Ultrafast Porous Carbon Activation Promises High‐Energy Density Supercapacitors

Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (H...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 23; pp. e2200954 - n/a
Main Authors: Liu, Zhedong, Duan, Cunpeng, Dou, Shuming, Yuan, Qunyao, Xu, Jie, Liu, Wei‐Di, Chen, Yanan
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.06.2022
Subjects:
ISSN:1613-6810, 1613-6829, 1613-6829
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. The coconut shell, characterized by loose structure and high carbon content, is employed to synthesize activated porous carbon by high‐temperature shock (HTS) progress. The instant Joule heating (at a heating speed of ≈1100 K s–1) with high temperature and rapid quenching facilitates the interaction between carbon and KOH to form controllable, dense, and small pores.
AbstractList Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m 2 g ‐1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s ‐1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg ‐1 at a power density of 582 W kg ‐1 in the EMIMBF 4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m g , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg at a power density of 582 W kg in the EMIMBF ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. The coconut shell, characterized by loose structure and high carbon content, is employed to synthesize activated porous carbon by high‐temperature shock (HTS) progress. The instant Joule heating (at a heating speed of ≈1100 K s–1) with high temperature and rapid quenching facilitates the interaction between carbon and KOH to form controllable, dense, and small pores.
Author Duan, Cunpeng
Yuan, Qunyao
Xu, Jie
Chen, Yanan
Liu, Zhedong
Dou, Shuming
Liu, Wei‐Di
Author_xml – sequence: 1
  givenname: Zhedong
  surname: Liu
  fullname: Liu, Zhedong
  organization: Tianjin University
– sequence: 2
  givenname: Cunpeng
  surname: Duan
  fullname: Duan, Cunpeng
  email: cunpengduantju@gmail.com
  organization: Tianjin University
– sequence: 3
  givenname: Shuming
  surname: Dou
  fullname: Dou, Shuming
  organization: Tianjin University
– sequence: 4
  givenname: Qunyao
  surname: Yuan
  fullname: Yuan, Qunyao
  organization: Tianjin University
– sequence: 5
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
  organization: Tianjin University
– sequence: 6
  givenname: Wei‐Di
  surname: Liu
  fullname: Liu, Wei‐Di
  organization: The University of Queensland
– sequence: 7
  givenname: Yanan
  orcidid: 0000-0002-6346-6372
  surname: Chen
  fullname: Chen, Yanan
  email: yananchen@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35557492$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OGzEQhy0EKv965YhW4sIlwR7v2usjSmlBCgJEc7Yc7ywYbdbB3i3KrY_QZ-yT1JCQSpEQp5nD941m5rdPtlvfIiFHjA4ZpXAWZ00zBApAqSryLbLHBOMDUYLaXveM7pL9GJ8o5Qxy-YXs8qIoZK5gj9xNmi6Y2sQuu_XB9zEbmTD1bXZuO_fLdC61t8HPXMSYXbqHx7-__1y0GB4W2Tdso-sW2X0_x2DN3FjX-RAPyU5tmohfV_WATL5f_BxdDsY3P65G5-OB5ZLnA64EQFlRDlZShpXCaaEqhBpLYSpQBmxdV1JMQQLmFQhRirqmUgorSmMYPyCny7nz4J97jJ1OS1psGtNiukMnI5cKOFUJPdlAn3wf2rRdomTOlGBQJup4RfXTGVZ6HtzMhIV-f1YC8iVgg48xYK3TxW8vSi90jWZUv2aiXzPR60ySNtzQ3id_KKil8OIaXHxC6_vr8fi_-w8PoZ_H
CitedBy_id crossref_primary_10_1002_smll_202500473
crossref_primary_10_1002_aenm_202302901
crossref_primary_10_1016_j_apsusc_2022_154574
crossref_primary_10_1007_s10934_025_01782_1
crossref_primary_10_1016_j_est_2024_113608
crossref_primary_10_3390_ijms252212297
crossref_primary_10_1016_j_est_2025_118024
crossref_primary_10_1007_s40843_022_2120_8
crossref_primary_10_1016_j_jcis_2022_10_106
crossref_primary_10_1016_j_apsusc_2023_157081
crossref_primary_10_1002_adma_202210447
crossref_primary_10_1016_j_est_2024_111300
crossref_primary_10_1016_S1872_5805_24_60883_8
crossref_primary_10_1016_j_cej_2023_148292
crossref_primary_10_1016_j_jpowsour_2024_235027
crossref_primary_10_1007_s12274_023_6076_1
crossref_primary_10_1002_marc_202300309
crossref_primary_10_1016_j_cej_2025_162487
crossref_primary_10_1016_j_cej_2023_148213
crossref_primary_10_1016_j_jallcom_2024_178331
crossref_primary_10_3390_nano14211692
crossref_primary_10_1002_adfm_202213514
crossref_primary_10_1002_smll_202306272
crossref_primary_10_1016_j_colsurfa_2023_131425
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1007_s12598_022_02252_2
crossref_primary_10_1016_j_joei_2024_101904
crossref_primary_10_3390_nano13111744
crossref_primary_10_1016_j_jcis_2023_04_179
crossref_primary_10_3390_nano13050817
crossref_primary_10_1016_j_carbon_2025_120028
crossref_primary_10_1002_smll_202205491
crossref_primary_10_1016_j_diamond_2024_111134
crossref_primary_10_1016_j_electacta_2024_144112
crossref_primary_10_1016_S1872_5805_25_60960_7
crossref_primary_10_1002_adma_202308989
crossref_primary_10_1021_acs_energyfuels_5c01925
crossref_primary_10_3390_ma18122892
crossref_primary_10_1016_j_est_2025_118289
crossref_primary_10_1016_j_cej_2024_150353
crossref_primary_10_1088_1741_2552_add090
crossref_primary_10_1002_smll_202205725
crossref_primary_10_1016_j_jclepro_2024_142169
crossref_primary_10_1007_s12274_022_5244_z
crossref_primary_10_1016_j_est_2024_114359
crossref_primary_10_1016_j_cej_2023_141607
crossref_primary_10_1039_D4SC07145J
crossref_primary_10_1016_j_vacuum_2025_114416
crossref_primary_10_3390_batteries10110396
crossref_primary_10_1016_j_apsusc_2023_156525
crossref_primary_10_1002_adfm_202505998
crossref_primary_10_1007_s13399_025_06708_0
crossref_primary_10_1016_j_cej_2025_167246
crossref_primary_10_1007_s42768_023_00155_1
crossref_primary_10_1007_s13399_022_03613_8
crossref_primary_10_1002_adfm_202403961
crossref_primary_10_1016_j_apsusc_2022_155672
crossref_primary_10_1021_acs_langmuir_5c03489
crossref_primary_10_1007_s42114_023_00682_9
crossref_primary_10_1016_j_biombioe_2025_108326
crossref_primary_10_1016_j_est_2024_110569
crossref_primary_10_1016_j_est_2024_111415
crossref_primary_10_1016_S1872_5805_23_60743_7
crossref_primary_10_1002_eem2_70135
crossref_primary_10_1016_j_cej_2022_139691
crossref_primary_10_1002_adma_202208974
crossref_primary_10_1016_j_ces_2024_120841
crossref_primary_10_1002_adfm_202305264
crossref_primary_10_1016_j_jpowsour_2024_234988
crossref_primary_10_1002_cssc_202400890
crossref_primary_10_1016_j_jssc_2025_125560
crossref_primary_10_1016_j_electacta_2023_142902
crossref_primary_10_1016_j_indcrop_2025_121517
crossref_primary_10_1002_aenm_202203061
crossref_primary_10_1016_j_jpowsour_2025_236304
crossref_primary_10_3390_mi13091518
crossref_primary_10_1016_j_apsusc_2023_157825
crossref_primary_10_1016_j_cej_2023_142163
Cites_doi 10.1002/smll.201202586
10.1038/ncomms12332
10.1016/j.synthmet.2011.03.034
10.1021/ja809265m
10.1039/C7TA00863E
10.1021/acsaem.9b00002
10.1002/adfm.201303296
10.1149/1.1543948
10.1021/acs.nanolett.6b02096
10.1016/j.rser.2016.10.078
10.1016/j.rser.2017.03.136
10.1021/ie800080u
10.1021/acsaem.1c00868
10.1002/cssc.201000296
10.1038/s41467-019-08644-w
10.1016/j.electacta.2019.135270
10.1002/adma.201706054
10.1002/adma.201002647
10.1039/C9TA04436A
10.1002/aenm.202001331
10.1016/j.fuproc.2019.04.037
10.1002/aenm.202101092
10.1016/j.rser.2015.12.185
10.1016/j.cclet.2020.08.029
10.1016/j.nanoen.2021.106540
10.1016/j.cej.2019.122020
10.1016/j.jpowsour.2021.229770
10.1002/aenm.201401401
10.1016/j.matchemphys.2018.10.036
10.1039/C4NR04541F
10.1016/j.carbon.2020.07.017
10.1016/j.cej.2018.10.187
10.1016/j.jcis.2020.07.018
10.1016/j.jpowsour.2020.228910
10.1002/cjoc.201600722
10.1016/j.jpowsour.2020.227794
10.1002/aenm.202103505
10.1016/j.jssc.2019.06.039
10.1002/celc.202100343
10.1007/s12598-021-01722-3
10.1002/jctb.4028
10.1002/adfm.201505240
10.1016/j.jpowsour.2021.229679
10.1002/aenm.201400500
10.1126/science.1200770
10.1016/j.mattod.2018.09.001
10.1002/smtd.201900853
10.1002/adfm.202002580
10.1126/science.1216744
10.1002/adma.202106973
10.1016/j.ensm.2020.12.013
10.1002/smll.202002856
10.1002/adma.202006034
10.1016/j.carbon.2010.10.025
10.1039/C7NR02628E
10.1002/eem2.12137
10.1007/s12598-021-01836-8
10.1007/s10934-019-00799-7
10.1016/j.jcis.2014.04.044
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202200954
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35557492
10_1002_smll_202200954
SMLL202200954
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52171219; 91963113
– fundername: National Natural Science Foundation of China
  grantid: 52171219
– fundername: National Natural Science Foundation of China
  grantid: 91963113
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3734-396228d032c701ed9eb59de2fe86ad29a2cffd76b272e4d26686ff0776c68aa13
IEDL.DBID DRFUL
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793930600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 13:02:38 EDT 2025
Sat Sep 06 16:38:53 EDT 2025
Mon Jul 21 05:46:14 EDT 2025
Sat Nov 29 04:10:42 EST 2025
Tue Nov 18 21:56:40 EST 2025
Wed Jun 11 08:30:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords activated porous carbons
high-temperature shock
ultrafast synthesis
supercapacitor
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-396228d032c701ed9eb59de2fe86ad29a2cffd76b272e4d26686ff0776c68aa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6346-6372
PMID 35557492
PQID 2674196128
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2664792309
proquest_journals_2674196128
pubmed_primary_35557492
crossref_citationtrail_10_1002_smll_202200954
crossref_primary_10_1002_smll_202200954
wiley_primary_10_1002_smll_202200954_SMLL202200954
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 10
2020; 16
2003; 150
2014; 24
2021; 482
2020; 168
2020; 10
2019; 361
2017; 9
2013; 9
2021; 36
2010; 22
2017; 75
2020; 4
2021; 32
2014; 4
2020; 451
2020; 330
2017; 77
2019; 24
2017; 35
2022; 34
2018; 30
2012; 335
2011; 161
2021; 41
2014; 6
2021; 40
2019; 277
2021; 9
2021; 8
2019; 7
2015; 5
2021; 4
2019; 192
2013; 88
2020; 580
2019; 2
2019; 223
2009; 131
2020; 32
2011; 4
2016; 16
2011; 332
2021; 90
2016; 57
2016; 7
2014; 428
2020; 30
2008; 47
2022; 12
2020; 27
2021; 494
2021; 493
2011; 49
2016; 26
2019; 375
e_1_2_8_28_1
Li X. (e_1_2_8_48_1) 2021; 9
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 428
  start-page: 133
  year: 2014
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 6768
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 22
  start-page: 5202
  year: 2010
  publication-title: Adv. Mater.
– volume: 375
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 838
  year: 2011
  publication-title: Carbon
– volume: 26
  start-page: 3082
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 141
  year: 2020
  publication-title: J. Porous Mater.
– volume: 580
  start-page: 77
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 57
  start-page: 1126
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 4
  start-page: 404
  year: 2011
  publication-title: ChemSusChem
– volume: 35
  start-page: 699
  year: 2017
  publication-title: Chin. J. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 277
  start-page: 630
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 75
  start-page: 644
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 77
  start-page: 59
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 16
  year: 2020
  publication-title: Small
– volume: 32
  start-page: 1121
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2772
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 7408
  year: 2017
  publication-title: Nanoscale
– volume: 150
  start-page: A292
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 482
  year: 2021
  publication-title: J. Power Sources
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 2447
  year: 2021
  publication-title: Rare Met.
– volume: 88
  start-page: 1183
  year: 2013
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 9
  start-page: 1998
  year: 2013
  publication-title: Small
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 31
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 16
  start-page: 5553
  year: 2016
  publication-title: Nano Lett.
– volume: 4
  start-page: 569
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 168
  start-page: 209
  year: 2020
  publication-title: Carbon
– volume: 451
  year: 2020
  publication-title: J. Power Sources
– volume: 24
  start-page: 26
  year: 2019
  publication-title: Mater. Today
– volume: 8
  start-page: 1107
  year: 2021
  publication-title: ChemElectroChem
– volume: 361
  start-page: 1437
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 494
  year: 2021
  publication-title: J. Power Sources
– volume: 47
  start-page: 5948
  year: 2008
  publication-title: Ind. Eng. Chem. Res.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 223
  start-page: 16
  year: 2019
  publication-title: Mater. Chem. Phys.
– volume: 131
  start-page: 5026
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 41
  start-page: 830
  year: 2021
  publication-title: Rare Met.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 493
  year: 2021
  publication-title: J. Power Sources
– volume: 9
  year: 2021
  publication-title: Biomass Convers. Biorefin.
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 3185
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 192
  start-page: 239
  year: 2019
  publication-title: Fuel Process. Technol.
– volume: 10
  start-page: 675
  year: 2019
  publication-title: Nat. Commun.
– volume: 161
  start-page: 1122
  year: 2011
  publication-title: Synth. Met.
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.201202586
– ident: e_1_2_8_35_1
  doi: 10.1038/ncomms12332
– ident: e_1_2_8_24_1
  doi: 10.1016/j.synthmet.2011.03.034
– ident: e_1_2_8_31_1
  doi: 10.1021/ja809265m
– ident: e_1_2_8_2_1
  doi: 10.1039/C7TA00863E
– ident: e_1_2_8_20_1
  doi: 10.1021/acsaem.9b00002
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.201303296
– ident: e_1_2_8_57_1
  doi: 10.1149/1.1543948
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.nanolett.6b02096
– ident: e_1_2_8_11_1
  doi: 10.1016/j.rser.2016.10.078
– ident: e_1_2_8_17_1
  doi: 10.1016/j.rser.2017.03.136
– ident: e_1_2_8_25_1
  doi: 10.1021/ie800080u
– ident: e_1_2_8_41_1
  doi: 10.1021/acsaem.1c00868
– ident: e_1_2_8_32_1
  doi: 10.1002/cssc.201000296
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-019-08644-w
– ident: e_1_2_8_53_1
  doi: 10.1016/j.electacta.2019.135270
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201706054
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201002647
– ident: e_1_2_8_15_1
  doi: 10.1039/C9TA04436A
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.202001331
– ident: e_1_2_8_46_1
  doi: 10.1016/j.fuproc.2019.04.037
– ident: e_1_2_8_54_1
  doi: 10.1002/aenm.202101092
– ident: e_1_2_8_16_1
  doi: 10.1016/j.rser.2015.12.185
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cclet.2020.08.029
– ident: e_1_2_8_52_1
  doi: 10.1016/j.nanoen.2021.106540
– ident: e_1_2_8_12_1
  doi: 10.1016/j.cej.2019.122020
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jpowsour.2021.229770
– ident: e_1_2_8_3_1
  doi: 10.1002/aenm.201401401
– ident: e_1_2_8_45_1
  doi: 10.1016/j.matchemphys.2018.10.036
– ident: e_1_2_8_19_1
  doi: 10.1039/C4NR04541F
– volume: 9
  start-page: s13399
  year: 2021
  ident: e_1_2_8_48_1
  publication-title: Biomass Convers. Biorefin.
– ident: e_1_2_8_49_1
  doi: 10.1016/j.carbon.2020.07.017
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cej.2018.10.187
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jcis.2020.07.018
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jpowsour.2020.228910
– ident: e_1_2_8_14_1
  doi: 10.1002/cjoc.201600722
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jpowsour.2020.227794
– ident: e_1_2_8_60_1
  doi: 10.1002/aenm.202103505
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jssc.2019.06.039
– ident: e_1_2_8_4_1
  doi: 10.1002/celc.202100343
– ident: e_1_2_8_33_1
  doi: 10.1007/s12598-021-01722-3
– ident: e_1_2_8_26_1
  doi: 10.1002/jctb.4028
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.201505240
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jpowsour.2021.229679
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201400500
– ident: e_1_2_8_43_1
  doi: 10.1126/science.1200770
– ident: e_1_2_8_58_1
  doi: 10.1016/j.mattod.2018.09.001
– ident: e_1_2_8_8_1
  doi: 10.1002/smtd.201900853
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202002580
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1216744
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202106973
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ensm.2020.12.013
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.202002856
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202006034
– ident: e_1_2_8_21_1
  doi: 10.1016/j.carbon.2010.10.025
– ident: e_1_2_8_22_1
  doi: 10.1039/C7NR02628E
– ident: e_1_2_8_50_1
  doi: 10.1002/eem2.12137
– ident: e_1_2_8_34_1
  doi: 10.1007/s12598-021-01836-8
– ident: e_1_2_8_29_1
  doi: 10.1007/s10934-019-00799-7
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jcis.2014.04.044
SSID ssj0031247
Score 2.6637275
Snippet Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200954
SubjectTerms Activated carbon
activated porous carbons
Energy storage
Heat treatment
High temperature
high‐temperature shock
Ionic liquids
Nanotechnology
Ohmic dissipation
Porosity
Rapid quenching (metallurgy)
Resistance heating
Specific surface
supercapacitor
Supercapacitors
Surface area
ultrafast synthesis
Title Ultrafast Porous Carbon Activation Promises High‐Energy Density Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200954
https://www.ncbi.nlm.nih.gov/pubmed/35557492
https://www.proquest.com/docview/2674196128
https://www.proquest.com/docview/2664792309
Volume 18
WOSCitedRecordID wos000793930600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7B0kN7KP1vgCIjIfVkkZ0kdnxEwKqHBW2BlfYW2Y4jIW0TlGSRuPUR-ox9ktr5gxVCldpbrEwSa2bs-WKPvwE4RIYq9JWgigeShiaLqZQspfZPAtFw32SqIXGd8ouLeLEQs0en-Ft-iGHBzY2MZr52A1yq6uiBNLT6sXRbB-iW96NwE7bQOm80gq3Ty8l82s_GgY1fTYEVG7ao497qiRt9PFp_w3pgeoI218FrE30m2__f7zfwukOe5Lh1lbewYfJ38OoRH-F7-D5f1qXMZFWTWVEWq4qcyFIVOTnWfRU0MisL6xqmIi5D5PfPX2fN4UFy6hLh63tytbo1pbYRWN-4Oj4fYD45uz75RruaC1QHPAhpIBhinPoBau6PTSqMikRqMDMxkykKiTrLUs4UcjRhasN7zLLMcQJpFks5Dj7CKC9y8xmIFRlHqWZBiNrCQiWNQaEwQi2kbTMPaK_wRHeE5K4uxjJpqZQxcapKBlV58HWQv22pOJ6V3Ovtl3RDskqQWfAkLKCLPTgYbluNuR0SmRurVCvDQkeo6AsPPrV2Hz5lgVnEQ4EeYGPev_QhuTqfTofWzr88tAsv3XWbmLYHo7pcmS_wQt_VN1W5D5t8Ee937v4HcHH_7A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5Bi0R7gPJTCJRiJCROVrMTx4mPVdtVEelqoV2pt8h2HKnSklRJFolbH4Fn5Emw8werqkJCHJ1MEms89nwZj78BeI8cFfOVoCoKJGUmj6mUPKP2TwLRRL7JVUvimkSzWXx5KeZ9NqE7C9PxQ4wBNzcz2vXaTXAXkD74zRpaf126vQN08f2Q3YdNZm3JGvnm8ZfpIhmW48A6sLbCivVb1JFvDcyNPh6sv2HdM92Cm-votXU_08f_oeM78KjHnuSwM5YncM8UT2H7D0bCZ_B5sWwqmcu6IfOyKlc1OZKVKgtyqIc6aGReldY4TE1cjsjPmx8n7fFBcuxS4Zvv5Hx1bSptfbC-cpV8nsNienJxdEr7qgtUB1HAaCA4Ypz5AerIn5hMGBWKzGBuYi4zFBJ1nmcRVxihYZl18DHPc8cKpHks5STYhY2iLMxLIFZkEmaaBwy1BYZKGoNCYYhaSNvmHtBB46nuKcldZYxl2pEpY-pUlY6q8uDDKH_dkXHcKbk3DGDaT8o6RW7hk7CQLvbg3XjbasztkcjCWKVaGc4cpaIvPHjRDfz4KQvNwogJ9ADb8f1LH9LzsyQZW6_-5aG38PD04ixJk4-zT69hy13v0tT2YKOpVuYNPNDfmqu62u-t_hfAFAMD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50VkQP62vV7K7aguApbKbS6aSPy84OinEYXQf2FvoVWBiTIckI3vwJ_kZ_id15rYOIIB47qSRNVXXXl-7qrwBeIUNJA8l9GYfCpyZPfCGY9u2fBKKJA5PLlsQ1jReL5PKSL_tsQncWpuOHGBfc3Mho52s3wM1G5yfXrKH157XbO0C3vh_Rm7BHXSWZCezNPs5X6TAdhzaAtRVWbNzyHfnWwNwY4MnuG3Yj029wcxe9tuFnfu8_dPw-7PfYk5x2zvIAbpjiIdz9hZHwEXxYrZtK5KJuyLKsym1NzkQly4KcqqEOGllWpXUOUxOXI_Lj2_fz9vggmblU-OYrudhuTKVsDFZXrpLPAazm55_O3vh91QVfhXFI_dAqERMdhKjiYGo0NzLi2mBuEiY0coEqz3XMJMZoqLYBPmF57liBFEuEmIaPYVKUhXkKxIpMI61YSFFZYCiFMcglRqi4sG3mgT9oPFM9JbmrjLHOOjJlzJyqslFVHrwe5TcdGccfJY8HA2b9oKwzZBY-cQvpEg9ejretxtweiSiMVaqVYdRRKgbcgyed4cdPWWgWxZSjB9ja9y99yC7ep-nYOvyXh17A7eVsnqVvF--O4I673GWpHcOkqbbmGdxSX5qrunreO_1PRjgCfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Porous+Carbon+Activation+Promises+High-Energy+Density+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Zhedong&rft.au=Duan%2C+Cunpeng&rft.au=Dou%2C+Shuming&rft.au=Yuan%2C+Qunyao&rft.date=2022-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=23&rft.spage=e2200954&rft_id=info:doi/10.1002%2Fsmll.202200954&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon