Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers

The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 36; číslo 45; s. e2407793 - n/a
Hlavní autori: Gao, Xuejiao J., Ciura, Krzesimir, Ma, Yuanjie, Mikolajczyk, Alicja, Jagiello, Karolina, Wan, Yuxin, Gao, Yurou, Zheng, Jiajia, Zhong, Shengliang, Puzyn, Tomasz, Gao, Xingfa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.11.2024
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano‐bio interface. To enhance nanocarrier design, scientists employ both physics‐based and data‐driven models. Physics‐based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data‐driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes. The integration of physics‐based models from traditional simulation methods with data‐driven models from artificial intelligence and data analytics paves the way for the rational design of nanocarriers for drug delivery.
AbstractList The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano‐bio interface. To enhance nanocarrier design, scientists employ both physics‐based and data‐driven models. Physics‐based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data‐driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano‐bio interface. To enhance nanocarrier design, scientists employ both physics‐based and data‐driven models. Physics‐based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data‐driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes. The integration of physics‐based models from traditional simulation methods with data‐driven models from artificial intelligence and data analytics paves the way for the rational design of nanocarriers for drug delivery.
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Author Zheng, Jiajia
Gao, Xingfa
Gao, Xuejiao J.
Ciura, Krzesimir
Zhong, Shengliang
Wan, Yuxin
Ma, Yuanjie
Mikolajczyk, Alicja
Jagiello, Karolina
Gao, Yurou
Puzyn, Tomasz
Author_xml – sequence: 1
  givenname: Xuejiao J.
  surname: Gao
  fullname: Gao, Xuejiao J.
  organization: Jiangxi Normal University
– sequence: 2
  givenname: Krzesimir
  surname: Ciura
  fullname: Ciura, Krzesimir
  organization: Medical University of Gdansk
– sequence: 3
  givenname: Yuanjie
  surname: Ma
  fullname: Ma, Yuanjie
  organization: Jiangxi Normal University
– sequence: 4
  givenname: Alicja
  surname: Mikolajczyk
  fullname: Mikolajczyk, Alicja
  organization: University of Gdansk
– sequence: 5
  givenname: Karolina
  surname: Jagiello
  fullname: Jagiello, Karolina
  organization: University of Gdansk
– sequence: 6
  givenname: Yuxin
  surname: Wan
  fullname: Wan, Yuxin
  organization: Jiangxi Normal University
– sequence: 7
  givenname: Yurou
  surname: Gao
  fullname: Gao, Yurou
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Jiajia
  surname: Zheng
  fullname: Zheng, Jiajia
  organization: National Center for Nanoscience and Technology of China
– sequence: 9
  givenname: Shengliang
  surname: Zhong
  fullname: Zhong, Shengliang
  email: slzhong@jxnu.edu.cn
  organization: Jiangxi Normal University
– sequence: 10
  givenname: Tomasz
  surname: Puzyn
  fullname: Puzyn, Tomasz
  email: tomasz.puzyn@ug.edu.pl
  organization: University of Gdansk
– sequence: 11
  givenname: Xingfa
  orcidid: 0000-0002-1636-6336
  surname: Gao
  fullname: Gao, Xingfa
  email: gaoxf@nanoctr.cn
  organization: National Center for Nanoscience and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39252670$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v2yAYhtHUak27XXecLO2yi7MPsI05Rs1-VEraS3tGGH-kRA50YK_Kfz_StJtUadoFEDzPJ_S-5-TEB4-EfKAwpwDsi-53es6AVSCE5G_IjNaMlhXI-oTMQPK6lE3VnpHzlLYAIBto3pIzLlnNGgEzsr0Njzr2xXiPxZUfcRP16IIvgi3W2tw7j8UKdfTObwrt-2IdBjTToGM-9Tgcrm2IxRKT2zxByzjlJb_8wrgvrrUPRsfoMKZ35NTqIeH75_2C3H37env5o1zdfL-6XKxKwwXnJdWGtoZ3FmpOGxC1rjsBoqOy6kVFmal0Kw1nLUfGRdNAa8FwbVnXmc7ajl-Qz8e5DzH8nDCNaueSwWHQHsOUFKc5LsEYlRn99Ardhin6_LtMsUq2vOYsUx-fqanbYa8eotvpuFcvKWagOgImhpQiWmXc-JTjGLUbFAV1KEsdylJ_ysra_JX2MvmfgjwKj27A_X9otViuF3_d3wWWpks
CitedBy_id crossref_primary_10_1021_acsabm_5c00489
crossref_primary_10_1007_s12032_025_02680_x
crossref_primary_10_1016_j_mtchem_2025_102640
crossref_primary_10_1016_j_jconrel_2025_114138
crossref_primary_10_3390_pharmaceutics17080992
crossref_primary_10_1016_j_jconrel_2025_114059
crossref_primary_10_1016_j_nxbio_2025_100001
crossref_primary_10_1097_CM9_0000000000003737
crossref_primary_10_1088_2632_959X_add6bc
crossref_primary_10_18502_aanbt_v6i2_18617
crossref_primary_10_3390_ijms26115261
crossref_primary_10_1007_s11426_025_2942_5
crossref_primary_10_1007_s12668_025_02126_8
crossref_primary_10_1016_j_mtbio_2025_102165
crossref_primary_10_2147_IJN_S539879
crossref_primary_10_1016_j_biomaterials_2025_123419
crossref_primary_10_1016_j_compbiomed_2025_111046
crossref_primary_10_1016_j_mtbio_2025_102180
crossref_primary_10_1186_s12645_024_00302_1
crossref_primary_10_1002_adma_202417536
crossref_primary_10_1039_D5DT01704A
crossref_primary_10_1002_advs_202503138
crossref_primary_10_1016_j_ntm_2025_100091
crossref_primary_10_1186_s12951_025_03661_y
crossref_primary_10_1016_j_colsurfb_2024_114468
crossref_primary_10_1016_j_critrevonc_2025_104653
crossref_primary_10_1007_s00210_025_04497_x
crossref_primary_10_1016_j_cej_2025_163228
crossref_primary_10_1016_j_preme_2025_100037
crossref_primary_10_1007_s12668_025_01980_w
crossref_primary_10_1016_j_ijbiomac_2025_144313
crossref_primary_10_1039_D5RA02557E
crossref_primary_10_3389_fphar_2025_1591438
crossref_primary_10_1007_s11705_025_2562_1
crossref_primary_10_1039_D5SC01799H
crossref_primary_10_1021_acs_jctc_5c00454
crossref_primary_10_1080_09205063_2025_2450150
Cites_doi 10.1007/s10237-023-01756-9
10.3390/ijms241310967
10.1021/acs.langmuir.2c03334
10.1002/cmdc.202200067
10.1016/j.biomaterials.2015.01.012
10.1016/j.scitotenv.2022.156572
10.1038/s41565-020-0759-5
10.1021/acsami.2c21013
10.1021/acsnano.4c02400
10.1093/toxsci/kfac075
10.1038/nnano.2007.260
10.3390/pharmaceutics14061122
10.1039/D3ME00151B
10.34172/apb.2023.056
10.1038/s41565-022-01173-6
10.1021/acs.chemrev.7b00663
10.1002/adma.202201736
10.1021/acsbiomaterials.2c00074
10.2147/IJN.S118727
10.1021/acs.jctc.4c00231
10.1002/advs.202204937
10.1038/nbt.1807
10.1021/acs.nanolett.9b03774
10.1021/acs.jpcb.2c06751
10.1021/acsnano.3c04378
10.1016/j.apsb.2021.11.021
10.1021/acs.nanolett.9b01333
10.1021/acsomega.3c02288
10.1021/acsami.7b02808
10.1021/acsnano.1c08473
10.1002/smll.202200302
10.3390/ijms242115532
10.1021/acs.chemrev.5b00346
10.3390/ma16062298
10.1039/D2TB02050E
10.1021/acsbiomaterials.2c00011
10.1016/j.ijpharm.2021.120713
10.1021/acsbiomaterials.2c00865
10.1186/s40360-022-00616-z
10.1126/sciadv.aba2458
10.1021/acs.molpharmaceut.3c00635
10.1016/j.apsb.2022.02.027
10.1038/s44222-023-00082-0
10.1038/s41467-020-18525-2
10.1021/acsnano.4c00587
10.1038/s41467-019-08657-5
10.1002/smll.202201672
10.1038/s41467-020-16413-3
10.1371/journal.pone.0154568
10.1021/acsami.2c06627
10.1002/adma.202211151
10.1038/s41392-023-01642-x
10.1021/acsnano.2c04159
10.1021/acs.accounts.3c00339
10.1021/acs.chemrestox.0c00343
10.1021/acs.chemrev.8b00626
10.1038/s41524-023-01008-5
10.1021/jacs.3c07097
10.1002/jbm.b.35108
10.1021/accountsmr.3c00112
10.1016/j.jddst.2024.105366
10.1021/acsomega.4c01437
10.1021/acsengineeringau.2c00008
10.1021/acs.chemrev.3c00070
10.1021/acs.biomac.2c00197
10.1039/D4TB00312H
10.1021/jacs.2c13701
10.1021/acsabm.2c00280
10.1021/acsanm.3c01767
10.1016/j.jconrel.2020.03.043
10.1021/acsnano.3c11661
10.1002/anie.202300172
10.1080/1061186X.2022.2025600
10.1038/nbt.3330
10.1021/acsabm.3c01306
10.3390/cancers13143396
10.3389/fchem.2023.1207579
10.1038/s41571-024-00883-1
10.1002/adma.202210144
10.1021/acsnano.3c09715
10.1021/acs.molpharmaceut.3c00602
10.1021/acs.biomac.3c00903
10.1039/D2NR00664B
10.1038/s41571-022-00699-x
10.1021/acs.jcim.8b00193
10.1016/j.ijbiomac.2023.126280
10.1039/D3NR02155F
10.1021/acs.langmuir.2c01403
10.3390/ph16070970
10.1021/acs.bioconjchem.9b00532
10.1021/acs.chemmater.3c02954
10.1021/acsnano.2c04232
10.1002/adhm.202202925
10.1021/acs.jctc.0c00483
10.1021/acs.langmuir.1c02718
10.1021/acsnano.1c09008
10.1038/s41467-023-40579-1
10.3389/fbioe.2023.1147064
10.1038/s41467-021-27194-8
10.1039/D3BM01901B
10.3390/polym15102317
10.1021/acsnano.3c11982
10.1021/acsami.1c04868
10.1002/smll.202201993
10.1038/s41565-021-01048-2
10.3390/jfb14090437
10.1016/j.jddst.2023.104386
10.1021/acsabm.1c01234
10.1021/acsbiomaterials.3c00363
10.1038/nature14509
10.1038/nnano.2011.10
10.1021/acsabm.3c00275
10.1039/c3cs35486e
10.1016/j.drudis.2018.01.016
10.1186/s40824-023-00386-7
10.1021/acsomega.3c09131
10.1002/smll.202203400
10.1021/acs.molpharmaceut.3c00502
10.1002/slct.202301543
10.1039/C9NR03473K
10.1016/j.carbpol.2017.10.054
10.1039/D3SM00567D
10.34172/apb.2023.062
10.3390/molecules29051076
10.1021/jp505497k
10.1038/s44222-023-00138-1
10.1021/acsnano.8b01994
10.1039/C8CS00457A
10.1038/nrm2256
10.1038/s41565-024-01673-7
10.1039/D3NR05592B
10.1021/acsnano.2c06666
10.1038/s41573-021-00139-y
10.1021/acs.nanolett.2c03778
10.1021/acs.langmuir.2c02086
10.1186/s13321-021-00484-5
10.1038/s41392-023-01654-7
10.1016/j.addr.2023.114772
10.1021/acsabm.1c01090
10.1126/sciadv.1600261
10.1126/sciadv.aaw3192
10.1021/jacs.3c10704
10.1021/acsnano.1c10029
10.1038/s41578-023-00552-2
10.1016/S0939-6411(00)00087-4
10.3390/pharmaceutics15082065
10.1016/j.ccr.2022.214896
10.1038/s41427-022-00453-w
10.1038/s41563-022-01251-z
10.1021/acsnano.2c06977
10.1021/acsami.0c11627
10.1016/j.biomaterials.2018.10.008
10.1039/D3MA00673E
10.1016/j.nantod.2020.101057
10.1021/acsanm.3c00705
10.1039/D0TB01765E
10.1021/acsabm.2c00775
10.1038/s41598-023-29835-y
10.1021/acscatal.0c03426
10.1021/acs.molpharmaceut.0c00175
10.1002/advs.201801733
10.1016/j.polymer.2024.127116
10.1002/adma.202005024
10.1007/s10876-023-02405-y
10.1021/acsmaterialslett.2c00756
10.1021/acsnano.1c11374
10.1038/s41392-023-01481-w
10.1016/j.nantod.2021.101184
10.1021/acsnano.3c00305
10.1021/acs.bioconjchem.1c00565
10.1038/s41573-020-0090-8
10.1039/D2TB02686D
10.1016/j.xpro.2022.101685
10.1002/smll.202202510
10.1021/acsanm.3c03682
10.1021/acsphyschemau.3c00080
10.1021/acs.molpharmaceut.3c00379
10.1021/acsnano.2c00893
10.1016/j.ajps.2023.100811
10.1016/0142-9612(81)90059-4
10.1111/1759-7714.14618
10.1126/science.1219657
10.1038/s41598-022-19453-5
10.1002/mabi.202200174
10.1016/j.heliyon.2024.e26351
10.3390/bios13070737
10.1021/acsnano.3c01811
10.3390/pharmaceutics15030772
10.1021/acsanm.3c02749
10.1002/advs.202001388
10.1038/s41598-022-06380-8
10.1002/chem.202303982
10.1021/acs.langmuir.4c00787
10.1016/j.cjche.2024.01.002
10.1016/j.ccr.2023.215519
10.1016/S0022-2836(65)80093-6
10.1021/acsami.8b03118
10.1016/j.arabjc.2023.104751
10.1039/C7SM00943G
10.1021/acs.accounts.9b00140
10.1016/j.cmpb.2020.105348
10.1007/s10876-023-02491-y
10.1021/acs.langmuir.5b01866
10.1002/smll.202200116
10.1021/acs.jpcc.1c04878
10.1021/acsnano.3c09128
10.1021/acs.molpharmaceut.1c00518
10.1007/s40544-022-0714-6
10.1002/adma.202210161
10.1039/C4NR04834B
10.1021/jacs.5b10346
10.1021/ie2014668
10.1021/acsnano.4c01027
10.1039/D3RA05587F
10.1021/acs.langmuir.2c01199
10.1021/acsmacrolett.2c00642
10.1021/acsnano.1c01173
10.1016/j.nantod.2023.101967
10.1002/adhm.202301726
10.1039/C8NR07014H
10.1021/acsabm.3c00276
10.1038/s41565-019-0570-3
10.1007/s11696-023-03110-w
10.1021/acsabm.1c01216
10.1002/advs.202105223
10.1021/acsami.2c05533
10.1021/acs.langmuir.1c03360
10.1021/acsnano.2c07312
10.1021/ma101132n
10.1021/acsabm.2c00215
10.1021/acsmacrolett.2c00059
10.2147/IJN.S406415
10.1021/acsnano.3c09452
10.1039/D2NH00243D
10.1002/anie.202113703
10.1021/acsnano.3c05921
10.1021/acsami.3c15521
10.1021/acs.molpharmaceut.1c00960
10.1038/s41392-023-01536-y
10.1016/j.colsurfb.2019.110722
10.1021/la503949b
10.1016/j.nano.2022.102575
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202407793
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39252670
10_1002_adma_202407793
ADMA202407793
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Polish National Science Centre within the NanoCARRIERS project
  funderid: 2021/40/Q/ST5/00117
– fundername: National Key R&D Program of China
  funderid: 2022YFA1203200
– fundername: National Natural Science Foundation of China
  funderid: 22467013; 52161135107; 22265013
– fundername: Basic Science Center Project of the National Natural Science Foundation of China
  funderid: 22388101
– fundername: National Natural Science Foundation of China
  grantid: 22265013
– fundername: Basic Science Center Project of the National Natural Science Foundation of China
  grantid: 22388101
– fundername: Polish National Science Centre within the NanoCARRIERS project
  grantid: 2021/40/Q/ST5/00117
– fundername: National Natural Science Foundation of China
  grantid: 22467013
– fundername: National Natural Science Foundation of China
  grantid: 52161135107
– fundername: National Key R&D Program of China
  grantid: 2022YFA1203200
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3733-1ac18c3bf05316075a5b707b194d7412c4a89c3283e2376608f0c3af2bbcbffb3
IEDL.DBID DRFUL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308392800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 10:43:54 EDT 2025
Mon Oct 06 16:33:29 EDT 2025
Thu Apr 03 06:58:58 EDT 2025
Sat Nov 29 07:18:43 EST 2025
Tue Nov 18 21:49:13 EST 2025
Wed Jan 22 17:13:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords data‐driven models
machine learning
molecular modeling
nanocarriers
physics‐based models
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-1ac18c3bf05316075a5b707b194d7412c4a89c3283e2376608f0c3af2bbcbffb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1636-6336
PMID 39252670
PQID 3124983532
PQPubID 2045203
PageCount 39
ParticipantIDs proquest_miscellaneous_3102472219
proquest_journals_3124983532
pubmed_primary_39252670
crossref_citationtrail_10_1002_adma_202407793
crossref_primary_10_1002_adma_202407793
wiley_primary_10_1002_adma_202407793_ADMA202407793
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1965; 13
2023; 78
2024; 501
2019; 11
2019; 10
2021; 603
2019; 14
2022; 23
2020; 17
2020; 16
2020; 15
2024; 30
2019; 19
2020; 12
2020; 11
2022; 21
2022; 22
2020; 10
2020; 322
2024; 36
2023; 83
2023; 62
2015; 137
2024; 5
2024; 7
2024; 9
2007; 8
2022; 34
2
2024; 20
2024; 21
2024; 2
2022; 30
2024; 4
2007; 2
2022; 33
2024; 25
2022; 38
2024; 29
2022; 840
2022; 110
2023; 52
2018; 182
2019; 6
2019; 5
2023; 56
2019; 30
1981; 2
2024; 10
2024; 12
2024; 13
2015; 524
2024; 14
2018; 23
2024; 16
2011; 6
2024; 18
2019; 188
2024; 19
2016; 11
2022; 189
2010; 43
2022; 4
2022; 5
2022; 7
2022; 8
2022; 9
2019; 48
2024; 93
2022; 12
2022; 13
2022; 14
2015; 119
2022; 10
2022; 2
2022; 11
2018; 12
2022; 16
2022; 17
2022; 18
2022; 19
2023; 35
2021; 20
2023; 36
2023; 34
2023; 4
2023; 39
2024; 303
2019; 52
2023; 6
2021; 125
2023; 8
2015; 31
2023; 9
2023; 145
2015; 33
2000; 50
2023; 1
2024; 146
2017; 9
2012; 51
2023; 20
2021; 36
2020; 8
2020; 7
2015; 48
2023; 24
2023; 22
2021; 34
2021; 33
2023; 251
2023; 27
2021; 39
2019; 119
2016; 116
2024; 68
2011; 29
2012; 337
2023; 10
2021; 7
2023; 13
2023; 14
2023; 11
2023; 12
2023; 17
2023; 18
2023; 15
2023; 16
2023; 123
2013; 42
2023; 19
2023; 127
2020; 188
2020; 189
2022; 44
2015; 7
2021; 13
2021; 15
2021; 12
2023; 196
2022; 61
2023; 475
2017; 13
2024; 40
2018; 58
He N. (e_1_2_8_180_1) 2023; 15
e_1_2_8_241_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_25_1
e_1_2_8_48_1
Zhou M. (e_1_2_8_165_1) 2024; 16
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
Mehrdadi S. (e_1_2_8_76_1) 2024; 14
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_217_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
Chang X. (e_1_2_8_237_1) 2022; 10
e_1_2_8_245_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 8999
  year: 2022
  publication-title: Langmuir
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 217
  year: 2023
  publication-title: Signal Transduction Targeted Ther.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 6
  start-page: 175
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 435
  year: 2023
  publication-title: Signal Transduction Targeted Ther.
– volume: 16
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 6463
  year: 2024
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 5502
  year: 2023
  publication-title: Soft Matter
– volume: 13
  start-page: 446
  year: 2023
  publication-title: Adv. Pharm. Bull.
– volume: 337
  start-page: 303
  year: 2012
  publication-title: Science
– volume: 44
  year: 2022
  publication-title: Nanomedicine
– volume: 8
  start-page: 293
  year: 2023
  publication-title: Signal Transduction Targeted Ther.
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 4
  start-page: 2134
  year: 2022
  publication-title: ACS Mater. Lett.
– volume: 34
  start-page: 1456
  year: 2021
  publication-title: Chem. Res. Toxicol.
– volume: 39
  year: 2021
  publication-title: Nano Today
– volume: 4
  start-page: 202
  year: 2024
  publication-title: ACS Physical Chemistry Au
– volume: 22
  start-page: 2153
  year: 2023
  publication-title: Biomech. Model. Mechanobiol
– volume: 20
  start-page: 5728
  year: 2023
  publication-title: Mol. Pharm.
– volume: 10
  start-page: 2
  year: 2022
  publication-title: Toxics
– volume: 8
  start-page: 422
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 182
  start-page: 132
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 93
  year: 2024
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 8
  start-page: 813
  year: 2007
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 4
  year: 2023
  publication-title: STAR Protoc.
– volume: 11
  start-page: 2204
  year: 2023
  publication-title: Friction
– volume: 146
  start-page: 2514
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 48
  year: 2024
  publication-title: Adv. Pharm. Bull.
– volume: 7
  start-page: 814
  year: 2015
  publication-title: Nanoscale
– volume: 14
  start-page: 6735
  year: 2022
  publication-title: Nanoscale
– volume: 21
  start-page: 710
  year: 2022
  publication-title: Nat. Mater.
– volume: 12
  start-page: 2371
  year: 2022
  publication-title: Sci. Rep.
– volume: 2
  start-page: 201
  year: 1981
  publication-title: Biomaterials
– volume: 16
  start-page: 6560
  year: 2020
  publication-title: J. Chem. Theory Comput.
– volume: 119
  start-page: 6459
  year: 2019
  publication-title: Chem. Rev.
– volume: 6
  start-page: 8416
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  year: 2024
  publication-title: Heliyon
– volume: 12
  start-page: 2121
  year: 2024
  publication-title: Biomater. Sci.
– volume: 8
  year: 2023
  publication-title: ChemistrySelect
– volume: 2
  start-page: 214
  year: 2024
  publication-title: Nat. Rev. Bioeng.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2826
  year: 2023
  publication-title: ACS Appl. Bio Mater.
– volume: 13
  start-page: 7721
  year: 2017
  publication-title: Soft Matter
– volume: 48
  start-page: 37
  year: 2015
  publication-title: Biomaterials
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 10
  start-page: 704
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 4934
  year: 2023
  publication-title: Nat. Commun.
– volume: 58
  start-page: 1164
  year: 2018
  publication-title: J. Chem. Inf. Model.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 127
  start-page: 1857
  year: 2023
  publication-title: J. Phys. Chem. B
– volume: 18
  start-page: 2659
  year: 2023
  publication-title: Int. J. Nanomed.
– volume: 51
  start-page: 4719
  year: 2012
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  start-page: 319
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 196
  year: 2023
  publication-title: Adv. Drug Delivery Rev.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 18
  start-page: 1531
  year: 2024
  publication-title: ACS Nano
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 2
  start-page: 274
  year: 2022
  publication-title: ACS Eng. Au
– volume: 7
  start-page: 908
  year: 2022
  publication-title: Nanoscale Horiz.
– volume: 18
  start-page: 2162
  year: 2024
  publication-title: ACS Nano
– volume: 25
  start-page: 2114
  year: 2024
  publication-title: Biomacromolecules
– volume: 119
  start-page: 850
  year: 2015
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 1160
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 24
  year: 2023
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 6794
  year: 2018
  publication-title: ACS Nano
– volume: 603
  year: 2021
  publication-title: Int. J. Pharm.
– volume: 11
  start-page: 1670
  year: 2023
  publication-title: J. Mater. Chem. B
– volume: 16
  start-page: 4666
  year: 2022
  publication-title: ACS Nano
– volume: 43
  start-page: 7839
  year: 2010
  publication-title: Macromolecules
– volume: 11
  start-page: 543
  year: 2022
  publication-title: ACS Macro Lett.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 13
  start-page: 238
  year: 1965
  publication-title: J. Mol. Biol.
– volume: 40
  start-page: 9761
  year: 2024
  publication-title: Langmuir
– volume: 5
  start-page: 1476
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 577
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 11
  start-page: 2631
  year: 2023
  publication-title: J. Mater. Chem. B
– volume: 15
  start-page: 819
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 22
  year: 2022
  publication-title: Macromol. Biosci.
– volume: 23
  start-page: 534
  year: 2018
  publication-title: Drug Discovery Today
– volume: 9
  year: 2024
  publication-title: ACS Omega
– volume: 12
  year: 2022
  publication-title: Sci. Rep.
– volume: 15
  start-page: 5725
  year: 2021
  publication-title: ACS Nano
– volume: 34
  start-page: 2565
  year: 2023
  publication-title: J. Cluster Sci.
– volume: 524
  start-page: 109
  year: 2015
  publication-title: Nature
– volume: 15
  start-page: 2317
  year: 2023
  publication-title: Polymers
– volume: 17
  year: 2022
  publication-title: ChemMedChem
– volume: 9
  start-page: 20
  year: 2024
  publication-title: Mol. Syst. Des. Eng.
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 8
  start-page: 1596
  year: 2022
  publication-title: ACS Biomater. Sci. Eng.
– volume: 6
  start-page: 2477
  year: 2023
  publication-title: ACS Appl. Bio Mater.
– volume: 14
  start-page: 437
  year: 2023
  publication-title: J. Funct. Biomater.
– volume: 29
  start-page: 341
  year: 2011
  publication-title: Nat. Biotechnol.
– volume: 8
  year: 2023
  publication-title: ACS Omega
– volume: 5
  start-page: 136
  year: 2024
  publication-title: Mater. Adv.
– volume: 23
  start-page: 71
  year: 2022
  publication-title: BMC Pharmacol. Toxicol.
– volume: 19
  start-page: 8887
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 3160
  year: 2023
  publication-title: ACS Biomater. Sci. Eng.
– volume: 52
  start-page: 2190
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 8107
  year: 2024
  publication-title: ACS Nano
– volume: 1
  start-page: 749
  year: 2023
  publication-title: Nat. Rev. Bioeng.
– volume: 12
  year: 2023
  publication-title: Adv. Healthcare Mater.
– volume: 21
  start-page: 126
  year: 2024
  publication-title: Mol. Pharm.
– volume: 11
  start-page: 6003
  year: 2016
  publication-title: Int. J. Nanomed.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 30
  start-page: 2458
  year: 2019
  publication-title: Bioconjugate Chem.
– volume: 303
  year: 2024
  publication-title: Polymer
– volume: 83
  year: 2023
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 9
  start-page: 59
  year: 2023
  publication-title: npj Comput. Mater.
– volume: 56
  start-page: 2366
  year: 2023
  publication-title: Acc. Chem. Res.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 407
  year: 2024
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 8
  start-page: 1930
  year: 2022
  publication-title: ACS Biomater. Sci. Eng.
– volume: 5
  start-page: 3695
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 4
  start-page: 892
  year: 2023
  publication-title: Acc. Mater. Res.
– volume: 8
  start-page: 418
  year: 2023
  publication-title: Signal Transduction Targeted Ther.
– volume: 30
  year: 2024
  publication-title: Chemistry
– volume: 11
  start-page: 2647
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 2827
  year: 2022
  publication-title: Biomacromolecules
– volume: 13
  start-page: 3396
  year: 2021
  publication-title: Cancers
– volume: 18
  start-page: 2815
  year: 2024
  publication-title: ACS Nano
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 20
  start-page: 5616
  year: 2023
  publication-title: Mol. Pharm.
– volume: 110
  start-page: 2506
  year: 2022
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 15
  start-page: 1
  year: 2023
  publication-title: NPG Asia Mater.
– volume: 17
  start-page: 1989
  year: 2023
  publication-title: ACS Nano
– volume: 16
  year: 2023
  publication-title: Arabian J. Chem.
– volume: 31
  start-page: 4270
  year: 2015
  publication-title: Langmuir
– volume: 12
  start-page: 2950
  year: 2022
  publication-title: Acta Pharm. Sin. B
– volume: 13
  start-page: 2941
  year: 2022
  publication-title: Thorac. Cancer
– volume: 13
  year: 2024
  publication-title: Adv. Healthcare Mater.
– volume: 16
  start-page: 4175
  year: 2022
  publication-title: ACS Nano
– volume: 13
  start-page: 512
  year: 2023
  publication-title: Adv. Pharm. Bull.
– volume: 12
  start-page: 6866
  year: 2021
  publication-title: Nat. Commun.
– volume: 17
  start-page: 924
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 50
  start-page: 161
  year: 2000
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 16
  start-page: 6527
  year: 2022
  publication-title: ACS Nano
– volume: 145
  start-page: 5930
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 1033
  year: 2022
  publication-title: Mol. Pharmaceutics
– volume: 189
  year: 2020
  publication-title: Comput. Methods Programs Biomed.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 33
  start-page: 566
  year: 2022
  publication-title: Bioconjugate Chem.
– volume: 5
  start-page: 1194
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 188
  year: 2020
  publication-title: Colloids Surf., B
– volume: 8
  start-page: 9028
  year: 2020
  publication-title: J. Mater. Chem. B
– volume: 39
  start-page: 4326
  year: 2023
  publication-title: Langmuir
– volume: 20
  start-page: 101
  year: 2021
  publication-title: Nat. Rev. Drug Discovery
– volume: 17
  start-page: 1778
  year: 2020
  publication-title: Mol. Pharmaceutics
– volume: 36
  year: 2021
  publication-title: Nano Today
– volume: 20
  start-page: 4045
  year: 2024
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 2519
  year: 2020
  publication-title: Nat. Commun.
– volume: 27
  start-page: 39
  year: 2023
  publication-title: Biomater. Res.
– volume: 20
  start-page: 33
  year: 2023
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 16
  start-page: 342
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 772
  year: 2023
  publication-title: Pharmaceutics
– volume: 18
  year: 2023
  publication-title: Asian J. Pharm. Sci.
– volume: 7
  start-page: 1958
  year: 2024
  publication-title: ACS Appl. Bio Mater.
– volume: 15
  year: 2023
  publication-title: Nanoscale
– volume: 2
  publication-title: Sci. Adv.
– volume: 16
  start-page: 869
  year: 2022
  publication-title: ACS Nano
– volume: 48
  start-page: 1004
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 567
  year: 2022
  publication-title: J. Drug Targeting
– volume: 68
  start-page: 65
  year: 2024
  publication-title: Chin. J. Chem. Eng.
– volume: 11
  start-page: 4790
  year: 2020
  publication-title: Nat. Commun.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 5404
  year: 2022
  publication-title: Langmuir
– volume: 42
  start-page: 6060
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 4838
  year: 2022
  publication-title: ACS Biomater. Sci. Eng.
– volume: 840
  year: 2022
  publication-title: Sci. Total Environ.
– volume: 13
  year: 2023
  publication-title: RSC Adv.
– volume: 123
  start-page: 8575
  year: 2023
  publication-title: Chem. Rev.
– volume: 38
  year: 2022
  publication-title: Langmuir
– volume: 36
  start-page: 3588
  year: 2024
  publication-title: Chem. Mater.
– volume: 19
  start-page: 4527
  year: 2019
  publication-title: Nano Lett.
– volume: 322
  start-page: 274
  year: 2020
  publication-title: J. Controlled Release
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 52
  year: 2023
  publication-title: Nano Today
– volume: 19
  start-page: 1766
  year: 2022
  publication-title: Mol. Pharm.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 31
  start-page: 9105
  year: 2015
  publication-title: Langmuir
– volume: 119
  start-page: 4881
  year: 2019
  publication-title: Chem. Rev.
– volume: 12
  start-page: 3807
  year: 2024
  publication-title: J. Mater. Chem. B
– volume: 22
  start-page: 9621
  year: 2022
  publication-title: Nano Lett.
– volume: 21
  start-page: 38
  year: 2024
  publication-title: Mol. Pharm.
– volume: 38
  start-page: 1698
  year: 2022
  publication-title: Langmuir
– volume: 12
  start-page: 3710
  year: 2022
  publication-title: Acta Pharm. Sin. B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 255
  year: 2023
  publication-title: ACS Macro Lett.
– volume: 251
  year: 2023
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 737
  year: 2023
  publication-title: Biosensors
– volume: 189
  start-page: 7
  year: 2022
  publication-title: Toxicol. Sci.
– volume: 16
  start-page: 970
  year: 2023
  publication-title: Pharmaceuticals
– volume: 13
  start-page: 2665
  year: 2023
  publication-title: Sci. Rep.
– volume: 5
  start-page: 5432
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 5
  start-page: 622
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 501
  year: 2024
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 3864
  year: 2019
  publication-title: Nanoscale
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 33
  start-page: 941
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 116
  start-page: 2602
  year: 2016
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 519
  year: 2023
  publication-title: J. Cluster Sci.
– volume: 11
  year: 2023
  publication-title: Front. Bioeng. Biotechnol.
– volume: 11
  year: 2023
  publication-title: Front. Chem.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3234
  year: 2024
  publication-title: ACS Nano
– volume: 29
  start-page: 1076
  year: 2024
  publication-title: Molecules
– volume: 14
  start-page: 1122
  year: 2022
  publication-title: Pharmaceutics
– volume: 20
  start-page: 362
  year: 2021
  publication-title: Nat. Rev. Drug Discovery
– volume: 19
  start-page: 867
  year: 2024
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 2956
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 13
  start-page: 9
  year: 2021
  publication-title: J. Cheminf.
– volume: 188
  start-page: 12
  year: 2019
  publication-title: Biomaterials
– volume: 15
  start-page: 2065
  year: 2023
  publication-title: Pharmaceutics
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 16
  start-page: 2298
  year: 2023
  publication-title: Materials
– volume: 16
  start-page: 5404
  year: 2022
  publication-title: ACS Nano
– volume: 16
  start-page: 3324
  year: 2024
  publication-title: Nanoscale
– volume: 78
  start-page: 565
  year: 2023
  publication-title: Chem. Pap.
– ident: e_1_2_8_105_1
  doi: 10.1007/s10237-023-01756-9
– ident: e_1_2_8_137_1
  doi: 10.3390/ijms241310967
– ident: e_1_2_8_132_1
  doi: 10.1021/acs.langmuir.2c03334
– ident: e_1_2_8_64_1
  doi: 10.1002/cmdc.202200067
– ident: e_1_2_8_204_1
  doi: 10.1016/j.biomaterials.2015.01.012
– ident: e_1_2_8_233_1
  doi: 10.1016/j.scitotenv.2022.156572
– ident: e_1_2_8_43_1
  doi: 10.1038/s41565-020-0759-5
– ident: e_1_2_8_143_1
  doi: 10.1021/acsami.2c21013
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.4c02400
– ident: e_1_2_8_236_1
  doi: 10.1093/toxsci/kfac075
– ident: e_1_2_8_188_1
  doi: 10.1038/nnano.2007.260
– ident: e_1_2_8_195_1
  doi: 10.3390/pharmaceutics14061122
– ident: e_1_2_8_169_1
  doi: 10.1039/D3ME00151B
– ident: e_1_2_8_74_1
  doi: 10.34172/apb.2023.056
– ident: e_1_2_8_231_1
  doi: 10.1038/s41565-022-01173-6
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.chemrev.7b00663
– ident: e_1_2_8_230_1
  doi: 10.1002/adma.202201736
– ident: e_1_2_8_128_1
  doi: 10.1021/acsbiomaterials.2c00074
– ident: e_1_2_8_157_1
  doi: 10.2147/IJN.S118727
– ident: e_1_2_8_168_1
  doi: 10.1021/acs.jctc.4c00231
– ident: e_1_2_8_193_1
  doi: 10.1002/advs.202204937
– ident: e_1_2_8_21_1
  doi: 10.1038/nbt.1807
– ident: e_1_2_8_196_1
  doi: 10.1021/acs.nanolett.9b03774
– ident: e_1_2_8_158_1
  doi: 10.1021/acs.jpcb.2c06751
– ident: e_1_2_8_200_1
  doi: 10.1021/acsnano.3c04378
– ident: e_1_2_8_229_1
  doi: 10.1016/j.apsb.2021.11.021
– ident: e_1_2_8_198_1
  doi: 10.1021/acs.nanolett.9b01333
– ident: e_1_2_8_35_1
  doi: 10.1021/acsomega.3c02288
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.7b02808
– ident: e_1_2_8_94_1
  doi: 10.1021/acsnano.1c08473
– ident: e_1_2_8_68_1
  doi: 10.1002/smll.202200302
– ident: e_1_2_8_138_1
  doi: 10.3390/ijms242115532
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.chemrev.5b00346
– ident: e_1_2_8_101_1
  doi: 10.3390/ma16062298
– ident: e_1_2_8_91_1
  doi: 10.1039/D2TB02050E
– ident: e_1_2_8_124_1
  doi: 10.1021/acsbiomaterials.2c00011
– ident: e_1_2_8_228_1
  doi: 10.1016/j.ijpharm.2021.120713
– ident: e_1_2_8_127_1
  doi: 10.1021/acsbiomaterials.2c00865
– ident: e_1_2_8_111_1
  doi: 10.1186/s40360-022-00616-z
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.aba2458
– ident: e_1_2_8_166_1
  doi: 10.1021/acs.molpharmaceut.3c00635
– ident: e_1_2_8_155_1
  doi: 10.1016/j.apsb.2022.02.027
– ident: e_1_2_8_10_1
  doi: 10.1038/s44222-023-00082-0
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-020-18525-2
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.4c00587
– ident: e_1_2_8_209_1
  doi: 10.1038/s41467-019-08657-5
– ident: e_1_2_8_84_1
  doi: 10.1002/smll.202201672
– ident: e_1_2_8_239_1
  doi: 10.1038/s41467-020-16413-3
– ident: e_1_2_8_173_1
  doi: 10.1371/journal.pone.0154568
– ident: e_1_2_8_4_1
  doi: 10.1021/acsami.2c06627
– ident: e_1_2_8_202_1
  doi: 10.1002/adma.202211151
– ident: e_1_2_8_60_1
  doi: 10.1038/s41392-023-01642-x
– ident: e_1_2_8_126_1
  doi: 10.1021/acsnano.2c04159
– ident: e_1_2_8_201_1
  doi: 10.1021/acs.accounts.3c00339
– ident: e_1_2_8_243_1
  doi: 10.1021/acs.chemrestox.0c00343
– ident: e_1_2_8_189_1
  doi: 10.1021/acs.chemrev.8b00626
– ident: e_1_2_8_214_1
  doi: 10.1038/s41524-023-01008-5
– ident: e_1_2_8_48_1
  doi: 10.1021/jacs.3c07097
– ident: e_1_2_8_116_1
  doi: 10.1002/jbm.b.35108
– ident: e_1_2_8_14_1
  doi: 10.1021/accountsmr.3c00112
– ident: e_1_2_8_171_1
  doi: 10.1016/j.jddst.2024.105366
– ident: e_1_2_8_162_1
  doi: 10.1021/acsomega.4c01437
– ident: e_1_2_8_61_1
  doi: 10.1021/acsengineeringau.2c00008
– ident: e_1_2_8_218_1
  doi: 10.1021/acs.chemrev.3c00070
– ident: e_1_2_8_246_1
  doi: 10.1021/acs.biomac.2c00197
– ident: e_1_2_8_110_1
  doi: 10.1039/D4TB00312H
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.2c13701
– ident: e_1_2_8_118_1
  doi: 10.1021/acsabm.2c00280
– ident: e_1_2_8_31_1
  doi: 10.1021/acsanm.3c01767
– ident: e_1_2_8_225_1
  doi: 10.1016/j.jconrel.2020.03.043
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.3c11661
– ident: e_1_2_8_97_1
  doi: 10.1002/anie.202300172
– ident: e_1_2_8_146_1
  doi: 10.1080/1061186X.2022.2025600
– ident: e_1_2_8_40_1
  doi: 10.1038/nbt.3330
– ident: e_1_2_8_24_1
  doi: 10.1021/acsabm.3c01306
– ident: e_1_2_8_15_1
  doi: 10.3390/cancers13143396
– ident: e_1_2_8_136_1
  doi: 10.3389/fchem.2023.1207579
– ident: e_1_2_8_16_1
  doi: 10.1038/s41571-024-00883-1
– ident: e_1_2_8_192_1
  doi: 10.1002/adma.202210144
– ident: e_1_2_8_38_1
  doi: 10.1021/acsnano.3c09715
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.molpharmaceut.3c00602
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.biomac.3c00903
– ident: e_1_2_8_234_1
  doi: 10.1039/D2NR00664B
– ident: e_1_2_8_241_1
  doi: 10.1038/s41571-022-00699-x
– ident: e_1_2_8_149_1
  doi: 10.1021/acs.jcim.8b00193
– ident: e_1_2_8_131_1
  doi: 10.1016/j.ijbiomac.2023.126280
– ident: e_1_2_8_135_1
  doi: 10.1039/D3NR02155F
– ident: e_1_2_8_113_1
  doi: 10.1021/acs.langmuir.2c01403
– ident: e_1_2_8_79_1
  doi: 10.3390/ph16070970
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.bioconjchem.9b00532
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.chemmater.3c02954
– ident: e_1_2_8_70_1
  doi: 10.1021/acsnano.2c04232
– ident: e_1_2_8_207_1
  doi: 10.1002/adhm.202202925
– ident: e_1_2_8_217_1
  doi: 10.1021/acs.jctc.0c00483
– ident: e_1_2_8_115_1
  doi: 10.1021/acs.langmuir.1c02718
– ident: e_1_2_8_95_1
  doi: 10.1021/acsnano.1c09008
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-023-40579-1
– ident: e_1_2_8_100_1
  doi: 10.3389/fbioe.2023.1147064
– ident: e_1_2_8_208_1
  doi: 10.1038/s41467-021-27194-8
– ident: e_1_2_8_107_1
  doi: 10.1039/D3BM01901B
– ident: e_1_2_8_104_1
  doi: 10.3390/polym15102317
– ident: e_1_2_8_54_1
  doi: 10.1021/acsnano.3c11982
– ident: e_1_2_8_154_1
  doi: 10.1021/acsami.1c04868
– ident: e_1_2_8_93_1
  doi: 10.1002/smll.202201993
– ident: e_1_2_8_83_1
  doi: 10.1038/s41565-021-01048-2
– ident: e_1_2_8_78_1
  doi: 10.3390/jfb14090437
– ident: e_1_2_8_144_1
  doi: 10.1016/j.jddst.2023.104386
– ident: e_1_2_8_120_1
  doi: 10.1021/acsabm.1c01234
– ident: e_1_2_8_23_1
  doi: 10.1021/acsbiomaterials.3c00363
– ident: e_1_2_8_176_1
  doi: 10.1038/nature14509
– ident: e_1_2_8_224_1
  doi: 10.1038/nnano.2011.10
– ident: e_1_2_8_103_1
  doi: 10.1021/acsabm.3c00275
– ident: e_1_2_8_184_1
  doi: 10.1039/c3cs35486e
– ident: e_1_2_8_226_1
  doi: 10.1016/j.drudis.2018.01.016
– ident: e_1_2_8_152_1
  doi: 10.1186/s40824-023-00386-7
– ident: e_1_2_8_52_1
  doi: 10.1021/acsomega.3c09131
– ident: e_1_2_8_191_1
  doi: 10.1002/smll.202203400
– volume: 15
  year: 2023
  ident: e_1_2_8_180_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_235_1
  doi: 10.1021/acs.molpharmaceut.3c00502
– ident: e_1_2_8_109_1
  doi: 10.1002/slct.202301543
– ident: e_1_2_8_206_1
  doi: 10.1039/C9NR03473K
– ident: e_1_2_8_22_1
  doi: 10.1016/j.carbpol.2017.10.054
– ident: e_1_2_8_220_1
  doi: 10.1039/D3SM00567D
– ident: e_1_2_8_75_1
  doi: 10.34172/apb.2023.062
– ident: e_1_2_8_102_1
  doi: 10.3390/molecules29051076
– ident: e_1_2_8_175_1
  doi: 10.1021/jp505497k
– ident: e_1_2_8_41_1
  doi: 10.1038/s44222-023-00138-1
– ident: e_1_2_8_194_1
  doi: 10.1021/acsnano.8b01994
– ident: e_1_2_8_185_1
  doi: 10.1039/C8CS00457A
– ident: e_1_2_8_190_1
  doi: 10.1038/nrm2256
– ident: e_1_2_8_222_1
  doi: 10.1038/s41565-024-01673-7
– ident: e_1_2_8_187_1
  doi: 10.1039/D3NR05592B
– ident: e_1_2_8_121_1
  doi: 10.1021/acsnano.2c06666
– ident: e_1_2_8_242_1
  doi: 10.1038/s41573-021-00139-y
– ident: e_1_2_8_123_1
  doi: 10.1021/acs.nanolett.2c03778
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.langmuir.2c02086
– ident: e_1_2_8_221_1
  doi: 10.1186/s13321-021-00484-5
– ident: e_1_2_8_29_1
  doi: 10.1038/s41392-023-01654-7
– ident: e_1_2_8_62_1
  doi: 10.1016/j.addr.2023.114772
– ident: e_1_2_8_89_1
  doi: 10.1021/acsabm.1c01090
– ident: e_1_2_8_46_1
  doi: 10.1126/sciadv.1600261
– ident: e_1_2_8_161_1
  doi: 10.1126/sciadv.aaw3192
– ident: e_1_2_8_13_1
  doi: 10.1021/jacs.3c10704
– ident: e_1_2_8_147_1
  doi: 10.1021/acsnano.1c10029
– ident: e_1_2_8_58_1
  doi: 10.1038/s41578-023-00552-2
– ident: e_1_2_8_3_1
  doi: 10.1016/S0939-6411(00)00087-4
– ident: e_1_2_8_81_1
  doi: 10.3390/pharmaceutics15082065
– ident: e_1_2_8_186_1
  doi: 10.1016/j.ccr.2022.214896
– ident: e_1_2_8_142_1
  doi: 10.1038/s41427-022-00453-w
– ident: e_1_2_8_167_1
  doi: 10.1038/s41563-022-01251-z
– ident: e_1_2_8_232_1
  doi: 10.1021/acsnano.2c06977
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.0c11627
– ident: e_1_2_8_153_1
  doi: 10.1016/j.biomaterials.2018.10.008
– ident: e_1_2_8_98_1
  doi: 10.1039/D3MA00673E
– ident: e_1_2_8_39_1
  doi: 10.1016/j.nantod.2020.101057
– ident: e_1_2_8_30_1
  doi: 10.1021/acsanm.3c00705
– ident: e_1_2_8_205_1
  doi: 10.1039/D0TB01765E
– ident: e_1_2_8_92_1
  doi: 10.1021/acsabm.2c00775
– ident: e_1_2_8_159_1
  doi: 10.1038/s41598-023-29835-y
– ident: e_1_2_8_203_1
  doi: 10.1021/acscatal.0c03426
– ident: e_1_2_8_148_1
  doi: 10.1021/acs.molpharmaceut.0c00175
– ident: e_1_2_8_181_1
  doi: 10.1002/advs.201801733
– ident: e_1_2_8_172_1
  doi: 10.1016/j.polymer.2024.127116
– ident: e_1_2_8_212_1
  doi: 10.1002/adma.202005024
– ident: e_1_2_8_139_1
  doi: 10.1007/s10876-023-02405-y
– ident: e_1_2_8_199_1
  doi: 10.1021/acsmaterialslett.2c00756
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.1c11374
– ident: e_1_2_8_42_1
  doi: 10.1038/s41392-023-01481-w
– ident: e_1_2_8_223_1
  doi: 10.1016/j.nantod.2021.101184
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.3c00305
– ident: e_1_2_8_125_1
  doi: 10.1021/acs.bioconjchem.1c00565
– ident: e_1_2_8_63_1
  doi: 10.1038/s41573-020-0090-8
– ident: e_1_2_8_179_1
  doi: 10.1039/D2TB02686D
– ident: e_1_2_8_73_1
  doi: 10.1016/j.xpro.2022.101685
– ident: e_1_2_8_119_1
  doi: 10.1002/smll.202202510
– ident: e_1_2_8_36_1
  doi: 10.1021/acsanm.3c03682
– volume: 14
  start-page: 48
  year: 2024
  ident: e_1_2_8_76_1
  publication-title: Adv. Pharm. Bull.
– ident: e_1_2_8_59_1
  doi: 10.1021/acsphyschemau.3c00080
– ident: e_1_2_8_160_1
  doi: 10.1021/acs.molpharmaceut.3c00379
– ident: e_1_2_8_85_1
  doi: 10.1021/acsnano.2c00893
– ident: e_1_2_8_227_1
  doi: 10.1016/j.ajps.2023.100811
– ident: e_1_2_8_2_1
  doi: 10.1016/0142-9612(81)90059-4
– ident: e_1_2_8_72_1
  doi: 10.1111/1759-7714.14618
– ident: e_1_2_8_240_1
  doi: 10.1126/science.1219657
– ident: e_1_2_8_86_1
  doi: 10.1038/s41598-022-19453-5
– ident: e_1_2_8_82_1
  doi: 10.1002/mabi.202200174
– ident: e_1_2_8_130_1
  doi: 10.1016/j.heliyon.2024.e26351
– ident: e_1_2_8_133_1
  doi: 10.3390/bios13070737
– ident: e_1_2_8_56_1
  doi: 10.1021/acsnano.3c01811
– ident: e_1_2_8_80_1
  doi: 10.3390/pharmaceutics15030772
– ident: e_1_2_8_33_1
  doi: 10.1021/acsanm.3c02749
– ident: e_1_2_8_182_1
  doi: 10.1002/advs.202001388
– ident: e_1_2_8_164_1
  doi: 10.1038/s41598-022-06380-8
– ident: e_1_2_8_134_1
  doi: 10.1002/chem.202303982
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.langmuir.4c00787
– ident: e_1_2_8_170_1
  doi: 10.1016/j.cjche.2024.01.002
– ident: e_1_2_8_197_1
  doi: 10.1016/j.ccr.2023.215519
– ident: e_1_2_8_1_1
  doi: 10.1016/S0022-2836(65)80093-6
– ident: e_1_2_8_211_1
  doi: 10.1021/acsami.8b03118
– ident: e_1_2_8_129_1
  doi: 10.1016/j.arabjc.2023.104751
– ident: e_1_2_8_150_1
  doi: 10.1039/C7SM00943G
– ident: e_1_2_8_183_1
  doi: 10.1021/acs.accounts.9b00140
– ident: e_1_2_8_219_1
  doi: 10.1016/j.cmpb.2020.105348
– ident: e_1_2_8_140_1
  doi: 10.1007/s10876-023-02491-y
– ident: e_1_2_8_174_1
  doi: 10.1021/acs.langmuir.5b01866
– ident: e_1_2_8_114_1
  doi: 10.1002/smll.202200116
– ident: e_1_2_8_213_1
  doi: 10.1021/acs.jpcc.1c04878
– ident: e_1_2_8_245_1
  doi: 10.1021/acsnano.3c09128
– ident: e_1_2_8_88_1
  doi: 10.1021/acs.molpharmaceut.1c00518
– ident: e_1_2_8_141_1
  doi: 10.1007/s40544-022-0714-6
– ident: e_1_2_8_178_1
  doi: 10.1002/adma.202210161
– ident: e_1_2_8_177_1
  doi: 10.1039/C4NR04834B
– ident: e_1_2_8_210_1
  doi: 10.1021/jacs.5b10346
– ident: e_1_2_8_18_1
  doi: 10.1021/ie2014668
– ident: e_1_2_8_44_1
  doi: 10.1021/acsnano.4c01027
– ident: e_1_2_8_99_1
  doi: 10.1039/D3RA05587F
– ident: e_1_2_8_67_1
  doi: 10.1021/acs.langmuir.2c01199
– ident: e_1_2_8_12_1
  doi: 10.1021/acsmacrolett.2c00642
– ident: e_1_2_8_51_1
  doi: 10.1021/acsnano.1c01173
– ident: e_1_2_8_244_1
  doi: 10.1016/j.nantod.2023.101967
– ident: e_1_2_8_96_1
  doi: 10.1002/adhm.202301726
– ident: e_1_2_8_151_1
  doi: 10.1039/C8NR07014H
– ident: e_1_2_8_25_1
  doi: 10.1021/acsabm.3c00276
– ident: e_1_2_8_32_1
  doi: 10.1038/s41565-019-0570-3
– ident: e_1_2_8_106_1
  doi: 10.1007/s11696-023-03110-w
– ident: e_1_2_8_122_1
  doi: 10.1021/acsabm.1c01216
– ident: e_1_2_8_112_1
  doi: 10.1002/advs.202105223
– ident: e_1_2_8_215_1
  doi: 10.1021/acsami.2c05533
– ident: e_1_2_8_90_1
  doi: 10.1021/acs.langmuir.1c03360
– ident: e_1_2_8_238_1
  doi: 10.1021/acsnano.2c07312
– ident: e_1_2_8_17_1
  doi: 10.1021/ma101132n
– ident: e_1_2_8_66_1
  doi: 10.1021/acsabm.2c00215
– ident: e_1_2_8_87_1
  doi: 10.1021/acsmacrolett.2c00059
– ident: e_1_2_8_77_1
  doi: 10.2147/IJN.S406415
– volume: 16
  year: 2024
  ident: e_1_2_8_165_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.3c09452
– ident: e_1_2_8_145_1
  doi: 10.1039/D2NH00243D
– volume: 10
  start-page: 2
  year: 2022
  ident: e_1_2_8_237_1
  publication-title: Toxics
– ident: e_1_2_8_117_1
  doi: 10.1002/anie.202113703
– ident: e_1_2_8_55_1
  doi: 10.1021/acsnano.3c05921
– ident: e_1_2_8_108_1
  doi: 10.1021/acsami.3c15521
– ident: e_1_2_8_163_1
  doi: 10.1021/acs.molpharmaceut.1c00960
– ident: e_1_2_8_57_1
  doi: 10.1038/s41392-023-01536-y
– ident: e_1_2_8_156_1
  doi: 10.1016/j.colsurfb.2019.110722
– ident: e_1_2_8_216_1
  doi: 10.1021/la503949b
– ident: e_1_2_8_69_1
  doi: 10.1016/j.nano.2022.102575
SSID ssj0009606
Score 2.5769434
SecondaryResourceType review_article
Snippet The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2407793
SubjectTerms Biological effects
Biological models (mathematics)
Chemical reactions
data‐driven models
Dendrimers
Drug carriers
Drug Carriers - chemistry
Drug Delivery Systems
Drug Design
Explainable artificial intelligence
Humans
Liposomes
Machine Learning
Models, Molecular
molecular modeling
nanocarriers
Nanoparticles - chemistry
physics‐based models
Title Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202407793
https://www.ncbi.nlm.nih.gov/pubmed/39252670
https://www.proquest.com/docview/3124983532
https://www.proquest.com/docview/3102472219
Volume 36
WOSCitedRecordID wos001308392800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_P6oX0QQfCq2SZe2j8M5FJyIqOytJGkrinSyOcH_3ru06xwigr6UtknTkORyv0suvwM4jul4tQ64K-MUDZQs8F0l0pYbpBJf-9Jouw75cBVeX0f9fnzz5RR_yQ9RL7iRZNj5mgRc6dHplDRUpZY3iCwSHGPz0OQ4eFsNaHZuu_dXU-JdaeNr0n6fG8sgmhA3evx0toRZxfQNbc6CV6t9uiv_r_cqLFfIk7XLobIGc1mxDktf-Ag34PnOOtEyBIXssuKRwH5jg5z1rNNlxio-1kemipT1JrF1GYVUo4PtDDEw61ivEHrqDMd4wRQUmA-GMzlqziHFyBttwn33_O7swq2CMbhGhEK4vjJ-ZITOSWolAg3V0qEXaj8OUkQl3AQqio1AtJKRo430otwzQuVca6PzXIstaBSDItsBptAmM7lO0TCPUB1KpTUapgYNzTBHRRo44E56IjEVUzkFzHhJSo5lnlAbJnUbOnBS538tOTp-zLk_6dikktVRIij-NgJRwR04qpNRymjrRBXZYEx5sIiQ4_TuwHY5IOpfIcJscRl6DnDb77_UIWl3eu36afcvH-3BIt2XRyL3ofE2HGcHsGDe355Gw0OYD_vRYSUHn4mMBUI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-wwEB68gfrg_RzrNYLgU7FNumn7uLguiruLyCq-lSRtRTl0Zdc94L93Ju1WFxFBfCk0TS8kM5lv0plvAI5jSq_WAXdlnKKDkgW-q0TacINUYrMvjbb7kHedsNeL7u_j6yqakHJhSn6IesONNMOu16TgtCF9-s4aqlJLHEQuCQrZLMwHKEso5POtm_Zt5515V9oCm_TDz41lEE2YGz1-Ov2Eacv0CW5Oo1drftqrv_Dha7BSYU_WLIVlHWayYgOWPzASbsJT34bRMoSF7LJiksCZY4OcdW3YZcYqRtYHpoqUdSfVdRkVVaPUdoYomLVsXAidtYZjPOAVVJlXhms52s4hVckbbcFt-7x_duFW5RhcI0IhXF8ZPzJC56S3EqGGaujQC7UfByniEm4CFcVGIF7JKNRGelHuGaFyrrXRea7FH5grBkW2DUyhV2ZynaJrHqFBlEprdE0NupphjqY0cMCdTEViKq5yKpnxLylZlnlCY5jUY-jASd3_uWTp-LLn3mRmk0pbR4mgCtwIRQV34Ki-jHpGP09UkQ3G1AcfEXJc4B34W0pE_SrEmA0uQ88Bbif-m29Imq1usz7b-clNh7B40e92ks5l72oXlqi9TJDcg7mX4TjbhwXz_-VxNDyo1OENEPgISg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_OVUQfPD31rB9nDg58KrZJN20fl6uLcruLiB6-lSRtxOPoyq574H_vTNqtLsdxIL4U8tE2JJnMb5LJbwC-pXS9Wkfcl2mBBkoZhb4SRdePConZoTTa7UP-HMSjUXJ7m1423oR0F6bmh2g33Egy3HpNAl4-FPb0hTVUFY44iEwSnGRLsBxRJJkOLGdX_ZvBC_OudAE26cDPT2WUzJkbA366-IVFzfQX3FxEr0799D--Q8M3YaPBnqxXT5Yt-FBWn2D9FSPhNvy6dm60DGEhu2iYJHDk2NiyoXO7LFnDyHrHVFWw4Ty6LqOganS1nSEKZpnzC6FUNpnhA0tQZJ4YruWoOycUJW-6Azf9s-vv534TjsE3IhbCD5UJEyO0JbmVCDVUV8dBrMM0KhCXcBOpJDUC8UpJrjYySGxghLJca6Ot1WIXOtW4KveAKbTKjNUFmuYJKkSptEbT1KCpGVtUpZEH_nwoctNwlVPIjN95zbLMc-rDvO1DD07a-g81S8c_ax7ORzZvpHWaC4rAjVBUcA--tsUoZ3R4oqpyPKM6-ImY4wLvwed6RrS_QozZ5TIOPOBu4P_ThryXDXttav8tLx3D6mXWzwcXox8HsEbZ9f3IQ-g8TmblEayYP4_308mXRhqeAY3DB8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+the+Integration+of+Machine+Learning+and+Molecular+Modeling+for+Designing+Drug+Delivery+Nanocarriers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gao%2C+Xuejiao+J.&rft.au=Ciura%2C+Krzesimir&rft.au=Ma%2C+Yuanjie&rft.au=Mikolajczyk%2C+Alicja&rft.date=2024-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.202407793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202407793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon