349ffdd72f2a1ef41f676e13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001196249500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 12:14:47 EST 2025 Tue Oct 07 07:21:48 EDT 2025 Wed Feb 19 02:07:26 EST 2025 Sat Nov 29 08:07:46 EST 2025 Tue Nov 18 21:44:11 EST 2025 Wed Jan 22 17:20:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | iron catalysis spin crossover spin effects spin C−H bond silylation |
| Language | English |
| License | 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3734-dbf189cc371860c71419cb3b4540462b3873a6e9d349ffdd72f2a1ef41f676e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6055-3139 |
| PMID | 38469657 |
| PQID | 3053984195 |
| PQPubID | 946352 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2956158015 proquest_journals_3053984195 pubmed_primary_38469657 crossref_citationtrail_10_1002_anie_202402044 crossref_primary_10_1002_anie_202402044 wiley_primary_10_1002_anie_202402044_ANIE202402044 |
| PublicationCentury | 2000 |
| PublicationDate | May 21, 2024 |
| PublicationDateYYYYMMDD | 2024-05-21 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 21, 2024 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 6 2015; 58 2012; 2012 2018; 140 2021; 2 2020; 142 2019; 35 2019; 39 2020; 59 2024; 11 2022; 42 2015; 349 2020; 10 2021; 143 2021; 50 2021; 1 2019; 141 2003; 32 2011; 111 2017; 139 2022; 377 2017; 117 2022; 144 2015; 48 2017; 53 2018; 9 2018; 8 2015; 47 2021; 54 2014; 4 2020; 2 2015; 115 2024; 6 2013; 32 2021 2007; 111 2000; 33 2021; 39 2022; 12 2019 2022; 13 2019; 119 2016; 138 2014 2007; 40 2010; 292 2016; 8 2022; 17 e_1_2_11_55_2 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_13_2 e_1_2_11_51_1 e_1_2_11_34_2 e_1_2_11_11_2 e_1_2_11_32_2 e_1_2_11_53_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_4_1 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_48_2 e_1_2_11_29_2 e_1_2_11_60_1 e_1_2_11_20_2 e_1_2_11_43_2 e_1_2_11_45_2 e_1_2_11_24_2 e_1_2_11_62_1 e_1_2_11_41_2 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_2 e_1_2_11_59_2 e_1_2_11_19_2 e_1_2_11_38_2 He P. (e_1_2_11_28_2) 2021; 54 e_1_2_11_31_2 e_1_2_11_56_2 e_1_2_11_50_2 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_33_2 e_1_2_11_52_2 e_1_2_11_10_2 e_1_2_11_54_1 e_1_2_11_5_2 e_1_2_11_3_2 e_1_2_11_26_1 e_1_2_11_47_2 e_1_2_11_1_1 e_1_2_11_49_2 e_1_2_11_61_1 e_1_2_11_44_2 e_1_2_11_46_2 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_65_1 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_42_2 e_1_2_11_18_1 e_1_2_11_16_2 e_1_2_11_14_2 e_1_2_11_58_2 e_1_2_11_37_2 e_1_2_11_39_1 |
| References_xml | – volume: 9 start-page: 221 year: 2018 end-page: 231 publication-title: Nat. Commun. – volume: 8 start-page: 157 year: 2016 end-page: 161 publication-title: Nat. Chem. – volume: 50 start-page: 5062 year: 2021 end-page: 5085 publication-title: Chem. Soc. Rev. – volume: 32 start-page: 4741 year: 2013 end-page: 4751 publication-title: Organometallics – volume: 142 start-page: 15527 year: 2020 end-page: 15535 publication-title: J. Am. Chem. Soc. – year: 2021 – volume: 13 start-page: 2721 year: 2022 end-page: 2728 publication-title: Chem. Sci. – volume: 111 start-page: 1293 year: 2011 end-page: 1314 publication-title: Chem. Rev. – volume: 39 start-page: 3211 year: 2021 end-page: 3218 publication-title: Chin. J. Chem. – volume: 2 start-page: 13 year: 2020 end-page: 27 publication-title: Trends Chem. – volume: 53 start-page: 1245 year: 2017 end-page: 1248 publication-title: Chem. Commun. – volume: 6 start-page: 1415 year: 2017 end-page: 1420 publication-title: Asian J. Org. Chem. – year: 2014 – volume: 58 start-page: 1266 year: 2015 end-page: 1279 publication-title: Sci. China Chem. – volume: 139 start-page: 15564 year: 2017 end-page: 15567 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 12454 year: 2020 end-page: 12465 publication-title: ACS Catal. – volume: 138 start-page: 3715 year: 2016 end-page: 3730 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2024 publication-title: Natl. Sci. Rev. – volume: 32 start-page: 1 year: 2003 end-page: 8 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 16894 year: 2020 end-page: 16902 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 19115 year: 2020 end-page: 19120 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 537 year: 2024 end-page: 584 publication-title: CCS Chem. – volume: 2012 start-page: 479 year: 2012 end-page: 483 publication-title: Eur. J. Inorg. Chem. – volume: 144 start-page: 515 year: 2022 end-page: 526 publication-title: J. Am. Chem. Soc. – volume: 292 start-page: 35 year: 2010 end-page: 56 publication-title: Top. Curr. Chem. – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 117 start-page: 9086 year: 2017 end-page: 9139 publication-title: Chem. Rev. – year: 2019 – volume: 1 start-page: 631 year: 2021 end-page: 647 publication-title: Chem. Catal. – volume: 33 start-page: 139 year: 2000 end-page: 145 publication-title: Acc. Chem. Res. – volume: 48 start-page: 1696 year: 2015 end-page: 1702 publication-title: Acc. Chem. Res. – volume: 2 start-page: 100454 year: 2021 end-page: 100463 publication-title: Cell Rep. Phys. Sci. – volume: 35 start-page: 940 year: 2019 end-page: 953 publication-title: Acta Phys. -Chim. Sin. – volume: 13 start-page: 7873 year: 2022 end-page: 7879 publication-title: Chem. Sci. – volume: 39 start-page: 1511 year: 2019 end-page: 1521 publication-title: Chin. J. Org. Chem. – volume: 377 start-page: 1323 year: 2022 end-page: 1328 publication-title: Science – volume: 47 start-page: 2347 year: 2015 end-page: 2366 publication-title: Synthesis – volume: 50 start-page: 243 year: 2021 end-page: 472 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 323 year: 2022 end-page: 343 publication-title: Chin. J. Org. Chem. – volume: 115 start-page: 8946 year: 2015 end-page: 8975 publication-title: Chem. Rev. – volume: 4 start-page: 1 year: 2014 end-page: 14 publication-title: WIREs Comput. Mol. Sci. – volume: 349 start-page: 960 year: 2015 end-page: 963 publication-title: Science – volume: 143 start-page: 3070 year: 2021 end-page: 3074 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 532 year: 2007 end-page: 542 publication-title: Acc. Chem. Res. – volume: 141 start-page: 4579 year: 2019 end-page: 4583 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 3170 year: 2015 end-page: 3387 publication-title: Chem. Rev. – volume: 8 start-page: 9907 year: 2018 end-page: 9925 publication-title: ACS Catal. – volume: 12 start-page: 2581 year: 2022 end-page: 2588 publication-title: ACS Catal. – volume: 111 start-page: 8789 year: 2007 end-page: 8795 publication-title: J. Phys. Chem. C – volume: 140 start-page: 3443 year: 2018 end-page: 3453 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 2192 year: 2019 end-page: 2452 publication-title: Chem. Rev. – volume: 54 start-page: 49 year: 2021 end-page: 66 publication-title: Synthesis – ident: e_1_2_11_33_2 doi: 10.1021/jacs.0c09083 – ident: e_1_2_11_21_2 doi: 10.1016/j.xcrp.2021.100454 – ident: e_1_2_11_27_2 doi: 10.1002/cjoc.202100449 – ident: e_1_2_11_40_1 – ident: e_1_2_11_54_1 – ident: e_1_2_11_3_2 doi: 10.1021/jp068576j – ident: e_1_2_11_38_2 doi: 10.1021/acscatal.1c05870 – ident: e_1_2_11_25_2 doi: 10.1021/acscatal.0c03535 – ident: e_1_2_11_42_2 doi: 10.1055/s-0034-1380435 – ident: e_1_2_11_2_2 doi: 10.1002/9781118788301 – ident: e_1_2_11_41_2 doi: 10.1021/cr5006414 – ident: e_1_2_11_9_2 doi: 10.1021/ar990028j – ident: e_1_2_11_24_2 doi: 10.1021/jacs.7b06086 – ident: e_1_2_11_53_2 doi: 10.1007/128_2009_14 – ident: e_1_2_11_59_2 doi: 10.1021/acs.chemrev.8b00507 – ident: e_1_2_11_23_2 doi: 10.1126/science.aac7440 – ident: e_1_2_11_29_2 doi: 10.31635/ccschem.023.202303412 – ident: e_1_2_11_16_2 doi: 10.1016/j.checat.2021.05.002 – ident: e_1_2_11_36_1 – ident: e_1_2_11_62_1 doi: 10.1021/jacs.1c00856 – ident: e_1_2_11_31_2 doi: 10.1038/s41467-017-02472-6 – ident: e_1_2_11_52_2 doi: 10.3866/PKU.WHXB201810052 – ident: e_1_2_11_11_2 doi: 10.1039/b200675h – ident: e_1_2_11_15_2 doi: 10.1021/jacs.0c07300 – ident: e_1_2_11_22_1 – ident: e_1_2_11_30_1 – ident: e_1_2_11_34_2 doi: 10.1039/D1SC06727C – ident: e_1_2_11_35_1 doi: 10.1039/D2SC02160A – ident: e_1_2_11_58_2 doi: 10.1021/cr100198w – ident: e_1_2_11_6_2 doi: 10.1039/D0CS00688B – ident: e_1_2_11_5_2 doi: 10.1002/9783527699087 – ident: e_1_2_11_7_2 doi: 10.1021/cr500425u – ident: e_1_2_11_37_2 doi: 10.1021/jacs.1c11072 – ident: e_1_2_11_47_2 doi: 10.6023/cjoc202109017 – ident: e_1_2_11_32_2 doi: 10.1021/jacs.9b02127 – volume: 54 start-page: 49 year: 2021 ident: e_1_2_11_28_2 publication-title: Synthesis – ident: e_1_2_11_57_1 – ident: e_1_2_11_12_1 – ident: e_1_2_11_51_1 – ident: e_1_2_11_8_1 – ident: e_1_2_11_14_2 doi: 10.1021/acscatal.8b01972 – ident: e_1_2_11_46_2 doi: 10.1039/D0CS01392G – ident: e_1_2_11_39_1 doi: 10.1093/nsr/nwad324 – ident: e_1_2_11_13_2 doi: 10.1021/acs.accounts.5b00036 – ident: e_1_2_11_20_2 doi: 10.1039/C6CC09244F – ident: e_1_2_11_60_1 doi: 10.1126/science.abq8663 – ident: e_1_2_11_19_2 doi: 10.1021/jacs.5b12150 – ident: e_1_2_11_55_2 doi: 10.1021/jacs.8b00245 – ident: e_1_2_11_1_1 – ident: e_1_2_11_10_2 doi: 10.1021/ar600042c – ident: e_1_2_11_26_1 – ident: e_1_2_11_63_1 doi: 10.1002/9783527346028 – ident: e_1_2_11_4_1 – ident: e_1_2_11_18_1 – ident: e_1_2_11_48_2 doi: 10.1002/asia.202200104 – ident: e_1_2_11_50_2 doi: 10.1002/anie.202007930 – ident: e_1_2_11_56_2 doi: 10.1002/ejic.201100787 – ident: e_1_2_11_65_1 doi: 10.1002/wcms.1154 – ident: e_1_2_11_44_2 doi: 10.6023/cjoc201903078 – ident: e_1_2_11_61_1 doi: 10.1021/acs.chemrev.6b00772 – ident: e_1_2_11_45_2 doi: 10.1016/j.trechm.2019.07.003 – ident: e_1_2_11_64_1 doi: 10.1002/ajoc.201700225 – ident: e_1_2_11_17_1 doi: 10.1021/om400325x – ident: e_1_2_11_43_2 doi: 10.1007/s11426-015-5375-0 – ident: e_1_2_11_49_2 doi: 10.1038/nchem.2417 |
| SSID | ssj0028806 |
| Score | 2.545195 |
| Snippet | The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C(sp3)−H... The nuanced role of spin effects remains a critical gap in designing proficient open‐shell catalysts. This study elucidates an iron‐catalyzed allylic C( sp 3... The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp )-H... The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202402044 |
| SubjectTerms | Alkenes Alkynes Catalysts C−H bond silylation Hydrosilylation Iron iron catalysis Reaction kinetics spin spin crossover spin effects Substrates |
| Title | Iron‐Catalyzed Allylic C(sp3)−H Silylation: Spin‐Crossover‐Efficiency‐Determined Chemoselectivity |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202402044 https://www.ncbi.nlm.nih.gov/pubmed/38469657 https://www.proquest.com/docview/3053984195 https://www.proquest.com/docview/2956158015 |
| Volume | 63 |
| WOSCitedRecordID | wos001196249500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG9NH13mzS4UGh7ELEetqzcls0uCYSlNA3szciyBEsW77JOCumpxx5Lf2J-STSy1-1SSqG9SfbYesyMNHrMNwBvEqUdi60jXGSKCG1KkgnNiREyzmRJlS0DZP6pnEyy6VR9-MWLv8GH6DbcUDPCeI0Krov64CdoKHpg-_Udng7EQmzBNvPCm_Rg--jj-Py0W3R5-Ww8jDgnGIh-DdwYs4PNP2xOTL9Zm5vGa5h9xjv_X--H8KC1PKNBIyqP4I6tHsO94Trg2xO4OFktqpuv34e4o3P9xZbRYD6_ns9MNHxXL_n7m28_jqOzmX8UuHkYnS1ngR7bgzdBfXoUECnQndNnjtqrNv5PWMyiDjF3QrSKp3A-Hn0aHpM2FgMxXHJBysLRTBmfoVkaG0kFVabgBQL4iZQVPJNcp1aVXCjnylIyxzS1TlCXytRS_gx61aKyLyAy2hpaaKs5c8I5PHcsPa1LC2MwcnAfyJoRuWmByjFexjxvIJZZjl2Yd13Yh7cd_bKB6Pgj5d6ar3mrqnXuBzyuMt-cpA-vu9e-6_HkRFd2cVXnDN1_Ez-Ze5rnjTx0RXFvwak0kX1gge1_qUM-mJyMutzLf_loF-5jGu8wMLoHvcvVlX0Fd83ny1m92octOc32WzW4BW8hC8c |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagRSoX3oXQFhYJCThYXT-yXnOL0kSJCBGirdSb5fVDiog2UbZFKieOHBE_sb-kHu9mqwghJMRt7Z1dP2Zsj-2ZbxB63ZXa09R5zHguMdfG4pxrhg0XaS4skc5GyPyJmE7zszP5qbEmBF-YGh-iPXCDkRHnaxjgcCB9eIMaCi7YYYMH1wMp57fRNg-yFIR8--jz8HTS7rqCgNYuRoxhiES_Rm5M6eHmHzZXpt_UzU3tNS4_w_v_oeIP0L1G90x6tbA8RLdc-Qjt9Nch3x6jL-PVorz6_rMPZzqX35xNevP55Xxmkv7basneXf34NUqOZyEr8vN9crycRXpoENiChudBxKQAh86QOGqMbcKfoJhFFaPuxHgVT9DpcHDSH-EmGgM2TDCObeFJLk1IkDxLjSCcSFOwAiD8eEYLlgumMyct49J7awX1VBPnOfGZyBxhu2irXJTuGUqMdoYU2mlGPfcebh5toPVZYQzEDu4gvOaEMg1UOUTMmKsaZJkq6ELVdmEHvWnplzVIxx8p99eMVc1grVSY8pjMQ3O6HfSqfR26Hu5OdOkWF5Wi4ADcDct5oHlaC0RbFAs6nMy6ooNo5Ptf6qB60_GgTT3_l49eop3RyceJmoynH_bQXcgHiwZK9tHW-erCHaA75uv5rFq9aEbDNR2eDs8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEX3oUtBYKEBBysxo-NY26rfagrVquKUqm3yPFDWnWVXW1apHLiyBHxE_tL6kmyQSuEkBC32JnEj_HYY3vmG4A3PaU9i50nXKSKCG0sSYXmxAgZp9JS5WwFmT-Vs1l6eqqOGmtC9IWp8SHaAzeUjGq-RgF3K-sPfqGGogt22ODh9UAsxE3YERhJpgM7w0_jk2m76woDtHYx4pxgJPoNcmPMDrb_sL0y_aZubmuv1fIzvv8fKv4A7jW6Z9SvB8tDuOGKR3BnsAn59hjOJutlcfXtxwDPdC6_Ohv1F4vLxdxEg3flir-_-v7zMDqeh6yKnx-i49W8oscGoS1oeB5VmBTo0BkSw8bYJvwJi1mWVdSdKl7FEzgZjz4PDkkTjYEYLrkgNvc0VSYkaJrERlJBlcl5jhB-ImE5TyXXiVOWC-W9tZJ5pqnzgvpEJo7yXegUy8I9g8hoZ2iunebMC-_x5tEGWp_kxmDs4C6QDScy00CVY8SMRVaDLLMMuzBru7ALb1v6VQ3S8UfK_Q1js0ZYyyxMeVyloTm9LrxuX4eux7sTXbjlRZkxdADuheU80DytB0RbFA86nEp6sgus4vtf6pD1Z5NRm9r7l49ewe2j4TibTmYfn8NdzEaDBkb3oXO-vnAv4Jb5cj4v1y8bYbgGlBIOSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%E2%80%90Catalyzed+Allylic+C%28+sp+3+%29%E2%88%92H+Silylation%3A+Spin%E2%80%90Crossover%E2%80%90Efficiency%E2%80%90Determined+Chemoselectivity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=He%2C+Peng&rft.au=Guan%2C+Mu%E2%80%90Han&rft.au=Hu%2C+Meng%E2%80%90Yang&rft.au=Zhou%2C+Yuan%E2%80%90Jun&rft.date=2024-05-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=21&rft_id=info:doi/10.1002%2Fanie.202402044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202402044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |