Dynamic convolutional capsule network for In‐loop filtering in HEVC video codec
Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features f...
Saved in:
| Published in: | IET image processing Vol. 17; no. 2; pp. 439 - 449 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Wiley
01.02.2023
|
| ISSN: | 1751-9659, 1751-9667 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency. |
|---|---|
| AbstractList | Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency. Abstract Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN‐based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in‐loop filtering algorithm based on a dynamic convolutional capsule network (DCC‐net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in‐loop filter. The proposed method brings average 7.9% and 5.9% BD‐BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD‐PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency. |
| Author | Cao, Mengqing Wu, Dapeng Yang, XiuZhi Chen, Jian Yu, Yue Su, LiChao |
| Author_xml | – sequence: 1 givenname: LiChao orcidid: 0000-0003-2641-5901 surname: Su fullname: Su, LiChao organization: Fuzhou University – sequence: 2 givenname: Mengqing surname: Cao fullname: Cao, Mengqing organization: Fuzhou University – sequence: 3 givenname: Yue surname: Yu fullname: Yu, Yue organization: Fuzhou University – sequence: 4 givenname: Jian orcidid: 0000-0001-7556-3121 surname: Chen fullname: Chen, Jian email: chenjian-fzu@163.com organization: Fuzhou University – sequence: 5 givenname: XiuZhi surname: Yang fullname: Yang, XiuZhi organization: Fuzhou University – sequence: 6 givenname: Dapeng surname: Wu fullname: Wu, Dapeng organization: City University of Hong Kong |
| BookMark | eNp9kE1OwzAQhS1UJNrChhN4jZRix3biLFEpNFIlfgRsLcd2KpfUjpy0VXccgTNyEtIGdclqZp7efHp6IzBw3hkArjGaYESzW1uHeILjhNIzMMQpw1GWJOngtLPsAoyaZoUQyxBnQ_Byv3dybRVU3m19tWmtd7KCStbNpjLQmXbnwycsfYC5-_n6rryvYWmr1gTrltA6OJ99TOHWauM7hjbqEpyXsmrM1d8cg_eH2dt0Hi2eHvPp3SJSJCU00gUiqIvBNS-NTnRcxN1ZMFZwhjgiBBPKJVW8IKlinaYLblRWcG7iNFOEjEHec7WXK1EHu5ZhL7y04ij4sBQytFZVRrBMSYkSFhOEaap0QRWNWWlwpokiynSsm56lgm-aYMoTDyNxKFYcihXHYjsz7s07W5n9P06RP7_G_c8vJXJ84Q |
| Cites_doi | 10.1109/TIP.2020.2982534 10.1109/ICCV.2015.73 10.1007/978-3-319-51811-4_3 10.1109/ICME.2019.00303 10.1109/TITS.2020.2990120 10.1109/CVPR.2017.304 10.1109/CVPRW.2017.150 10.1109/TCSVT.2019.2935508 10.1109/TIP.2019.2921877 10.1109/TIP.2019.2896489 10.1109/TGRS.2018.2871782 10.1109/VCIP47243.2019.8965980 10.1109/TIP.2018.2815841 10.1109/TCSVT.2012.2223053 10.1109/TCSVT.2012.2221529 10.1109/jstsp.2020.3043064 10.1109/ACCESS.2020.3040751 10.1109/TCSVT.2003.815165 10.1109/TCSVT.2012.2221192 10.1109/TIP.2021.3068638 10.1109/CVPR.2016.90 10.1109/TPAMI.2015.2439281 10.1145/3439734 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.12644 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 449 |
| ExternalDocumentID | oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce 10_1049_ipr2_12644 IPR212644 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62001117; 61902071 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN |
| ID | FETCH-LOGICAL-c3734-db0300058d8fed6d2b2000b55b85080331348a4c8b37c5850db8ec9b88e279c33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Fri Oct 03 12:42:42 EDT 2025 Wed Oct 29 21:19:07 EDT 2025 Wed Jan 22 16:24:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3734-db0300058d8fed6d2b2000b55b85080331348a4c8b37c5850db8ec9b88e279c33 |
| ORCID | 0000-0003-2641-5901 0000-0001-7556-3121 |
| OpenAccessLink | https://doaj.org/article/59caa065230147cdb4c425fe19d3c3ce |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce crossref_primary_10_1049_ipr2_12644 wiley_primary_10_1049_ipr2_12644_IPR212644 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2023 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2020; 8 2021; 15 2015; 38 2021; 22 2001 2020; 30 2019; 57 2021; 17 2003; 13 2019; 28 2019 2018 2017 2016 2015 2021; 30 2012; 22 2018; 27 2020; 29 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Ding D. (e_1_2_9_17_1) 2020; 30 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Sabour S. (e_1_2_9_19_1) 2017 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 Sutton R.S. (e_1_2_9_23_1) 2018 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 28 start-page: 3343 issue: 7 year: 2019 end-page: 3356 article-title: Content‐aware convolutional neural network for in‐loop filtering in high efficiency video coding publication-title: IEEE Trans. Image Process – volume: 22 start-page: 1755 issue: 12 year: 2012 end-page: 1764 article-title: Sample adaptive offset in the HEVC standard publication-title: IEEE Trans. Circuits Syst. Video Technol – volume: 30 start-page: 1871 issue: 7 year: 2020 end-page: 1887 article-title: A switchable deep learning approach for in‐loop filtering in video coding publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 15 start-page: 378 issue: 2 year: 2021 end-page: 387 article-title: MFRNet: A new CNN architecture for post‐processing and in‐loop filtering publication-title: IEEE J. Sel. Top. Signal Process. – volume: 28 start-page: 5663 issue: 11 year: 2019 end-page: 5678 article-title: A deep learning approach for multi‐frame in‐loop filter of HEVC publication-title: IEEE Trans. Image Process. – volume: 57 start-page: 2145 issue: 4 year: 2019 end-page: 2160 article-title: Capsule networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens – start-page: 1 year: 2019 end-page: 4 article-title: Deep learning based in‐loop filter for video coding – volume: 8 start-page: 213958 year: 2020 end-page: 213967 article-title: Offset‐based in‐loop filtering with a deep network in HEVC publication-title: IEEE Access – year: 2001 – volume: 13 start-page: 560 issue: 7 year: 2003 end-page: 576 article-title: Overview of the high efficiency video coding (HEVC) standard publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 17 start-page: 1 issue: 4 year: 2021 end-page: 19 article-title: Residual‐guided in‐loop filter using convolution neural network publication-title: ACM Trans. Multimedia Comput. Commun. Appl – start-page: 3856 year: 2017 end-page: 3866 article-title: Dynamic routing between capsules – start-page: 576 year: 2015 end-page: 584 article-title: Compression artifacts reduction by a deep convolutional network – year: 2018 – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 22 issue: 12 year: 2012 article-title: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC) publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 30 start-page: 4198 year: 2021 end-page: 4211 article-title: Combining progressive rethinking and collaborative learning: a deep framework for in‐Loop filtering publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 3827 issue: 8 year: 2018 end-page: 3841 article-title: Residual highway convolutional neural networks for in‐loop filtering in HEVC publication-title: IEEE Trans. Image Process – start-page: 1762 year: 2019 end-page: 1767 article-title: Multi‐scale capsule attention‐based salient object detection with multi‐crossed layer connections – volume: 22 start-page: 1981 issue: 4 year: 2021 end-page: 1995 article-title: Capsule‐based networks for road marking extraction and classification from mobile LiDAR point clouds publication-title: IEEE Trans. Intell. Transp. Syst – volume: 38 start-page: 295 issue: 2 year: 2015 end-page: 307 article-title: Image super‐resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell – year: 2017 article-title: Ntire 2017 challenge on single image super‐resolution: Dataset and study – start-page: 28 year: 2017 end-page: 39 article-title: A convolutional neural network approach for post‐processing in HEVC Intra Coding – start-page: 2848 year: 2017 end-page: 2857 article-title: Real‐time video super‐resolution with spatio‐temporal networks and motion compensation – volume: 22 start-page: 1746 issue: 12 year: 2012 end-page: 1754 article-title: HEVC deblocking filter publication-title: IEEE Trans. Circuits Syst. Video Technol – volume: 29 start-page: 5352 year: 2020 end-page: 5366 article-title: Efficient in‐loop filtering based on enhanced deep convolutional neural networks for HEVC publication-title: IEEE Trans. Image Process – ident: e_1_2_9_28_1 – ident: e_1_2_9_10_1 doi: 10.1109/TIP.2020.2982534 – ident: e_1_2_9_5_1 doi: 10.1109/ICCV.2015.73 – ident: e_1_2_9_6_1 doi: 10.1007/978-3-319-51811-4_3 – ident: e_1_2_9_22_1 doi: 10.1109/ICME.2019.00303 – start-page: 3856 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_9_19_1 – ident: e_1_2_9_21_1 doi: 10.1109/TITS.2020.2990120 – ident: e_1_2_9_16_1 doi: 10.1109/CVPR.2017.304 – ident: e_1_2_9_25_1 doi: 10.1109/CVPRW.2017.150 – volume: 30 start-page: 1871 issue: 7 year: 2020 ident: e_1_2_9_17_1 article-title: A switchable deep learning approach for in‐loop filtering in video coding publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2935508 – ident: e_1_2_9_15_1 doi: 10.1109/TIP.2019.2921877 – ident: e_1_2_9_18_1 doi: 10.1109/TIP.2019.2896489 – ident: e_1_2_9_20_1 doi: 10.1109/TGRS.2018.2871782 – ident: e_1_2_9_7_1 doi: 10.1109/VCIP47243.2019.8965980 – ident: e_1_2_9_12_1 doi: 10.1109/TIP.2018.2815841 – ident: e_1_2_9_3_1 doi: 10.1109/TCSVT.2012.2223053 – ident: e_1_2_9_27_1 – ident: e_1_2_9_4_1 doi: 10.1109/TCSVT.2012.2221529 – ident: e_1_2_9_13_1 doi: 10.1109/jstsp.2020.3043064 – ident: e_1_2_9_8_1 doi: 10.1109/ACCESS.2020.3040751 – ident: e_1_2_9_2_1 doi: 10.1109/TCSVT.2003.815165 – ident: e_1_2_9_26_1 – ident: e_1_2_9_29_1 doi: 10.1109/TCSVT.2012.2221192 – ident: e_1_2_9_14_1 doi: 10.1109/TIP.2021.3068638 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: e_1_2_9_23_1 – ident: e_1_2_9_24_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_9_1 doi: 10.1109/TPAMI.2015.2439281 – ident: e_1_2_9_11_1 doi: 10.1145/3439734 |
| SSID | ssj0059085 |
| Score | 2.2696724 |
| Snippet | Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High... Abstract Recently, several in‐loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Index Database Publisher |
| StartPage | 439 |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Free Content dbid: WIN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jePDitzi_COhJqDZN2ibgRefGdhlT_Nit5KtSGO3opmd_gr_RX2KStpNdBPFWSkLK-_mkyfs-AJzHOMZKkNDjiAceCVXsMT8VHtaUIc6ITpVwZBPxaEQnEzZugeumFqbqD7H84WY9w8Vr6-BcVCwkBtQaJWazMrhENp-bAIyI88qX4agJw5bLO3TVkJZHPgpZ05uUsKufqSvZyDXtXwWpLsv0N__3fVtgo0aX8KYyh23Q0vkO2KyRJqz9eL4L7u8qInpoL53XxmfmSW72zFMN8-puODSAFg7zr4_PaVHMYJrZk3WT6mCWw0HvuQttDV8BbVW83ANP_d5jd-DV5AqeNOohnhLGvS2poKKpVpEKhC3aEWEoqMFsPsYIE8qJpALH0uwpfCWolkxQqoOYSYz3QTsvcn0AII-4LxTVHBksiXBkMGfKVIQxlogTHnTAWSPkZFb10Ejc2TdhiZVS4qTUAbdW_ssRtu-1e1GUr0ntRknIJOcGNQV2JxhLY2XSBJ1UI6awxFJ3wIXTyS_rJMPxQ-CeDv8y-AisW6b56sL2MWgvyjd9Atbk-yKbl6fO9L4BknjbLw priority: 102 providerName: Wiley-Blackwell |
| Title | Dynamic convolutional capsule network for In‐loop filtering in HEVC video codec |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12644 https://doaj.org/article/59caa065230147cdb4c425fe19d3c3ce |
| Volume | 17 |
| WOSCitedRecordID | wos000866257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWg4sCFHVGWyhKckAKJ7cT2EUqr9lIVxNJb5C1SpSqp2sKZT-Ab-RK8pIhe4MIliqIktp6XeSPPzAPggmKKtSRpJBKBIpJqGvG4kBE2jCeCE1No6cUm6GDARiM-_CH15WLCQnngANx1ypUQ1k4ix_2psv9VdpoVJuEaK6yM231jypfOVNiDnZB36lMhnYh8lvJlYVLCr8fTGbpKHA9YMUW-Yv8qQ_UmprsDtmpuCG9Cn3bBmin3wHbNE2G9Cuf74P4uyMhDFzJeTx37nRLW450YWIbIbmjpKOyXn-8fk6qawmLszsWtoYLjEvY6z23oMvAq6HLa1QF46nYe272olkaIlAWXRFraxekkATUrjM40ki7lRqapZJZxxRgnmDBBFJOYKusRxFoyo7hkzCDKFcaHoFFWpTkCUGQilpoZkVgmmODMMsaC6wxjrBJBBGqC8yVK-TRUwMj9yTXhucMy91g2wa0D8PsNV7XaP7Bjmddjmf81lk1w6eH_pZ28P3xA_u74P1o8AZtOPz6EYZ-CxmL2as7AhnpbjOezFlhHZNjyM8teX_qDLy8I0Ow |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTiW1yfAT0J1W2TtslRV2UXdVlFxVvJq7Ig7bI-zv4Ef6O_xEzaVbwI4q2UhJbMTOabZGY-gL2UptQoFgcylFHAYpMGopWrgFouQimYzY3yZBNpr8fv70W_zs3BWpiqP8TXgRtaht-v0cDxQLoKOBk2yRwMR9FBiA59EqaYc0uY0Rex_ngjRjbv2NdDIpN8Eotxd1ImDr_n_vBHvm3_T5jq_czZ_D__cAHmaoBJjiqNWIQJWyzBfA02SW3KT8twdVJx0RPMO6_1z83T0oXNj5YUVXo4cZiWdIuPt_fHshySfICX687bkUFBOqd3bYJlfCXBwni9ArdnpzftTlDzKwTaSYgFRjkLR15Bw3NrEhMprNtRcay4g20tSkPKuGSaK5pqF1a0jOJWC8W5jVKhKV2FRlEWdg2ITGRLGW5l6OBkSBMHO3NhEkqpDiWTURN2x6ucDas2Gpm__mYiw1XK_Co14RgF8DUCW1_7F-XoIastKYuFltIBpwiDwVQ7RdNu38ltKAzVVNsm7Huh_PKdrNu_jvzT-l8G78BM5-byIrvo9s43YBaJ56v87U1oPI9e7BZM69fnwdNo2-vhJ9Ip3uI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV5cn7g-A3oSqtsmbZOjri4uyrKKr1vJq7Ig7bI-zv4Ef6O_xEzaVbwI4q2UhJTMTOabZmY-gL2UptQoFgcylFHAYpMGopWrgFouQimYzY3yZBNpr8fv70W_zs3BWpiqP8TXDze0DH9eo4HbocmrgJNhk8zBcBQdhOjQJ2GaOSCOGV133d74IEY279jXQyKTfBKLcXdSJg6_5_7wR75t_0-Y6v1Mp_HPL1yA-RpgkqNKIxZhwhZL0KjBJqlN-WkZLk8qLnqCeee1_rl5Wrqw-dGSokoPJw7Tkm7x8fb-WJZDkg_wct15OzIoyNnpbZtgGV9JsDBer8BN5_S6fRbU_AqBdhJigVHOwpFX0PDcmsRECut2VBwr7mBbi9KQMi6Z5oqm2oUVLaO41UJxbqNUaEpXYaooC7sGRCaypQy3MnRwMqSJg525MAmlVIeSyagJu-NdzoZVG43MX38zkeEuZX6XmnCMAvgaga2v_Yty9JDVlpTFQkvpgFOEwWCqnaJpd-7kNhSGaqptE_a9UH5ZJ-v2ryL_tP6XwTsw2z_pZBfd3vkGzCHvfJW-vQlTz6MXuwUz-vV58DTa9mr4CSsi3tM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+convolutional+capsule+network+for+In%E2%80%90loop+filtering+in+HEVC+video+codec&rft.jtitle=IET+image+processing&rft.au=LiChao+Su&rft.au=Mengqing+Cao&rft.au=Yue+Yu&rft.au=Jian+Chen&rft.date=2023-02-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=2&rft.spage=439&rft.epage=449&rft_id=info:doi/10.1049%2Fipr2.12644&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_59caa065230147cdb4c425fe19d3c3ce |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |