Towards More Sustainable Aqueous Zinc‐Ion Batteries
Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the wa...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 63; no. 22; pp. e202403712 - n/a |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
27.05.2024
|
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.
Aqueous zinc ion batteries (AZIBs) generally display high safety and environmental friendliness. However, their large‐scale applications will generate huge amounts of depleted batteries, leading to environmental concern and resource waste. Therefore, the sustainability of AZIBs have to highly considered. This minireview aims to make AZIBs more sustainable from the focus on material design and their recycling techniques, including active materials in cathodes, Zn anodes, and aqueous electrolytes. |
|---|---|
| AbstractList | Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs. Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs. Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focus on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs. Aqueous zinc ion batteries (AZIBs) generally display high safety and environmental friendliness. However, their large‐scale applications will generate huge amounts of depleted batteries, leading to environmental concern and resource waste. Therefore, the sustainability of AZIBs have to highly considered. This minireview aims to make AZIBs more sustainable from the focus on material design and their recycling techniques, including active materials in cathodes, Zn anodes, and aqueous electrolytes. |
| Author | Tie, Zhiwei Bi, Songshan Niu, Zhiqiang Zhu, Jiacai |
| Author_xml | – sequence: 1 givenname: Jiacai surname: Zhu fullname: Zhu, Jiacai organization: Nankai University – sequence: 2 givenname: Zhiwei surname: Tie fullname: Tie, Zhiwei organization: Nankai University – sequence: 3 givenname: Songshan surname: Bi fullname: Bi, Songshan organization: Nankai University – sequence: 4 givenname: Zhiqiang orcidid: 0000-0001-9560-7283 surname: Niu fullname: Niu, Zhiqiang email: zqniu@nankai.edu.cn organization: Nankai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38525796$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkL1OwzAURi1URGlhZUSRWFhS_BM3zlhQgUoFBsrCYjnujeQqtYudCLHxCDwjT4KrliIhIabr4Rzf73491LHOAkInBA8IxvRCWQMDimmGWU7oHjoknJKU5TnrxHfGWJoLTrqoF8Ii8kLg4QHqMsEpz4vhIeIz96r8PCR3zkPy2IZGGavKGpLRSwuuDcmzsfrz_WPibHKpmga8gXCE9itVBzjezj56uh7Prm7T6cPN5Go0TTXLGU0rUmolQGcF1VjTUmPgKmNYAWitK6EJUFDlnBdzzktc6lzQQohC4aLCQ0pZH51v_l15F-OERi5N0FDXyq6zyUjHMziP1_fR2S904VpvYzrJMOeC4wyTSJ1uqbZcwlyuvFkq_ya_C4nAYANo70LwUO0QguW6cbluXO4aj0L2S9CmUY1xtvHK1H9rxUZ7NTW8_bNEju4n4x_3C8RglQ0 |
| CitedBy_id | crossref_primary_10_1002_ange_202418237 crossref_primary_10_1002_ange_202419887 crossref_primary_10_1002_adfm_202513529 crossref_primary_10_1002_smll_202507546 crossref_primary_10_1016_j_jcis_2025_138636 crossref_primary_10_1021_acsanm_4c06378 crossref_primary_10_1002_adfm_202506036 crossref_primary_10_1002_ange_202515095 crossref_primary_10_1021_acsaem_5c01298 crossref_primary_10_1002_anie_202414728 crossref_primary_10_1002_anie_202421574 crossref_primary_10_1002_anie_202505855 crossref_primary_10_1002_smll_202406801 crossref_primary_10_1002_adma_202505982 crossref_primary_10_1002_anie_202424095 crossref_primary_10_1016_j_jcis_2025_01_266 crossref_primary_10_1039_D4TA09111F crossref_primary_10_1039_D5NH00172B crossref_primary_10_1002_adfm_202415016 crossref_primary_10_1002_ange_202511685 crossref_primary_10_1002_adfm_202520614 crossref_primary_10_1021_acsnano_4c18862 crossref_primary_10_1002_cssc_202401217 crossref_primary_10_1016_j_cej_2025_166000 crossref_primary_10_1360_SSC_2024_0011 crossref_primary_10_1002_adfm_202424024 crossref_primary_10_1002_ange_202505855 crossref_primary_10_1002_smtd_202402213 crossref_primary_10_1039_D5QI00555H crossref_primary_10_1002_adfm_202512706 crossref_primary_10_1002_adma_202411991 crossref_primary_10_1002_ange_202506984 crossref_primary_10_1016_j_jcis_2025_138206 crossref_primary_10_1039_D5MH00859J crossref_primary_10_1002_adfm_202513796 crossref_primary_10_1007_s11581_025_06477_w crossref_primary_10_1002_aenm_202404367 crossref_primary_10_1002_smll_202408982 crossref_primary_10_1039_D5SC00364D crossref_primary_10_1002_anie_202515095 crossref_primary_10_1039_D5CS00093A crossref_primary_10_1021_acs_energyfuels_5c01140 crossref_primary_10_1002_anie_202417171 crossref_primary_10_1002_anie_202506984 crossref_primary_10_1002_anie_202511685 crossref_primary_10_1021_acscentsci_5c00365 crossref_primary_10_1039_D5SC01545F crossref_primary_10_1039_D5SC05022G crossref_primary_10_1002_aenm_202406171 crossref_primary_10_1016_j_est_2025_117511 crossref_primary_10_1039_D5DT01909E crossref_primary_10_1002_aenm_202404037 crossref_primary_10_1021_acssuschemeng_5c05129 crossref_primary_10_1002_smll_202407961 crossref_primary_10_1007_s40820_025_01727_y crossref_primary_10_1002_adfm_202411990 crossref_primary_10_1002_ange_202414728 crossref_primary_10_1002_batt_202500371 crossref_primary_10_3390_molecules30092074 crossref_primary_10_1002_metm_70007 crossref_primary_10_1007_s42765_025_00593_y crossref_primary_10_1016_j_jelechem_2024_118703 crossref_primary_10_1039_D5SE00273G crossref_primary_10_20517_energymater_2025_113 crossref_primary_10_3390_nano15030194 crossref_primary_10_1002_aenm_202502262 crossref_primary_10_1039_D5GC03101J crossref_primary_10_1002_adma_202407233 crossref_primary_10_1002_smll_202501112 crossref_primary_10_1002_adma_202408287 crossref_primary_10_1002_anie_202418237 crossref_primary_10_1039_D5QI01280E crossref_primary_10_1002_anie_202419887 crossref_primary_10_1002_adfm_202510065 crossref_primary_10_1002_ange_202507137 crossref_primary_10_1002_ange_202417171 crossref_primary_10_1021_acsenergylett_5c02376 crossref_primary_10_1039_D5CC00995B crossref_primary_10_1002_adfm_202421857 crossref_primary_10_20517_energymater_2024_301 crossref_primary_10_1002_ange_202421574 crossref_primary_10_1002_smll_202408124 crossref_primary_10_1039_D5TA03224E crossref_primary_10_1002_ange_202424095 crossref_primary_10_1002_anie_202507137 crossref_primary_10_1002_smll_202506244 crossref_primary_10_1016_j_cej_2025_162993 crossref_primary_10_1016_j_flatc_2025_100940 |
| Cites_doi | 10.1021/acs.chemrev.9b00628 10.1038/s41467-021-27313-5 10.1021/jacs.3c07764 10.1007/s11581-013-0997-8 10.1021/jacs.0c07992 10.1038/s41565-021-00905-4 10.34133/energymatadv.0041 10.1038/s41467-017-00467-x 10.1038/s41560-020-0674-x 10.1038/s41560-019-0368-4 10.1038/s41893-021-00800-9 10.1021/acs.chemrev.9b00482 10.1039/C8EE02892C 10.1016/j.chempr.2018.09.005 10.1016/j.mtener.2020.100548 10.1016/j.esci.2023.100096 10.1002/anie.201903941 10.1038/s41570-020-0160-9 10.1021/cr020730k 10.1007/s11426-023-1907-y 10.1007/s11426-023-1706-8 10.1002/adfm.201804975 10.1021/jacs.7b04471 10.1038/s41467-023-42075-y 10.1002/adfm.202009209 10.1007/s12274-019-2303-1 10.1038/s41586-021-03399-1 10.1021/jacs.6b05958 10.1016/j.wasman.2020.05.049 10.1149/1.2085459 10.1002/adfm.201900911 10.1039/D2EE03777G 10.1007/s10311-021-01380-y 10.1038/nchem.2085 10.1038/s41467-018-07943-y 10.1038/s41467-021-26947-9 10.1021/acsenergylett.8b01426 10.1021/acsnano.9b03650 10.1038/s41560-018-0147-7 10.1073/pnas.2221980120 10.1002/anie.201904174 10.1016/j.joule.2020.03.002 10.34133/energymatadv.0050 10.1002/anie.202312193 10.1016/j.esci.2021.10.004 10.1002/adfm.201802564 10.1038/s41467-023-36386-3 10.1007/BF01022245 10.1021/acssuschemeng.8b02191 10.1002/anie.202307475 10.1126/sciadv.aba4098 10.1038/s41563-018-0063-z 10.1038/s41560-021-00797-7 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202403712 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 38525796 10_1002_anie_202403712 ANIE202403712 |
| Genre | reviewArticle Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92372120, 22109076, 51972231 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2019YFA0705601 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABUFD CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c3732-f1bca8ec492c0c2bc0e5a430aeecccf8c1e2eabd59d55b0bc7829889a09f06223 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203033800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 11:38:59 EST 2025 Fri Nov 14 11:12:25 EST 2025 Thu Apr 03 06:59:59 EDT 2025 Thu Nov 27 00:55:32 EST 2025 Tue Nov 18 20:07:16 EST 2025 Sun Jul 06 04:45:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | recycling techniques aqueous zinc-ion batteries Material design Sustainability |
| Language | English |
| License | 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3732-f1bca8ec492c0c2bc0e5a430aeecccf8c1e2eabd59d55b0bc7829889a09f06223 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-9560-7283 |
| PMID | 38525796 |
| PQID | 3055850401 |
| PQPubID | 946352 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2985795540 proquest_journals_3055850401 pubmed_primary_38525796 crossref_primary_10_1002_anie_202403712 crossref_citationtrail_10_1002_anie_202403712 wiley_primary_10_1002_anie_202403712_ANIE202403712 |
| PublicationCentury | 2000 |
| PublicationDate | May 27, 2024 |
| PublicationDateYYYYMMDD | 2024-05-27 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 27, 2024 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 8 2021; 6 2018; 28 2019; 4 2004; 104 2023; 14 1988; 18 2023; 4 2023; 120 2020; 120 2020; 142 2023; 16 2019; 10 2019; 13 2023; 145 2019; 12 2019; 58 2022; 20 2023; 3 2024 2021; 1 1991; 138 2015; 7 2017; 139 2020; 18 2013; 19 2018; 6 2020; 6 2023; 62 2021; 16 2018; 17 2020; 5 2018; 3 2020; 4 2021; 31 2022; 2022 2021; 12 2018; 4 2023 2022; 5 2019 2018 2019; 29 2021; 593 2016; 138 2024; 67 2020; 113 e_1_2_9_52_2 e_1_2_9_50_2 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_31_2 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Li K. W. (e_1_2_9_39_2) 2019 e_1_2_9_14_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_62_1 e_1_2_9_60_2 e_1_2_9_22_1 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_43_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_4_2 e_1_2_9_2_1 Cao X. (e_1_2_9_63_2) 2024 e_1_2_9_8_2 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 e_1_2_9_68_2 e_1_2_9_28_2 e_1_2_9_30_1 e_1_2_9_51_2 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_32_2 e_1_2_9_70_1 e_1_2_9_38_1 e_1_2_9_59_2 e_1_2_9_36_1 e_1_2_9_15_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_61_2 e_1_2_9_21_2 e_1_2_9_42_2 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_2 e_1_2_9_5_1 e_1_2_9_3_2 e_1_2_9_1_1 Tang Z. (e_1_2_9_17_2) 2022; 2022 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_48_1 e_1_2_9_29_1 Cui Y. (e_1_2_9_67_2) 2023 |
| References_xml | – volume: 2022 year: 2022 publication-title: Energy Mater. Adv. – volume: 67 start-page: 87 year: 2024 end-page: 105 publication-title: Sci. China Chem. – volume: 1 start-page: 99 year: 2021 end-page: 107 publication-title: eScience – volume: 4 start-page: 0050 year: 2023 publication-title: Energy Mater. Adv. – year: 2023 publication-title: Adv. Mater. – volume: 138 start-page: 3560 year: 1991 end-page: 3567 publication-title: J. Electrochem. Soc. – year: 2019 publication-title: Adv. Energy Mater. – volume: 16 start-page: 2133 year: 2023 end-page: 2141 publication-title: Energy Environ. Sci. – volume: 3 start-page: 428 year: 2018 end-page: 435 publication-title: Nat. Energy – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 13907 year: 2018 end-page: 13914 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 339 year: 2019 end-page: 345 publication-title: Nat. Energy – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 743 year: 2020 end-page: 749 publication-title: Nat. Energy – volume: 14 start-page: 6525 year: 2023 publication-title: Nat. Commun. – volume: 142 start-page: 19570 year: 2020 end-page: 19578 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 543 year: 2018 end-page: 549 publication-title: Nat. Mater. – volume: 7 start-page: 19 year: 2015 end-page: 29 publication-title: Nat. Chem. – volume: 6 start-page: 398 year: 2021 end-page: 406 publication-title: Nat. Energy – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 706 year: 2019 end-page: 715 publication-title: Energy Environ. Sci. – volume: 4 start-page: 0041 year: 2023 publication-title: Energy Mater. Adv. – volume: 593 start-page: 61 year: 2021 end-page: 66 publication-title: Nature – volume: 120 start-page: 7795 year: 2020 end-page: 7866 publication-title: Chem. Rev. – volume: 67 start-page: 1 year: 2024 end-page: 3 publication-title: Sci. China Chem. – volume: 18 start-page: 521 year: 1988 end-page: 526 publication-title: J. Appl. Electrochem. – volume: 104 start-page: 4245 year: 2004 end-page: 4270 publication-title: Chem. Rev. – volume: 20 start-page: 1249 year: 2022 end-page: 1263 publication-title: Environ. Chem. Lett. – volume: 4 start-page: 127 year: 2020 end-page: 142 publication-title: Nat. Chem. Rev. – year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1347 year: 2019 end-page: 1353 publication-title: Nano Res. – volume: 16 start-page: 902 year: 2021 end-page: 910 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 205 year: 2022 end-page: 213 publication-title: Nat. Sustain. – volume: 18 year: 2020 publication-title: Mater. Today Energy – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 12 start-page: 6991 year: 2021 publication-title: Nat. Commun. – volume: 139 start-page: 9775 year: 2017 end-page: 9778 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 16358 year: 2019 end-page: 16367 publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 342 year: 2020 end-page: 350 publication-title: Waste Manage. – volume: 14 start-page: 641 year: 2023 publication-title: Nat. Commun. – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 2786 year: 2018 end-page: 2813 publication-title: Chem – volume: 138 start-page: 12894 year: 2016 end-page: 12901 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2480 year: 2018 end-page: 2501 publication-title: ACS Energy Lett. – volume: 4 start-page: 771 year: 2020 end-page: 799 publication-title: Joule – volume: 120 start-page: 6490 year: 2020 end-page: 6557 publication-title: Chem. Rev. – volume: 10 start-page: 12 year: 2019 publication-title: Nat. Commun. – volume: 3 year: 2023 publication-title: eScience – volume: 19 start-page: 1699 year: 2013 end-page: 1703 publication-title: Ionics – volume: 13 start-page: 8275 year: 2019 end-page: 8283 publication-title: ACS Nano – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 7823 year: 2019 end-page: 7828 publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 20109 year: 2023 end-page: 20120 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_23_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-021-27313-5 – ident: e_1_2_9_16_2 doi: 10.1021/jacs.3c07764 – ident: e_1_2_9_61_2 doi: 10.1007/s11581-013-0997-8 – ident: e_1_2_9_40_2 doi: 10.1021/jacs.0c07992 – ident: e_1_2_9_22_1 doi: 10.1038/s41565-021-00905-4 – ident: e_1_2_9_69_2 doi: 10.34133/energymatadv.0041 – ident: e_1_2_9_12_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_9_11_1 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_9_57_1 doi: 10.1038/s41560-019-0368-4 – year: 2023 ident: e_1_2_9_67_2 publication-title: Adv. Mater. – ident: e_1_2_9_43_2 doi: 10.1038/s41893-021-00800-9 – ident: e_1_2_9_32_2 doi: 10.1021/acs.chemrev.9b00482 – ident: e_1_2_9_68_2 doi: 10.1039/C8EE02892C – ident: e_1_2_9_2_1 – ident: e_1_2_9_38_1 – ident: e_1_2_9_66_1 – ident: e_1_2_9_5_1 – ident: e_1_2_9_31_2 doi: 10.1016/j.chempr.2018.09.005 – ident: e_1_2_9_44_1 – ident: e_1_2_9_41_1 – ident: e_1_2_9_49_1 – ident: e_1_2_9_51_2 doi: 10.1016/j.mtener.2020.100548 – ident: e_1_2_9_33_1 – ident: e_1_2_9_20_2 doi: 10.1016/j.esci.2023.100096 – ident: e_1_2_9_24_1 doi: 10.1002/anie.201903941 – ident: e_1_2_9_30_1 – ident: e_1_2_9_34_2 doi: 10.1038/s41570-020-0160-9 – ident: e_1_2_9_6_2 doi: 10.1021/cr020730k – ident: e_1_2_9_8_2 doi: 10.1007/s11426-023-1907-y – ident: e_1_2_9_28_2 doi: 10.1007/s11426-023-1706-8 – ident: e_1_2_9_46_2 doi: 10.1002/adfm.201804975 – ident: e_1_2_9_52_2 doi: 10.1021/jacs.7b04471 – ident: e_1_2_9_64_2 doi: 10.1038/s41467-023-42075-y – ident: e_1_2_9_71_1 doi: 10.1002/adfm.202009209 – ident: e_1_2_9_56_1 doi: 10.1007/s12274-019-2303-1 – ident: e_1_2_9_35_2 doi: 10.1038/s41586-021-03399-1 – ident: e_1_2_9_45_2 doi: 10.1021/jacs.6b05958 – ident: e_1_2_9_53_1 doi: 10.1016/j.wasman.2020.05.049 – ident: e_1_2_9_7_2 doi: 10.1149/1.2085459 – ident: e_1_2_9_62_1 – ident: e_1_2_9_37_1 doi: 10.1002/adfm.201900911 – ident: e_1_2_9_10_1 doi: 10.1039/D2EE03777G – ident: e_1_2_9_25_1 doi: 10.1007/s10311-021-01380-y – ident: e_1_2_9_1_1 doi: 10.1038/nchem.2085 – ident: e_1_2_9_36_1 doi: 10.1038/s41467-018-07943-y – volume: 2022 year: 2022 ident: e_1_2_9_17_2 publication-title: Energy Mater. Adv. – ident: e_1_2_9_48_1 doi: 10.1038/s41467-021-26947-9 – ident: e_1_2_9_27_2 doi: 10.1021/acsenergylett.8b01426 – year: 2024 ident: e_1_2_9_63_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_9_70_1 doi: 10.1021/acsnano.9b03650 – ident: e_1_2_9_54_1 doi: 10.1038/s41560-018-0147-7 – ident: e_1_2_9_58_1 – ident: e_1_2_9_13_1 – ident: e_1_2_9_42_2 doi: 10.1073/pnas.2221980120 – ident: e_1_2_9_50_2 doi: 10.1002/anie.201904174 – ident: e_1_2_9_59_2 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_9_21_2 doi: 10.34133/energymatadv.0050 – ident: e_1_2_9_47_1 doi: 10.1002/anie.202312193 – year: 2019 ident: e_1_2_9_39_2 publication-title: Adv. Energy Mater. – ident: e_1_2_9_14_2 doi: 10.1016/j.esci.2021.10.004 – ident: e_1_2_9_65_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_9_18_1 – ident: e_1_2_9_26_1 – ident: e_1_2_9_60_2 doi: 10.1038/s41467-023-36386-3 – ident: e_1_2_9_9_1 doi: 10.1007/BF01022245 – ident: e_1_2_9_55_1 doi: 10.1021/acssuschemeng.8b02191 – ident: e_1_2_9_15_2 doi: 10.1002/anie.202307475 – ident: e_1_2_9_4_2 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_9_3_2 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_9_19_2 doi: 10.1038/s41560-021-00797-7 |
| SSID | ssj0028806 |
| Score | 2.6807947 |
| SecondaryResourceType | review_article |
| Snippet | Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and... Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202403712 |
| SubjectTerms | Anodes Aqueous electrolytes aqueous zinc-ion batteries Batteries Cathodes Design for recycling Electrolytes Energy storage Environmental risk material design Recycling recycling techniques Risk reduction Sustainability Sustainable design Sustainable energy Zinc |
| Title | Towards More Sustainable Aqueous Zinc‐Ion Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403712 https://www.ncbi.nlm.nih.gov/pubmed/38525796 https://www.proquest.com/docview/3055850401 https://www.proquest.com/docview/2985795540 |
| Volume | 63 |
| WOSCitedRecordID | wos001203033800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTi-1FdpYLgqZhNmjY5LusuLugiPmDxUpI0hQVpZaue_Qn-Rn-JSV-6iAh6a2naTmcmyTdp5huAY0V4YllLPMGZCVB0QDxJUexhqQJJiG-m4ILE9SIcjdh4zK--ZPGX_BDNgpvtGcV4bTu4kPnpJ2mozcA28Z3lkwttmeEFbJzXb8HC2fXg7qIJuox_lhlGhHi2EH1N3Ijw6ewTZiemb2hzFrwWs89g9f9yr8FKhTzdbukq6zCn0w1Y6tUF3zaB3hZbaHP3Mptq9-Yzs8rtGiGz59y9n6Tq_fVtmKVuyctpwuwtuBv0b3vnXlVVwVMkJNhLOlIJppXPsULK2ARpKnyChDbWVAlTHY21kDHlMaUSSWUwBGeMC8QTFBg0sQ2tNEv1Lrg6pMICMoYT5mudcBEmQsmAG1RCYpU44NUqjVRFOW4rXzxEJVkyjqwyokYZDpw07R9Lso0fW7ZrC0VVp8sjS17GqBmVOg4cNZeNEu0_EJFaRUXmU2jIDYZCDuyUlm1eRZilhuWBA7gw4C8yRN3RsN-c7f3lpn1Ytsd2NwIO29B6mj7rA1hUL0-TfHoI8-GYHVYO_QFd4PQE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS-QwEB9kFdaX0_NOr_6564HgUzGbNNvkcVEXl1sXOXdBfAlpNgVBurJ_7vk-gp_RT-JM260scgiHj23TdjozSX6TZn4DcOyEzoi1JLJaYYDi2yJKJRtHPHXtVIgYp-CCxLWfDAbq9lZfV7sJKRem5IeoF9yoZxTjNXVwWpA-fWUNpRRsDPCIUC6hOsPrMfqSbMD6-e_uqF9HXeigZYqREBFVol8yNzJ-uvqE1ZnpDdxcRa_F9NPd-gDBt-FThT3DTuksn2HN5zvQPFuWfPsCclhsop2FV5OpD29ec6vCDko5WczCu_vcPf996k3ysGTmxED7K4y6F8Ozy6iqqxA5kQgeZa3UWeVdrLljDq3CvLSxYNajPV2mXMtzb9Ox1GMpU5Y6RBFaKW2Zzlgb8cQuNPJJ7r9B6BNpCZIpnqnY-0zbJLMubWvEJWLssgCipU6Nq0jHqfbFgynpkrkhZZhaGQGc1O0fS7qNf7Y8XJrIVN1uZoi-TEkcl1oB_KwvoxLpL4jNSVEGP0UmGlEUC2CvNG39KvQfTsm5AfDCgu_IYDqD3kV9tP8_N_2A5uXwqm_6vcGvA9ik87Q3gSeH0JhPF_4INtyf-f1s-r3y6xdFV_cM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KtjS9pI-krdtt60IhJxOtZNnScdkHWbpdlnYDoRchyxIEih320XN_Qn9jfkk1ttfLEkIg5GhbtsczGukbWfMNwFfDpEPWkkhL4QMUm7Ao4ySPaGaSjLHYT8EVies0nc3E5aWcN7sJMRem5odoF9zQM6rxGh3cXufubMcaiinYPsBDQrkU6wx3Yi4T75ud4Y_xxbSNunwHrVOMGIuwEv2WuZHQs_0n7M9Mt-DmPnqtpp_xi0cQ_CUcNdgz7Ned5RU8scVrOBxsS74dA19Um2hX4fdyacOfu9yqsO-lLDer8NdVYW7-_puURVgzc_pA-wQuxqPF4Dxq6ipEhqWMRq6XGS2siSU1xHirEMt1zIi23p7GCdOz1Oos5zLnPCOZ8ShCCiE1kY4kHk-8gYOiLOw7CG3KNUIyQZ2IrXVSp06bLJEel7DcuACirU6VaUjHsfbFb1XTJVOFylCtMgI4bdtf13Qbd7bsbk2kGrdbKaQvE9yPS70AvrSXvRLxL4guUFHKfwpPpUdRJIC3tWnbVzGB5LAyCYBWFrxHBtWfTUbt0fuH3PQZns2HYzWdzL59gOd4Grcm0LQLB-vlxn6Ep-bP-mq1_NR06__cK_aH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards%C2%A0More%C2%A0Sustainable%C2%A0Aqueous%C2%A0Zinc-Ion%C2%A0Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Jiacai&rft.au=Tie%2C+Zhiwei&rft.au=Bi%2C+Songshan&rft.au=Niu%2C+Zhiqiang&rft.date=2024-05-27&rft.eissn=1521-3773&rft.spage=e202403712&rft_id=info:doi/10.1002%2Fanie.202403712&rft_id=info%3Apmid%2F38525796&rft.externalDocID=38525796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |