Dynamic convolutional capsule network for In‐loop filtering in HEVC video codec

Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features f...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing Vol. 17; no. 2; pp. 439 - 449
Main Authors: Su, LiChao, Cao, Mengqing, Yu, Yue, Chen, Jian, Yang, XiuZhi, Wu, Dapeng
Format: Journal Article
Language:English
Published: Wiley 01.02.2023
ISSN:1751-9659, 1751-9667
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency.
AbstractList Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency.
Abstract Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency.
Author Cao, Mengqing
Wu, Dapeng
Yang, XiuZhi
Chen, Jian
Yu, Yue
Su, LiChao
Author_xml – sequence: 1
  givenname: LiChao
  orcidid: 0000-0003-2641-5901
  surname: Su
  fullname: Su, LiChao
  organization: Fuzhou University
– sequence: 2
  givenname: Mengqing
  surname: Cao
  fullname: Cao, Mengqing
  organization: Fuzhou University
– sequence: 3
  givenname: Yue
  surname: Yu
  fullname: Yu, Yue
  organization: Fuzhou University
– sequence: 4
  givenname: Jian
  orcidid: 0000-0001-7556-3121
  surname: Chen
  fullname: Chen, Jian
  email: chenjian-fzu@163.com
  organization: Fuzhou University
– sequence: 5
  givenname: XiuZhi
  surname: Yang
  fullname: Yang, XiuZhi
  organization: Fuzhou University
– sequence: 6
  givenname: Dapeng
  surname: Wu
  fullname: Wu, Dapeng
  organization: City University of Hong Kong
BookMark eNp9kE1OwzAQhS1UJNrChhN4jZRix3biLFEpNFIlfgRsLcd2KpfUjpy0VXccgTNyEtIGdclqZp7efHp6IzBw3hkArjGaYESzW1uHeILjhNIzMMQpw1GWJOngtLPsAoyaZoUQyxBnQ_Byv3dybRVU3m19tWmtd7KCStbNpjLQmXbnwycsfYC5-_n6rryvYWmr1gTrltA6OJ99TOHWauM7hjbqEpyXsmrM1d8cg_eH2dt0Hi2eHvPp3SJSJCU00gUiqIvBNS-NTnRcxN1ZMFZwhjgiBBPKJVW8IKlinaYLblRWcG7iNFOEjEHec7WXK1EHu5ZhL7y04ij4sBQytFZVRrBMSYkSFhOEaap0QRWNWWlwpokiynSsm56lgm-aYMoTDyNxKFYcihXHYjsz7s07W5n9P06RP7_G_c8vJXJ84Q
Cites_doi 10.1109/TIP.2020.2982534
10.1109/ICCV.2015.73
10.1007/978-3-319-51811-4_3
10.1109/ICME.2019.00303
10.1109/TITS.2020.2990120
10.1109/CVPR.2017.304
10.1109/CVPRW.2017.150
10.1109/TCSVT.2019.2935508
10.1109/TIP.2019.2921877
10.1109/TIP.2019.2896489
10.1109/TGRS.2018.2871782
10.1109/VCIP47243.2019.8965980
10.1109/TIP.2018.2815841
10.1109/TCSVT.2012.2223053
10.1109/TCSVT.2012.2221529
10.1109/jstsp.2020.3043064
10.1109/ACCESS.2020.3040751
10.1109/TCSVT.2003.815165
10.1109/TCSVT.2012.2221192
10.1109/TIP.2021.3068638
10.1109/CVPR.2016.90
10.1109/TPAMI.2015.2439281
10.1145/3439734
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12644
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 449
ExternalDocumentID oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce
10_1049_ipr2_12644
IPR212644
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62001117; 61902071
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c3734-db0300058d8fed6d2b2000b55b85080331348a4c8b37c5850db8ec9b88e279c33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:42:42 EDT 2025
Wed Oct 29 21:19:07 EDT 2025
Wed Jan 22 16:24:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-db0300058d8fed6d2b2000b55b85080331348a4c8b37c5850db8ec9b88e279c33
ORCID 0000-0003-2641-5901
0000-0001-7556-3121
OpenAccessLink https://doaj.org/article/59caa065230147cdb4c425fe19d3c3ce
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce
crossref_primary_10_1049_ipr2_12644
wiley_primary_10_1049_ipr2_12644_IPR212644
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2020; 8
2021; 15
2015; 38
2021; 22
2001
2020; 30
2019; 57
2021; 17
2003; 13
2019; 28
2019
2018
2017
2016
2015
2021; 30
2012; 22
2018; 27
2020; 29
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Ding D. (e_1_2_9_17_1) 2020; 30
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
Sabour S. (e_1_2_9_19_1) 2017
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
Sutton R.S. (e_1_2_9_23_1) 2018
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 28
  start-page: 3343
  issue: 7
  year: 2019
  end-page: 3356
  article-title: Content‐aware convolutional neural network for in‐loop filtering in high efficiency video coding
  publication-title: IEEE Trans. Image Process
– volume: 22
  start-page: 1755
  issue: 12
  year: 2012
  end-page: 1764
  article-title: Sample adaptive offset in the HEVC standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol
– volume: 30
  start-page: 1871
  issue: 7
  year: 2020
  end-page: 1887
  article-title: A switchable deep learning approach for in‐loop filtering in video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 15
  start-page: 378
  issue: 2
  year: 2021
  end-page: 387
  article-title: MFRNet: A new CNN architecture for post‐processing and in‐loop filtering
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 28
  start-page: 5663
  issue: 11
  year: 2019
  end-page: 5678
  article-title: A deep learning approach for multi‐frame in‐loop filter of HEVC
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 2145
  issue: 4
  year: 2019
  end-page: 2160
  article-title: Capsule networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens
– start-page: 1
  year: 2019
  end-page: 4
  article-title: Deep learning based in‐loop filter for video coding
– volume: 8
  start-page: 213958
  year: 2020
  end-page: 213967
  article-title: Offset‐based in‐loop filtering with a deep network in HEVC
  publication-title: IEEE Access
– year: 2001
– volume: 13
  start-page: 560
  issue: 7
  year: 2003
  end-page: 576
  article-title: Overview of the high efficiency video coding (HEVC) standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 17
  start-page: 1
  issue: 4
  year: 2021
  end-page: 19
  article-title: Residual‐guided in‐loop filter using convolution neural network
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl
– start-page: 3856
  year: 2017
  end-page: 3866
  article-title: Dynamic routing between capsules
– start-page: 576
  year: 2015
  end-page: 584
  article-title: Compression artifacts reduction by a deep convolutional network
– year: 2018
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 22
  issue: 12
  year: 2012
  article-title: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC)
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 30
  start-page: 4198
  year: 2021
  end-page: 4211
  article-title: Combining progressive rethinking and collaborative learning: a deep framework for in‐Loop filtering
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 3827
  issue: 8
  year: 2018
  end-page: 3841
  article-title: Residual highway convolutional neural networks for in‐loop filtering in HEVC
  publication-title: IEEE Trans. Image Process
– start-page: 1762
  year: 2019
  end-page: 1767
  article-title: Multi‐scale capsule attention‐based salient object detection with multi‐crossed layer connections
– volume: 22
  start-page: 1981
  issue: 4
  year: 2021
  end-page: 1995
  article-title: Capsule‐based networks for road marking extraction and classification from mobile LiDAR point clouds
  publication-title: IEEE Trans. Intell. Transp. Syst
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– year: 2017
  article-title: Ntire 2017 challenge on single image super‐resolution: Dataset and study
– start-page: 28
  year: 2017
  end-page: 39
  article-title: A convolutional neural network approach for post‐processing in HEVC Intra Coding
– start-page: 2848
  year: 2017
  end-page: 2857
  article-title: Real‐time video super‐resolution with spatio‐temporal networks and motion compensation
– volume: 22
  start-page: 1746
  issue: 12
  year: 2012
  end-page: 1754
  article-title: HEVC deblocking filter
  publication-title: IEEE Trans. Circuits Syst. Video Technol
– volume: 29
  start-page: 5352
  year: 2020
  end-page: 5366
  article-title: Efficient in‐loop filtering based on enhanced deep convolutional neural networks for HEVC
  publication-title: IEEE Trans. Image Process
– ident: e_1_2_9_28_1
– ident: e_1_2_9_10_1
  doi: 10.1109/TIP.2020.2982534
– ident: e_1_2_9_5_1
  doi: 10.1109/ICCV.2015.73
– ident: e_1_2_9_6_1
  doi: 10.1007/978-3-319-51811-4_3
– ident: e_1_2_9_22_1
  doi: 10.1109/ICME.2019.00303
– start-page: 3856
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_9_19_1
– ident: e_1_2_9_21_1
  doi: 10.1109/TITS.2020.2990120
– ident: e_1_2_9_16_1
  doi: 10.1109/CVPR.2017.304
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPRW.2017.150
– volume: 30
  start-page: 1871
  issue: 7
  year: 2020
  ident: e_1_2_9_17_1
  article-title: A switchable deep learning approach for in‐loop filtering in video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2935508
– ident: e_1_2_9_15_1
  doi: 10.1109/TIP.2019.2921877
– ident: e_1_2_9_18_1
  doi: 10.1109/TIP.2019.2896489
– ident: e_1_2_9_20_1
  doi: 10.1109/TGRS.2018.2871782
– ident: e_1_2_9_7_1
  doi: 10.1109/VCIP47243.2019.8965980
– ident: e_1_2_9_12_1
  doi: 10.1109/TIP.2018.2815841
– ident: e_1_2_9_3_1
  doi: 10.1109/TCSVT.2012.2223053
– ident: e_1_2_9_27_1
– ident: e_1_2_9_4_1
  doi: 10.1109/TCSVT.2012.2221529
– ident: e_1_2_9_13_1
  doi: 10.1109/jstsp.2020.3043064
– ident: e_1_2_9_8_1
  doi: 10.1109/ACCESS.2020.3040751
– ident: e_1_2_9_2_1
  doi: 10.1109/TCSVT.2003.815165
– ident: e_1_2_9_26_1
– ident: e_1_2_9_29_1
  doi: 10.1109/TCSVT.2012.2221192
– ident: e_1_2_9_14_1
  doi: 10.1109/TIP.2021.3068638
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: e_1_2_9_23_1
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_9_1
  doi: 10.1109/TPAMI.2015.2439281
– ident: e_1_2_9_11_1
  doi: 10.1145/3439734
SSID ssj0059085
Score 2.2696724
Snippet Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High...
Abstract Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 439
SummonAdditionalLinks – databaseName: Wiley Online Library Free Content
  dbid: WIN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jePDitzi_COhJqDZN2ibgRefGdhlT_Nit5KtSGO3opmd_gr_RX2KStpNdBPFWSkLK-_mkyfs-AJzHOMZKkNDjiAceCVXsMT8VHtaUIc6ITpVwZBPxaEQnEzZugeumFqbqD7H84WY9w8Vr6-BcVCwkBtQaJWazMrhENp-bAIyI88qX4agJw5bLO3TVkJZHPgpZ05uUsKufqSvZyDXtXwWpLsv0N__3fVtgo0aX8KYyh23Q0vkO2KyRJqz9eL4L7u8qInpoL53XxmfmSW72zFMN8-puODSAFg7zr4_PaVHMYJrZk3WT6mCWw0HvuQttDV8BbVW83ANP_d5jd-DV5AqeNOohnhLGvS2poKKpVpEKhC3aEWEoqMFsPsYIE8qJpALH0uwpfCWolkxQqoOYSYz3QTsvcn0AII-4LxTVHBksiXBkMGfKVIQxlogTHnTAWSPkZFb10Ejc2TdhiZVS4qTUAbdW_ssRtu-1e1GUr0ntRknIJOcGNQV2JxhLY2XSBJ1UI6awxFJ3wIXTyS_rJMPxQ-CeDv8y-AisW6b56sL2MWgvyjd9Atbk-yKbl6fO9L4BknjbLw
  priority: 102
  providerName: Wiley-Blackwell
Title Dynamic convolutional capsule network for In‐loop filtering in HEVC video codec
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12644
https://doaj.org/article/59caa065230147cdb4c425fe19d3c3ce
Volume 17
WOSCitedRecordID wos000866257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWg4sCFHVGWyhKckAKJ7cT2EUqr9lIVxNJb5C1SpSqp2sKZT-Ab-RK8pIhe4MIliqIktp6XeSPPzAPggmKKtSRpJBKBIpJqGvG4kBE2jCeCE1No6cUm6GDARiM-_CH15WLCQnngANx1ypUQ1k4ix_2psv9VdpoVJuEaK6yM231jypfOVNiDnZB36lMhnYh8lvJlYVLCr8fTGbpKHA9YMUW-Yv8qQ_UmprsDtmpuCG9Cn3bBmin3wHbNE2G9Cuf74P4uyMhDFzJeTx37nRLW450YWIbIbmjpKOyXn-8fk6qawmLszsWtoYLjEvY6z23oMvAq6HLa1QF46nYe272olkaIlAWXRFraxekkATUrjM40ki7lRqapZJZxxRgnmDBBFJOYKusRxFoyo7hkzCDKFcaHoFFWpTkCUGQilpoZkVgmmODMMsaC6wxjrBJBBGqC8yVK-TRUwMj9yTXhucMy91g2wa0D8PsNV7XaP7Bjmddjmf81lk1w6eH_pZ28P3xA_u74P1o8AZtOPz6EYZ-CxmL2as7AhnpbjOezFlhHZNjyM8teX_qDLy8I0Ow
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTiW1yfAT0J1W2TtslRV2UXdVlFxVvJq7Ig7bI-zv4Ef6O_xEzaVbwI4q2UhJbMTOabZGY-gL2UptQoFgcylFHAYpMGopWrgFouQimYzY3yZBNpr8fv70W_zs3BWpiqP8TXgRtaht-v0cDxQLoKOBk2yRwMR9FBiA59EqaYc0uY0Rex_ngjRjbv2NdDIpN8Eotxd1ImDr_n_vBHvm3_T5jq_czZ_D__cAHmaoBJjiqNWIQJWyzBfA02SW3KT8twdVJx0RPMO6_1z83T0oXNj5YUVXo4cZiWdIuPt_fHshySfICX687bkUFBOqd3bYJlfCXBwni9ArdnpzftTlDzKwTaSYgFRjkLR15Bw3NrEhMprNtRcay4g20tSkPKuGSaK5pqF1a0jOJWC8W5jVKhKV2FRlEWdg2ITGRLGW5l6OBkSBMHO3NhEkqpDiWTURN2x6ucDas2Gpm__mYiw1XK_Co14RgF8DUCW1_7F-XoIastKYuFltIBpwiDwVQ7RdNu38ltKAzVVNsm7Huh_PKdrNu_jvzT-l8G78BM5-byIrvo9s43YBaJ56v87U1oPI9e7BZM69fnwdNo2-vhJ9Ip3uI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV5cn7g-A3oSqtsmbZOjri4uyrKKr1vJq7Ig7bI-zv4Ef6O_xEzaVbwI4q2UhJTMTOabZmY-gL2UptQoFgcylFHAYpMGopWrgFouQimYzY3yZBNpr8fv70W_zs3BWpiqP8TXDze0DH9eo4HbocmrgJNhk8zBcBQdhOjQJ2GaOSCOGV133d74IEY279jXQyKTfBKLcXdSJg6_5_7wR75t_0-Y6v1Mp_HPL1yA-RpgkqNKIxZhwhZL0KjBJqlN-WkZLk8qLnqCeee1_rl5Wrqw-dGSokoPJw7Tkm7x8fb-WJZDkg_wct15OzIoyNnpbZtgGV9JsDBer8BN5_S6fRbU_AqBdhJigVHOwpFX0PDcmsRECut2VBwr7mBbi9KQMi6Z5oqm2oUVLaO41UJxbqNUaEpXYaooC7sGRCaypQy3MnRwMqSJg525MAmlVIeSyagJu-NdzoZVG43MX38zkeEuZX6XmnCMAvgaga2v_Yty9JDVlpTFQkvpgFOEwWCqnaJpd-7kNhSGaqptE_a9UH5ZJ-v2ryL_tP6XwTsw2z_pZBfd3vkGzCHvfJW-vQlTz6MXuwUz-vV58DTa9mr4CSsi3tM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+convolutional+capsule+network+for+In%E2%80%90loop+filtering+in+HEVC+video+codec&rft.jtitle=IET+image+processing&rft.au=LiChao+Su&rft.au=Mengqing+Cao&rft.au=Yue+Yu&rft.au=Jian+Chen&rft.date=2023-02-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=2&rft.spage=439&rft.epage=449&rft_id=info:doi/10.1049%2Fipr2.12644&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon