Ultrafast Porous Carbon Activation Promises High‐Energy Density Supercapacitors
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (H...
Saved in:
| Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 23; pp. e2200954 - n/a |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
| Subjects: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
The coconut shell, characterized by loose structure and high carbon content, is employed to synthesize activated porous carbon by high‐temperature shock (HTS) progress. The instant Joule heating (at a heating speed of ≈1100 K s–1) with high temperature and rapid quenching facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. |
|---|---|
| AbstractList | Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. The coconut shell, characterized by loose structure and high carbon content, is employed to synthesize activated porous carbon by high‐temperature shock (HTS) progress. The instant Joule heating (at a heating speed of ≈1100 K s–1) with high temperature and rapid quenching facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m g , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg at a power density of 582 W kg in the EMIMBF ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m 2 g ‐1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s ‐1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg ‐1 at a power density of 582 W kg ‐1 in the EMIMBF 4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high‐temperature shock (HTS) carbonization and HTS‐KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g‐1, is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s‐1) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size‐distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as‐prepared HTS‐APC‐based supercapacitors deliver a high energy density of 25 Wh kg‐1 at a power density of 582 W kg‐1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials. |
| Author | Duan, Cunpeng Yuan, Qunyao Xu, Jie Chen, Yanan Liu, Zhedong Dou, Shuming Liu, Wei‐Di |
| Author_xml | – sequence: 1 givenname: Zhedong surname: Liu fullname: Liu, Zhedong organization: Tianjin University – sequence: 2 givenname: Cunpeng surname: Duan fullname: Duan, Cunpeng email: cunpengduantju@gmail.com organization: Tianjin University – sequence: 3 givenname: Shuming surname: Dou fullname: Dou, Shuming organization: Tianjin University – sequence: 4 givenname: Qunyao surname: Yuan fullname: Yuan, Qunyao organization: Tianjin University – sequence: 5 givenname: Jie surname: Xu fullname: Xu, Jie organization: Tianjin University – sequence: 6 givenname: Wei‐Di surname: Liu fullname: Liu, Wei‐Di organization: The University of Queensland – sequence: 7 givenname: Yanan orcidid: 0000-0002-6346-6372 surname: Chen fullname: Chen, Yanan email: yananchen@tju.edu.cn organization: Tianjin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35557492$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9OGzEQhy0EKv965YhW4sIlwR7v2usjSmlBCgJEc7Yc7ywYbdbB3i3KrY_QZ-yT1JCQSpEQp5nD941m5rdPtlvfIiFHjA4ZpXAWZ00zBApAqSryLbLHBOMDUYLaXveM7pL9GJ8o5Qxy-YXs8qIoZK5gj9xNmi6Y2sQuu_XB9zEbmTD1bXZuO_fLdC61t8HPXMSYXbqHx7-__1y0GB4W2Tdso-sW2X0_x2DN3FjX-RAPyU5tmohfV_WATL5f_BxdDsY3P65G5-OB5ZLnA64EQFlRDlZShpXCaaEqhBpLYSpQBmxdV1JMQQLmFQhRirqmUgorSmMYPyCny7nz4J97jJ1OS1psGtNiukMnI5cKOFUJPdlAn3wf2rRdomTOlGBQJup4RfXTGVZ6HtzMhIV-f1YC8iVgg48xYK3TxW8vSi90jWZUv2aiXzPR60ySNtzQ3id_KKil8OIaXHxC6_vr8fi_-w8PoZ_H |
| CitedBy_id | crossref_primary_10_1002_smll_202500473 crossref_primary_10_1002_aenm_202302901 crossref_primary_10_1016_j_apsusc_2022_154574 crossref_primary_10_1007_s10934_025_01782_1 crossref_primary_10_1016_j_est_2024_113608 crossref_primary_10_3390_ijms252212297 crossref_primary_10_1016_j_est_2025_118024 crossref_primary_10_1007_s40843_022_2120_8 crossref_primary_10_1016_j_jcis_2022_10_106 crossref_primary_10_1016_j_apsusc_2023_157081 crossref_primary_10_1002_adma_202210447 crossref_primary_10_1016_j_est_2024_111300 crossref_primary_10_1016_S1872_5805_24_60883_8 crossref_primary_10_1016_j_cej_2023_148292 crossref_primary_10_1016_j_jpowsour_2024_235027 crossref_primary_10_1007_s12274_023_6076_1 crossref_primary_10_1002_marc_202300309 crossref_primary_10_1016_j_cej_2025_162487 crossref_primary_10_1016_j_cej_2023_148213 crossref_primary_10_1016_j_jallcom_2024_178331 crossref_primary_10_3390_nano14211692 crossref_primary_10_1002_adfm_202213514 crossref_primary_10_1002_smll_202306272 crossref_primary_10_1016_j_colsurfa_2023_131425 crossref_primary_10_1002_adma_202414620 crossref_primary_10_1007_s12598_022_02252_2 crossref_primary_10_1016_j_joei_2024_101904 crossref_primary_10_3390_nano13111744 crossref_primary_10_1016_j_jcis_2023_04_179 crossref_primary_10_3390_nano13050817 crossref_primary_10_1016_j_carbon_2025_120028 crossref_primary_10_1002_smll_202205491 crossref_primary_10_1016_j_diamond_2024_111134 crossref_primary_10_1016_j_electacta_2024_144112 crossref_primary_10_1016_S1872_5805_25_60960_7 crossref_primary_10_1002_adma_202308989 crossref_primary_10_1021_acs_energyfuels_5c01925 crossref_primary_10_3390_ma18122892 crossref_primary_10_1016_j_est_2025_118289 crossref_primary_10_1016_j_cej_2024_150353 crossref_primary_10_1088_1741_2552_add090 crossref_primary_10_1002_smll_202205725 crossref_primary_10_1016_j_jclepro_2024_142169 crossref_primary_10_1007_s12274_022_5244_z crossref_primary_10_1016_j_est_2024_114359 crossref_primary_10_1016_j_cej_2023_141607 crossref_primary_10_1039_D4SC07145J crossref_primary_10_1016_j_vacuum_2025_114416 crossref_primary_10_3390_batteries10110396 crossref_primary_10_1016_j_apsusc_2023_156525 crossref_primary_10_1002_adfm_202505998 crossref_primary_10_1007_s13399_025_06708_0 crossref_primary_10_1016_j_cej_2025_167246 crossref_primary_10_1007_s42768_023_00155_1 crossref_primary_10_1007_s13399_022_03613_8 crossref_primary_10_1002_adfm_202403961 crossref_primary_10_1016_j_apsusc_2022_155672 crossref_primary_10_1021_acs_langmuir_5c03489 crossref_primary_10_1007_s42114_023_00682_9 crossref_primary_10_1016_j_biombioe_2025_108326 crossref_primary_10_1016_j_est_2024_110569 crossref_primary_10_1016_j_est_2024_111415 crossref_primary_10_1016_S1872_5805_23_60743_7 crossref_primary_10_1002_eem2_70135 crossref_primary_10_1016_j_cej_2022_139691 crossref_primary_10_1002_adma_202208974 crossref_primary_10_1016_j_ces_2024_120841 crossref_primary_10_1002_adfm_202305264 crossref_primary_10_1016_j_jpowsour_2024_234988 crossref_primary_10_1002_cssc_202400890 crossref_primary_10_1016_j_jssc_2025_125560 crossref_primary_10_1016_j_electacta_2023_142902 crossref_primary_10_1016_j_indcrop_2025_121517 crossref_primary_10_1002_aenm_202203061 crossref_primary_10_1016_j_jpowsour_2025_236304 crossref_primary_10_3390_mi13091518 crossref_primary_10_1016_j_apsusc_2023_157825 crossref_primary_10_1016_j_cej_2023_142163 |
| Cites_doi | 10.1002/smll.201202586 10.1038/ncomms12332 10.1016/j.synthmet.2011.03.034 10.1021/ja809265m 10.1039/C7TA00863E 10.1021/acsaem.9b00002 10.1002/adfm.201303296 10.1149/1.1543948 10.1021/acs.nanolett.6b02096 10.1016/j.rser.2016.10.078 10.1016/j.rser.2017.03.136 10.1021/ie800080u 10.1021/acsaem.1c00868 10.1002/cssc.201000296 10.1038/s41467-019-08644-w 10.1016/j.electacta.2019.135270 10.1002/adma.201706054 10.1002/adma.201002647 10.1039/C9TA04436A 10.1002/aenm.202001331 10.1016/j.fuproc.2019.04.037 10.1002/aenm.202101092 10.1016/j.rser.2015.12.185 10.1016/j.cclet.2020.08.029 10.1016/j.nanoen.2021.106540 10.1016/j.cej.2019.122020 10.1016/j.jpowsour.2021.229770 10.1002/aenm.201401401 10.1016/j.matchemphys.2018.10.036 10.1039/C4NR04541F 10.1016/j.carbon.2020.07.017 10.1016/j.cej.2018.10.187 10.1016/j.jcis.2020.07.018 10.1016/j.jpowsour.2020.228910 10.1002/cjoc.201600722 10.1016/j.jpowsour.2020.227794 10.1002/aenm.202103505 10.1016/j.jssc.2019.06.039 10.1002/celc.202100343 10.1007/s12598-021-01722-3 10.1002/jctb.4028 10.1002/adfm.201505240 10.1016/j.jpowsour.2021.229679 10.1002/aenm.201400500 10.1126/science.1200770 10.1016/j.mattod.2018.09.001 10.1002/smtd.201900853 10.1002/adfm.202002580 10.1126/science.1216744 10.1002/adma.202106973 10.1016/j.ensm.2020.12.013 10.1002/smll.202002856 10.1002/adma.202006034 10.1016/j.carbon.2010.10.025 10.1039/C7NR02628E 10.1002/eem2.12137 10.1007/s12598-021-01836-8 10.1007/s10934-019-00799-7 10.1016/j.jcis.2014.04.044 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202200954 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 35557492 10_1002_smll_202200954 SMLL202200954 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52171219; 91963113 – fundername: National Natural Science Foundation of China grantid: 52171219 – fundername: National Natural Science Foundation of China grantid: 91963113 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3734-396228d032c701ed9eb59de2fe86ad29a2cffd76b272e4d26686ff0776c68aa13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793930600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 13:02:38 EDT 2025 Sat Sep 06 16:38:53 EDT 2025 Mon Jul 21 05:46:14 EDT 2025 Sat Nov 29 04:10:42 EST 2025 Tue Nov 18 21:56:40 EST 2025 Wed Jun 11 08:30:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | activated porous carbons high-temperature shock ultrafast synthesis supercapacitor |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3734-396228d032c701ed9eb59de2fe86ad29a2cffd76b272e4d26686ff0776c68aa13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6346-6372 |
| PMID | 35557492 |
| PQID | 2674196128 |
| PQPubID | 1046358 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2664792309 proquest_journals_2674196128 pubmed_primary_35557492 crossref_citationtrail_10_1002_smll_202200954 crossref_primary_10_1002_smll_202200954 wiley_primary_10_1002_smll_202200954_SMLL202200954 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2019; 10 2020; 16 2003; 150 2014; 24 2021; 482 2020; 168 2020; 10 2019; 361 2017; 9 2013; 9 2021; 36 2010; 22 2017; 75 2020; 4 2021; 32 2014; 4 2020; 451 2020; 330 2017; 77 2019; 24 2017; 35 2022; 34 2018; 30 2012; 335 2011; 161 2021; 41 2014; 6 2021; 40 2019; 277 2021; 9 2021; 8 2019; 7 2015; 5 2021; 4 2019; 192 2013; 88 2020; 580 2019; 2 2019; 223 2009; 131 2020; 32 2011; 4 2016; 16 2011; 332 2021; 90 2016; 57 2016; 7 2014; 428 2020; 30 2008; 47 2022; 12 2020; 27 2021; 494 2021; 493 2011; 49 2016; 26 2019; 375 e_1_2_8_28_1 Li X. (e_1_2_8_48_1) 2021; 9 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 428 start-page: 133 year: 2014 publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 6768 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 22 start-page: 5202 year: 2010 publication-title: Adv. Mater. – volume: 375 year: 2019 publication-title: Chem. Eng. J. – volume: 49 start-page: 838 year: 2011 publication-title: Carbon – volume: 26 start-page: 3082 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 141 year: 2020 publication-title: J. Porous Mater. – volume: 580 start-page: 77 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 335 start-page: 1326 year: 2012 publication-title: Science – volume: 57 start-page: 1126 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 4 start-page: 404 year: 2011 publication-title: ChemSusChem – volume: 35 start-page: 699 year: 2017 publication-title: Chin. J. Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 277 start-page: 630 year: 2019 publication-title: J. Solid State Chem. – volume: 75 start-page: 644 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 77 start-page: 59 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 16 year: 2020 publication-title: Small – volume: 32 start-page: 1121 year: 2021 publication-title: Chin. Chem. Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2772 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 7408 year: 2017 publication-title: Nanoscale – volume: 150 start-page: A292 year: 2003 publication-title: J. Electrochem. Soc. – volume: 482 year: 2021 publication-title: J. Power Sources – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 40 start-page: 2447 year: 2021 publication-title: Rare Met. – volume: 88 start-page: 1183 year: 2013 publication-title: J. Chem. Technol. Biotechnol. – volume: 9 start-page: 1998 year: 2013 publication-title: Small – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 36 start-page: 31 year: 2021 publication-title: Energy Storage Mater. – volume: 16 start-page: 5553 year: 2016 publication-title: Nano Lett. – volume: 4 start-page: 569 year: 2020 publication-title: Energy Environ. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 168 start-page: 209 year: 2020 publication-title: Carbon – volume: 451 year: 2020 publication-title: J. Power Sources – volume: 24 start-page: 26 year: 2019 publication-title: Mater. Today – volume: 8 start-page: 1107 year: 2021 publication-title: ChemElectroChem – volume: 361 start-page: 1437 year: 2019 publication-title: Chem. Eng. J. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 494 year: 2021 publication-title: J. Power Sources – volume: 47 start-page: 5948 year: 2008 publication-title: Ind. Eng. Chem. Res. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 223 start-page: 16 year: 2019 publication-title: Mater. Chem. Phys. – volume: 131 start-page: 5026 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 41 start-page: 830 year: 2021 publication-title: Rare Met. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 493 year: 2021 publication-title: J. Power Sources – volume: 9 year: 2021 publication-title: Biomass Convers. Biorefin. – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 2 start-page: 3185 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 192 start-page: 239 year: 2019 publication-title: Fuel Process. Technol. – volume: 10 start-page: 675 year: 2019 publication-title: Nat. Commun. – volume: 161 start-page: 1122 year: 2011 publication-title: Synth. Met. – ident: e_1_2_8_23_1 doi: 10.1002/smll.201202586 – ident: e_1_2_8_35_1 doi: 10.1038/ncomms12332 – ident: e_1_2_8_24_1 doi: 10.1016/j.synthmet.2011.03.034 – ident: e_1_2_8_31_1 doi: 10.1021/ja809265m – ident: e_1_2_8_2_1 doi: 10.1039/C7TA00863E – ident: e_1_2_8_20_1 doi: 10.1021/acsaem.9b00002 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.201303296 – ident: e_1_2_8_57_1 doi: 10.1149/1.1543948 – ident: e_1_2_8_59_1 doi: 10.1021/acs.nanolett.6b02096 – ident: e_1_2_8_11_1 doi: 10.1016/j.rser.2016.10.078 – ident: e_1_2_8_17_1 doi: 10.1016/j.rser.2017.03.136 – ident: e_1_2_8_25_1 doi: 10.1021/ie800080u – ident: e_1_2_8_41_1 doi: 10.1021/acsaem.1c00868 – ident: e_1_2_8_32_1 doi: 10.1002/cssc.201000296 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-019-08644-w – ident: e_1_2_8_53_1 doi: 10.1016/j.electacta.2019.135270 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201706054 – ident: e_1_2_8_39_1 doi: 10.1002/adma.201002647 – ident: e_1_2_8_15_1 doi: 10.1039/C9TA04436A – ident: e_1_2_8_36_1 doi: 10.1002/aenm.202001331 – ident: e_1_2_8_46_1 doi: 10.1016/j.fuproc.2019.04.037 – ident: e_1_2_8_54_1 doi: 10.1002/aenm.202101092 – ident: e_1_2_8_16_1 doi: 10.1016/j.rser.2015.12.185 – ident: e_1_2_8_51_1 doi: 10.1016/j.cclet.2020.08.029 – ident: e_1_2_8_52_1 doi: 10.1016/j.nanoen.2021.106540 – ident: e_1_2_8_12_1 doi: 10.1016/j.cej.2019.122020 – ident: e_1_2_8_13_1 doi: 10.1016/j.jpowsour.2021.229770 – ident: e_1_2_8_3_1 doi: 10.1002/aenm.201401401 – ident: e_1_2_8_45_1 doi: 10.1016/j.matchemphys.2018.10.036 – ident: e_1_2_8_19_1 doi: 10.1039/C4NR04541F – volume: 9 start-page: s13399 year: 2021 ident: e_1_2_8_48_1 publication-title: Biomass Convers. Biorefin. – ident: e_1_2_8_49_1 doi: 10.1016/j.carbon.2020.07.017 – ident: e_1_2_8_6_1 doi: 10.1016/j.cej.2018.10.187 – ident: e_1_2_8_40_1 doi: 10.1016/j.jcis.2020.07.018 – ident: e_1_2_8_42_1 doi: 10.1016/j.jpowsour.2020.228910 – ident: e_1_2_8_14_1 doi: 10.1002/cjoc.201600722 – ident: e_1_2_8_18_1 doi: 10.1016/j.jpowsour.2020.227794 – ident: e_1_2_8_60_1 doi: 10.1002/aenm.202103505 – ident: e_1_2_8_7_1 doi: 10.1016/j.jssc.2019.06.039 – ident: e_1_2_8_4_1 doi: 10.1002/celc.202100343 – ident: e_1_2_8_33_1 doi: 10.1007/s12598-021-01722-3 – ident: e_1_2_8_26_1 doi: 10.1002/jctb.4028 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.201505240 – ident: e_1_2_8_28_1 doi: 10.1016/j.jpowsour.2021.229679 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201400500 – ident: e_1_2_8_43_1 doi: 10.1126/science.1200770 – ident: e_1_2_8_58_1 doi: 10.1016/j.mattod.2018.09.001 – ident: e_1_2_8_8_1 doi: 10.1002/smtd.201900853 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202002580 – ident: e_1_2_8_56_1 doi: 10.1126/science.1216744 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202106973 – ident: e_1_2_8_5_1 doi: 10.1016/j.ensm.2020.12.013 – ident: e_1_2_8_47_1 doi: 10.1002/smll.202002856 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202006034 – ident: e_1_2_8_21_1 doi: 10.1016/j.carbon.2010.10.025 – ident: e_1_2_8_22_1 doi: 10.1039/C7NR02628E – ident: e_1_2_8_50_1 doi: 10.1002/eem2.12137 – ident: e_1_2_8_34_1 doi: 10.1007/s12598-021-01836-8 – ident: e_1_2_8_29_1 doi: 10.1007/s10934-019-00799-7 – ident: e_1_2_8_30_1 doi: 10.1016/j.jcis.2014.04.044 |
| SSID | ssj0031247 |
| Score | 2.6640923 |
| Snippet | Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2200954 |
| SubjectTerms | Activated carbon activated porous carbons Energy storage Heat treatment High temperature high‐temperature shock Ionic liquids Nanotechnology Ohmic dissipation Porosity Rapid quenching (metallurgy) Resistance heating Specific surface supercapacitor Supercapacitors Surface area ultrafast synthesis |
| Title | Ultrafast Porous Carbon Activation Promises High‐Energy Density Supercapacitors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200954 https://www.ncbi.nlm.nih.gov/pubmed/35557492 https://www.proquest.com/docview/2674196128 https://www.proquest.com/docview/2664792309 |
| Volume | 18 |
| WOSCitedRecordID | wos000793930600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4ap4fk0DaPNmrTsIVATiL2Svs6hiSmBze4SR18E6t9gMGRgiQHcutP6G_sL-muXo0pJdCCDhIaScs8dka7M98AHBvOdUqUCDGTNowttSG3xv3zaKmMFVSSuur9dsKurvh8LqZPqvgbfIh-wc1bRj1fewOXaXn6GzS0vFv6rQPsl_dJvAGb2CkvGcDmxfV4Nulm48j5r7rBinNbocfe6oAbh_h0_Q3rjumPaHM9eK29z_j1_4_7DbxqI0901qjKDrww2S5sP8Ej3IOvs2VVSCvLCk3zIl-V6FwWaZ6hM9V1QUPTIneqYUrkM0R-fv9xWRcPogufCF89opvVvSmU88Bq4fv47MNsfPnt_HPY9lwIVcSiOIwExZjrYYQVG46MFiYlQhtsDadSYyGxslYzmmKGTayde-fUWo8JpCiXchS9hUGWZ-YAEDVe2sQvLAl3SJkSErGRjulIskimAYQdwxPVApL7vhjLpIFSxolnVdKzKoCTnv6-geL4K-VhJ7-kNckywdQFT8IFdDyAT_1txzG_QyIz45jqaGjsARWHIoB3jdz7T7nAjLBY4ABwLd5nxpDcfJlM-qv3__LQB9jy501i2iEMqmJlPsJL9VAtyuIINticH7Xq_gv4kADB |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0FdQHP6uNVl1B8Cn0bpPsx2Npe1RMj9P2pG9hsx9QOJOS5Aq--Sf4N_qXuJMvPUQEEfKSZJIsM7M7k9mZ3wC8sUKYPNEypFy5MHbMhcJZ_89jlLZOMpW0Ve-fUj6fi4sLueizCbEWpsOHGANuODPa9RonOAak93-ihtafV7h3QDG-n8Q3YTv2uuSVfPvo42yZDstx5A1Y22HF260QwbcG5MYJ3d98w6Zl-s3d3PReW_Mzu_8fBv4A7vW-JznolOUh3LDFI7j7CyLhY_iwXDWVcqpuyKKsynVNDlWVlwU50EMfNLKoSq8ctiaYI_L967fjtnyQHGEqfPOFnK2vbKW9DdaX2MlnB5az4_PDk7DvuhDqiEdxGElGqTCTiGo-mVojbZ5IY6mzgilDpaLaOcNZTjm1sfEGXjDnEBVIM6HUNHoCW0VZ2F0gzKK8EwwtSX8olSdJxKcmZlPFI5UHEA4cz3QPSY6dMVZZB6ZMM2RVNrIqgLcj_VUHxvFHyr1BgFk_KeuMMu8-Se_SiQBej7c9x3CPRBXWM9XTsBghFScygKed4MdPedcs4bGkAdBWvn8ZQ3Z2mqbj2bN_eegV3D45P02z9N38_XO4g9e7NLU92GqqtX0Bt_R1c1lXL3ut_wFOWAPJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50VkQPvh_RVVsQPIWd6ST9OC47OyjGYXQd2Vvo9AMWxmRIMoI3f4K_0V9iV146iAgi5JKkkjRV1V2V6qqvAF5YIUyeaBlSrlwYO-ZC4az_5zFKWyeZStqq948pXy7F-blc9dmEWAvT4UOMATecGe16jRPcbo07-okaWn_a4N4Bxfh-El-Ggxg7yUzgYP5-sU6H5TjyBqztsOLtVojgWwNy45Qe7b9h3zL95m7ue6-t-Vnc_A8DvwU3et-THHfKchsu2eIOXP8FkfAuvFtvmko5VTdkVVblriYnqsrLghzroQ8aWVWlVw5bE8wR-f7122lbPkjmmArffCFnu62ttLfB-gI7-dyD9eL0w8mrsO-6EOqIR3EYeSZSYaYR1Xw6s0baPJHGUmcFU4ZKRbVzhrOccmpj4w28YM4hKpBmQqlZdB8mRVnYh0CYRXknGFqS_lAqT5KIz0zMZopHKg8gHDie6R6SHDtjbLIOTJlmyKpsZFUAL0f6bQfG8UfKw0GAWT8p64wy7z5J79KJAJ6Ptz3HcI9EFdYz1dOwGCEVpzKAB53gx0951yzhsaQB0Fa-fxlDdvY2TcezR__y0DO4upovsvT18s1juIaXuyy1Q5g01c4-gSv6c3NRV097pf8B06cDRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Porous+Carbon+Activation+Promises+High%E2%80%90Energy+Density+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Zhedong&rft.au=Duan%2C+Cunpeng&rft.au=Dou%2C+Shuming&rft.au=Yuan%2C+Qunyao&rft.date=2022-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=23&rft_id=info:doi/10.1002%2Fsmll.202200954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202200954 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |