Towards More Sustainable Aqueous Zinc‐Ion Batteries

Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the wa...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 63; no. 22; pp. e202403712 - n/a
Main Authors: Zhu, Jiacai, Tie, Zhiwei, Bi, Songshan, Niu, Zhiqiang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 27.05.2024
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs. Aqueous zinc ion batteries (AZIBs) generally display high safety and environmental friendliness. However, their large‐scale applications will generate huge amounts of depleted batteries, leading to environmental concern and resource waste. Therefore, the sustainability of AZIBs have to highly considered. This minireview aims to make AZIBs more sustainable from the focus on material design and their recycling techniques, including active materials in cathodes, Zn anodes, and aqueous electrolytes.
AbstractList Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.
Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.
Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focus on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices.
Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs. Aqueous zinc ion batteries (AZIBs) generally display high safety and environmental friendliness. However, their large‐scale applications will generate huge amounts of depleted batteries, leading to environmental concern and resource waste. Therefore, the sustainability of AZIBs have to highly considered. This minireview aims to make AZIBs more sustainable from the focus on material design and their recycling techniques, including active materials in cathodes, Zn anodes, and aqueous electrolytes.
Author Tie, Zhiwei
Bi, Songshan
Niu, Zhiqiang
Zhu, Jiacai
Author_xml – sequence: 1
  givenname: Jiacai
  surname: Zhu
  fullname: Zhu, Jiacai
  organization: Nankai University
– sequence: 2
  givenname: Zhiwei
  surname: Tie
  fullname: Tie, Zhiwei
  organization: Nankai University
– sequence: 3
  givenname: Songshan
  surname: Bi
  fullname: Bi, Songshan
  organization: Nankai University
– sequence: 4
  givenname: Zhiqiang
  orcidid: 0000-0001-9560-7283
  surname: Niu
  fullname: Niu, Zhiqiang
  email: zqniu@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38525796$$D View this record in MEDLINE/PubMed
BookMark eNqFkL1OwzAURi1URGlhZUSRWFhS_BM3zlhQgUoFBsrCYjnujeQqtYudCLHxCDwjT4KrliIhIabr4Rzf73491LHOAkInBA8IxvRCWQMDimmGWU7oHjoknJKU5TnrxHfGWJoLTrqoF8Ii8kLg4QHqMsEpz4vhIeIz96r8PCR3zkPy2IZGGavKGpLRSwuuDcmzsfrz_WPibHKpmga8gXCE9itVBzjezj56uh7Prm7T6cPN5Go0TTXLGU0rUmolQGcF1VjTUmPgKmNYAWitK6EJUFDlnBdzzktc6lzQQohC4aLCQ0pZH51v_l15F-OERi5N0FDXyq6zyUjHMziP1_fR2S904VpvYzrJMOeC4wyTSJ1uqbZcwlyuvFkq_ya_C4nAYANo70LwUO0QguW6cbluXO4aj0L2S9CmUY1xtvHK1H9rxUZ7NTW8_bNEju4n4x_3C8RglQ0
CitedBy_id crossref_primary_10_1002_ange_202418237
crossref_primary_10_1002_ange_202419887
crossref_primary_10_1002_adfm_202513529
crossref_primary_10_1002_smll_202507546
crossref_primary_10_1016_j_jcis_2025_138636
crossref_primary_10_1021_acsanm_4c06378
crossref_primary_10_1002_adfm_202506036
crossref_primary_10_1002_ange_202515095
crossref_primary_10_1021_acsaem_5c01298
crossref_primary_10_1002_anie_202414728
crossref_primary_10_1002_anie_202421574
crossref_primary_10_1002_anie_202505855
crossref_primary_10_1002_smll_202406801
crossref_primary_10_1002_adma_202505982
crossref_primary_10_1002_anie_202424095
crossref_primary_10_1016_j_jcis_2025_01_266
crossref_primary_10_1039_D4TA09111F
crossref_primary_10_1039_D5NH00172B
crossref_primary_10_1002_adfm_202415016
crossref_primary_10_1002_ange_202511685
crossref_primary_10_1002_adfm_202520614
crossref_primary_10_1021_acsnano_4c18862
crossref_primary_10_1002_cssc_202401217
crossref_primary_10_1016_j_cej_2025_166000
crossref_primary_10_1360_SSC_2024_0011
crossref_primary_10_1002_adfm_202424024
crossref_primary_10_1002_ange_202505855
crossref_primary_10_1002_smtd_202402213
crossref_primary_10_1039_D5QI00555H
crossref_primary_10_1002_adfm_202512706
crossref_primary_10_1002_adma_202411991
crossref_primary_10_1002_ange_202506984
crossref_primary_10_1016_j_jcis_2025_138206
crossref_primary_10_1039_D5MH00859J
crossref_primary_10_1002_adfm_202513796
crossref_primary_10_1007_s11581_025_06477_w
crossref_primary_10_1002_aenm_202404367
crossref_primary_10_1002_smll_202408982
crossref_primary_10_1039_D5SC00364D
crossref_primary_10_1002_anie_202515095
crossref_primary_10_1039_D5CS00093A
crossref_primary_10_1021_acs_energyfuels_5c01140
crossref_primary_10_1002_anie_202417171
crossref_primary_10_1002_anie_202506984
crossref_primary_10_1002_anie_202511685
crossref_primary_10_1021_acscentsci_5c00365
crossref_primary_10_1039_D5SC01545F
crossref_primary_10_1039_D5SC05022G
crossref_primary_10_1002_aenm_202406171
crossref_primary_10_1016_j_est_2025_117511
crossref_primary_10_1039_D5DT01909E
crossref_primary_10_1002_aenm_202404037
crossref_primary_10_1021_acssuschemeng_5c05129
crossref_primary_10_1002_smll_202407961
crossref_primary_10_1007_s40820_025_01727_y
crossref_primary_10_1002_adfm_202411990
crossref_primary_10_1002_ange_202414728
crossref_primary_10_1002_batt_202500371
crossref_primary_10_3390_molecules30092074
crossref_primary_10_1002_metm_70007
crossref_primary_10_1007_s42765_025_00593_y
crossref_primary_10_1016_j_jelechem_2024_118703
crossref_primary_10_1039_D5SE00273G
crossref_primary_10_20517_energymater_2025_113
crossref_primary_10_3390_nano15030194
crossref_primary_10_1002_aenm_202502262
crossref_primary_10_1039_D5GC03101J
crossref_primary_10_1002_adma_202407233
crossref_primary_10_1002_smll_202501112
crossref_primary_10_1002_adma_202408287
crossref_primary_10_1002_anie_202418237
crossref_primary_10_1039_D5QI01280E
crossref_primary_10_1002_anie_202419887
crossref_primary_10_1002_adfm_202510065
crossref_primary_10_1002_ange_202507137
crossref_primary_10_1002_ange_202417171
crossref_primary_10_1021_acsenergylett_5c02376
crossref_primary_10_1039_D5CC00995B
crossref_primary_10_1002_adfm_202421857
crossref_primary_10_20517_energymater_2024_301
crossref_primary_10_1002_ange_202421574
crossref_primary_10_1002_smll_202408124
crossref_primary_10_1039_D5TA03224E
crossref_primary_10_1002_ange_202424095
crossref_primary_10_1002_anie_202507137
crossref_primary_10_1002_smll_202506244
crossref_primary_10_1016_j_cej_2025_162993
crossref_primary_10_1016_j_flatc_2025_100940
Cites_doi 10.1021/acs.chemrev.9b00628
10.1038/s41467-021-27313-5
10.1021/jacs.3c07764
10.1007/s11581-013-0997-8
10.1021/jacs.0c07992
10.1038/s41565-021-00905-4
10.34133/energymatadv.0041
10.1038/s41467-017-00467-x
10.1038/s41560-020-0674-x
10.1038/s41560-019-0368-4
10.1038/s41893-021-00800-9
10.1021/acs.chemrev.9b00482
10.1039/C8EE02892C
10.1016/j.chempr.2018.09.005
10.1016/j.mtener.2020.100548
10.1016/j.esci.2023.100096
10.1002/anie.201903941
10.1038/s41570-020-0160-9
10.1021/cr020730k
10.1007/s11426-023-1907-y
10.1007/s11426-023-1706-8
10.1002/adfm.201804975
10.1021/jacs.7b04471
10.1038/s41467-023-42075-y
10.1002/adfm.202009209
10.1007/s12274-019-2303-1
10.1038/s41586-021-03399-1
10.1021/jacs.6b05958
10.1016/j.wasman.2020.05.049
10.1149/1.2085459
10.1002/adfm.201900911
10.1039/D2EE03777G
10.1007/s10311-021-01380-y
10.1038/nchem.2085
10.1038/s41467-018-07943-y
10.1038/s41467-021-26947-9
10.1021/acsenergylett.8b01426
10.1021/acsnano.9b03650
10.1038/s41560-018-0147-7
10.1073/pnas.2221980120
10.1002/anie.201904174
10.1016/j.joule.2020.03.002
10.34133/energymatadv.0050
10.1002/anie.202312193
10.1016/j.esci.2021.10.004
10.1002/adfm.201802564
10.1038/s41467-023-36386-3
10.1007/BF01022245
10.1021/acssuschemeng.8b02191
10.1002/anie.202307475
10.1126/sciadv.aba4098
10.1038/s41563-018-0063-z
10.1038/s41560-021-00797-7
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202403712
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38525796
10_1002_anie_202403712
ANIE202403712
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92372120, 22109076, 51972231
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2019YFA0705601
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABUFD
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-f1bca8ec492c0c2bc0e5a430aeecccf8c1e2eabd59d55b0bc7829889a09f06223
IEDL.DBID DRFUL
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203033800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 11:38:59 EST 2025
Fri Nov 14 11:12:25 EST 2025
Thu Apr 03 06:59:59 EDT 2025
Thu Nov 27 00:55:32 EST 2025
Tue Nov 18 20:07:16 EST 2025
Sun Jul 06 04:45:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords recycling techniques
aqueous zinc-ion batteries
Material design
Sustainability
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-f1bca8ec492c0c2bc0e5a430aeecccf8c1e2eabd59d55b0bc7829889a09f06223
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9560-7283
PMID 38525796
PQID 3055850401
PQPubID 946352
PageCount 12
ParticipantIDs proquest_miscellaneous_2985795540
proquest_journals_3055850401
pubmed_primary_38525796
crossref_primary_10_1002_anie_202403712
crossref_citationtrail_10_1002_anie_202403712
wiley_primary_10_1002_anie_202403712_ANIE202403712
PublicationCentury 2000
PublicationDate May 27, 2024
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: May 27, 2024
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2021; 6
2018; 28
2019; 4
2004; 104
2023; 14
1988; 18
2023; 4
2023; 120
2020; 120
2020; 142
2023; 16
2019; 10
2019; 13
2023; 145
2019; 12
2019; 58
2022; 20
2023; 3
2024
2021; 1
1991; 138
2015; 7
2017; 139
2020; 18
2013; 19
2018; 6
2020; 6
2023; 62
2021; 16
2018; 17
2020; 5
2018; 3
2020; 4
2021; 31
2022; 2022
2021; 12
2018; 4
2023
2022; 5
2019
2018
2019; 29
2021; 593
2016; 138
2024; 67
2020; 113
e_1_2_9_52_2
e_1_2_9_50_2
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_31_2
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Li K. W. (e_1_2_9_39_2) 2019
e_1_2_9_14_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_62_1
e_1_2_9_60_2
e_1_2_9_22_1
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_43_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_2_1
Cao X. (e_1_2_9_63_2) 2024
e_1_2_9_8_2
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
e_1_2_9_68_2
e_1_2_9_28_2
e_1_2_9_30_1
e_1_2_9_51_2
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_70_1
e_1_2_9_38_1
e_1_2_9_59_2
e_1_2_9_36_1
e_1_2_9_15_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_42_2
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_2
e_1_2_9_5_1
e_1_2_9_3_2
e_1_2_9_1_1
Tang Z. (e_1_2_9_17_2) 2022; 2022
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_48_1
e_1_2_9_29_1
Cui Y. (e_1_2_9_67_2) 2023
References_xml – volume: 2022
  year: 2022
  publication-title: Energy Mater. Adv.
– volume: 67
  start-page: 87
  year: 2024
  end-page: 105
  publication-title: Sci. China Chem.
– volume: 1
  start-page: 99
  year: 2021
  end-page: 107
  publication-title: eScience
– volume: 4
  start-page: 0050
  year: 2023
  publication-title: Energy Mater. Adv.
– year: 2023
  publication-title: Adv. Mater.
– volume: 138
  start-page: 3560
  year: 1991
  end-page: 3567
  publication-title: J. Electrochem. Soc.
– year: 2019
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 2133
  year: 2023
  end-page: 2141
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 428
  year: 2018
  end-page: 435
  publication-title: Nat. Energy
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 13907
  year: 2018
  end-page: 13914
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 339
  year: 2019
  end-page: 345
  publication-title: Nat. Energy
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 743
  year: 2020
  end-page: 749
  publication-title: Nat. Energy
– volume: 14
  start-page: 6525
  year: 2023
  publication-title: Nat. Commun.
– volume: 142
  start-page: 19570
  year: 2020
  end-page: 19578
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  publication-title: Nat. Mater.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  publication-title: Nat. Chem.
– volume: 6
  start-page: 398
  year: 2021
  end-page: 406
  publication-title: Nat. Energy
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 706
  year: 2019
  end-page: 715
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 0041
  year: 2023
  publication-title: Energy Mater. Adv.
– volume: 593
  start-page: 61
  year: 2021
  end-page: 66
  publication-title: Nature
– volume: 120
  start-page: 7795
  year: 2020
  end-page: 7866
  publication-title: Chem. Rev.
– volume: 67
  start-page: 1
  year: 2024
  end-page: 3
  publication-title: Sci. China Chem.
– volume: 18
  start-page: 521
  year: 1988
  end-page: 526
  publication-title: J. Appl. Electrochem.
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4270
  publication-title: Chem. Rev.
– volume: 20
  start-page: 1249
  year: 2022
  end-page: 1263
  publication-title: Environ. Chem. Lett.
– volume: 4
  start-page: 127
  year: 2020
  end-page: 142
  publication-title: Nat. Chem. Rev.
– year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1347
  year: 2019
  end-page: 1353
  publication-title: Nano Res.
– volume: 16
  start-page: 902
  year: 2021
  end-page: 910
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 205
  year: 2022
  end-page: 213
  publication-title: Nat. Sustain.
– volume: 18
  year: 2020
  publication-title: Mater. Today Energy
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 12
  start-page: 6991
  year: 2021
  publication-title: Nat. Commun.
– volume: 139
  start-page: 9775
  year: 2017
  end-page: 9778
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 16358
  year: 2019
  end-page: 16367
  publication-title: Angew. Chem. Int. Ed.
– volume: 113
  start-page: 342
  year: 2020
  end-page: 350
  publication-title: Waste Manage.
– volume: 14
  start-page: 641
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2786
  year: 2018
  end-page: 2813
  publication-title: Chem
– volume: 138
  start-page: 12894
  year: 2016
  end-page: 12901
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2480
  year: 2018
  end-page: 2501
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 771
  year: 2020
  end-page: 799
  publication-title: Joule
– volume: 120
  start-page: 6490
  year: 2020
  end-page: 6557
  publication-title: Chem. Rev.
– volume: 10
  start-page: 12
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  year: 2023
  publication-title: eScience
– volume: 19
  start-page: 1699
  year: 2013
  end-page: 1703
  publication-title: Ionics
– volume: 13
  start-page: 8275
  year: 2019
  end-page: 8283
  publication-title: ACS Nano
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 7823
  year: 2019
  end-page: 7828
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 20109
  year: 2023
  end-page: 20120
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-021-27313-5
– ident: e_1_2_9_16_2
  doi: 10.1021/jacs.3c07764
– ident: e_1_2_9_61_2
  doi: 10.1007/s11581-013-0997-8
– ident: e_1_2_9_40_2
  doi: 10.1021/jacs.0c07992
– ident: e_1_2_9_22_1
  doi: 10.1038/s41565-021-00905-4
– ident: e_1_2_9_69_2
  doi: 10.34133/energymatadv.0041
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_9_11_1
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_9_57_1
  doi: 10.1038/s41560-019-0368-4
– year: 2023
  ident: e_1_2_9_67_2
  publication-title: Adv. Mater.
– ident: e_1_2_9_43_2
  doi: 10.1038/s41893-021-00800-9
– ident: e_1_2_9_32_2
  doi: 10.1021/acs.chemrev.9b00482
– ident: e_1_2_9_68_2
  doi: 10.1039/C8EE02892C
– ident: e_1_2_9_2_1
– ident: e_1_2_9_38_1
– ident: e_1_2_9_66_1
– ident: e_1_2_9_5_1
– ident: e_1_2_9_31_2
  doi: 10.1016/j.chempr.2018.09.005
– ident: e_1_2_9_44_1
– ident: e_1_2_9_41_1
– ident: e_1_2_9_49_1
– ident: e_1_2_9_51_2
  doi: 10.1016/j.mtener.2020.100548
– ident: e_1_2_9_33_1
– ident: e_1_2_9_20_2
  doi: 10.1016/j.esci.2023.100096
– ident: e_1_2_9_24_1
  doi: 10.1002/anie.201903941
– ident: e_1_2_9_30_1
– ident: e_1_2_9_34_2
  doi: 10.1038/s41570-020-0160-9
– ident: e_1_2_9_6_2
  doi: 10.1021/cr020730k
– ident: e_1_2_9_8_2
  doi: 10.1007/s11426-023-1907-y
– ident: e_1_2_9_28_2
  doi: 10.1007/s11426-023-1706-8
– ident: e_1_2_9_46_2
  doi: 10.1002/adfm.201804975
– ident: e_1_2_9_52_2
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_9_64_2
  doi: 10.1038/s41467-023-42075-y
– ident: e_1_2_9_71_1
  doi: 10.1002/adfm.202009209
– ident: e_1_2_9_56_1
  doi: 10.1007/s12274-019-2303-1
– ident: e_1_2_9_35_2
  doi: 10.1038/s41586-021-03399-1
– ident: e_1_2_9_45_2
  doi: 10.1021/jacs.6b05958
– ident: e_1_2_9_53_1
  doi: 10.1016/j.wasman.2020.05.049
– ident: e_1_2_9_7_2
  doi: 10.1149/1.2085459
– ident: e_1_2_9_62_1
– ident: e_1_2_9_37_1
  doi: 10.1002/adfm.201900911
– ident: e_1_2_9_10_1
  doi: 10.1039/D2EE03777G
– ident: e_1_2_9_25_1
  doi: 10.1007/s10311-021-01380-y
– ident: e_1_2_9_1_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_9_36_1
  doi: 10.1038/s41467-018-07943-y
– volume: 2022
  year: 2022
  ident: e_1_2_9_17_2
  publication-title: Energy Mater. Adv.
– ident: e_1_2_9_48_1
  doi: 10.1038/s41467-021-26947-9
– ident: e_1_2_9_27_2
  doi: 10.1021/acsenergylett.8b01426
– year: 2024
  ident: e_1_2_9_63_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_70_1
  doi: 10.1021/acsnano.9b03650
– ident: e_1_2_9_54_1
  doi: 10.1038/s41560-018-0147-7
– ident: e_1_2_9_58_1
– ident: e_1_2_9_13_1
– ident: e_1_2_9_42_2
  doi: 10.1073/pnas.2221980120
– ident: e_1_2_9_50_2
  doi: 10.1002/anie.201904174
– ident: e_1_2_9_59_2
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_9_21_2
  doi: 10.34133/energymatadv.0050
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.202312193
– year: 2019
  ident: e_1_2_9_39_2
  publication-title: Adv. Energy Mater.
– ident: e_1_2_9_14_2
  doi: 10.1016/j.esci.2021.10.004
– ident: e_1_2_9_65_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_9_18_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_60_2
  doi: 10.1038/s41467-023-36386-3
– ident: e_1_2_9_9_1
  doi: 10.1007/BF01022245
– ident: e_1_2_9_55_1
  doi: 10.1021/acssuschemeng.8b02191
– ident: e_1_2_9_15_2
  doi: 10.1002/anie.202307475
– ident: e_1_2_9_4_2
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_9_3_2
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_9_19_2
  doi: 10.1038/s41560-021-00797-7
SSID ssj0028806
Score 2.6807947
SecondaryResourceType review_article
Snippet Aqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and...
Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202403712
SubjectTerms Anodes
Aqueous electrolytes
aqueous zinc-ion batteries
Batteries
Cathodes
Design for recycling
Electrolytes
Energy storage
Environmental risk
material design
Recycling
recycling techniques
Risk reduction
Sustainability
Sustainable design
Sustainable energy
Zinc
Title Towards More Sustainable Aqueous Zinc‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403712
https://www.ncbi.nlm.nih.gov/pubmed/38525796
https://www.proquest.com/docview/3055850401
https://www.proquest.com/docview/2985795540
Volume 63
WOSCitedRecordID wos001203033800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTi-1FdpYLgqZhNmjY5LusuLugiPmDxUpI0hQVpZaue_Qn-Rn-JSV-6iAh6a2naTmcmyTdp5huAY0V4YllLPMGZCVB0QDxJUexhqQJJiG-m4ILE9SIcjdh4zK--ZPGX_BDNgpvtGcV4bTu4kPnpJ2mozcA28Z3lkwttmeEFbJzXb8HC2fXg7qIJuox_lhlGhHi2EH1N3Ijw6ewTZiemb2hzFrwWs89g9f9yr8FKhTzdbukq6zCn0w1Y6tUF3zaB3hZbaHP3Mptq9-Yzs8rtGiGz59y9n6Tq_fVtmKVuyctpwuwtuBv0b3vnXlVVwVMkJNhLOlIJppXPsULK2ARpKnyChDbWVAlTHY21kDHlMaUSSWUwBGeMC8QTFBg0sQ2tNEv1Lrg6pMICMoYT5mudcBEmQsmAG1RCYpU44NUqjVRFOW4rXzxEJVkyjqwyokYZDpw07R9Lso0fW7ZrC0VVp8sjS17GqBmVOg4cNZeNEu0_EJFaRUXmU2jIDYZCDuyUlm1eRZilhuWBA7gw4C8yRN3RsN-c7f3lpn1Ytsd2NwIO29B6mj7rA1hUL0-TfHoI8-GYHVYO_QFd4PQE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS-QwEB9kFdaX0_NOr_6564HgUzGbNNvkcVEXl1sXOXdBfAlpNgVBurJ_7vk-gp_RT-JM260scgiHj23TdjozSX6TZn4DcOyEzoi1JLJaYYDi2yJKJRtHPHXtVIgYp-CCxLWfDAbq9lZfV7sJKRem5IeoF9yoZxTjNXVwWpA-fWUNpRRsDPCIUC6hOsPrMfqSbMD6-e_uqF9HXeigZYqREBFVol8yNzJ-uvqE1ZnpDdxcRa_F9NPd-gDBt-FThT3DTuksn2HN5zvQPFuWfPsCclhsop2FV5OpD29ec6vCDko5WczCu_vcPf996k3ysGTmxED7K4y6F8Ozy6iqqxA5kQgeZa3UWeVdrLljDq3CvLSxYNajPV2mXMtzb9Ox1GMpU5Y6RBFaKW2Zzlgb8cQuNPJJ7r9B6BNpCZIpnqnY-0zbJLMubWvEJWLssgCipU6Nq0jHqfbFgynpkrkhZZhaGQGc1O0fS7qNf7Y8XJrIVN1uZoi-TEkcl1oB_KwvoxLpL4jNSVEGP0UmGlEUC2CvNG39KvQfTsm5AfDCgu_IYDqD3kV9tP8_N_2A5uXwqm_6vcGvA9ik87Q3gSeH0JhPF_4INtyf-f1s-r3y6xdFV_cM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KtjS9pI-krdtt60IhJxOtZNnScdkHWbpdlnYDoRchyxIEih320XN_Qn9jfkk1ttfLEkIg5GhbtsczGukbWfMNwFfDpEPWkkhL4QMUm7Ao4ySPaGaSjLHYT8EVies0nc3E5aWcN7sJMRem5odoF9zQM6rxGh3cXufubMcaiinYPsBDQrkU6wx3Yi4T75ud4Y_xxbSNunwHrVOMGIuwEv2WuZHQs_0n7M9Mt-DmPnqtpp_xi0cQ_CUcNdgz7Ned5RU8scVrOBxsS74dA19Um2hX4fdyacOfu9yqsO-lLDer8NdVYW7-_puURVgzc_pA-wQuxqPF4Dxq6ipEhqWMRq6XGS2siSU1xHirEMt1zIi23p7GCdOz1Oos5zLnPCOZ8ShCCiE1kY4kHk-8gYOiLOw7CG3KNUIyQZ2IrXVSp06bLJEel7DcuACirU6VaUjHsfbFb1XTJVOFylCtMgI4bdtf13Qbd7bsbk2kGrdbKaQvE9yPS70AvrSXvRLxL4guUFHKfwpPpUdRJIC3tWnbVzGB5LAyCYBWFrxHBtWfTUbt0fuH3PQZns2HYzWdzL59gOd4Grcm0LQLB-vlxn6Ep-bP-mq1_NR06__cK_aH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards%C2%A0More%C2%A0Sustainable%C2%A0Aqueous%C2%A0Zinc-Ion%C2%A0Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Jiacai&rft.au=Tie%2C+Zhiwei&rft.au=Bi%2C+Songshan&rft.au=Niu%2C+Zhiqiang&rft.date=2024-05-27&rft.eissn=1521-3773&rft.spage=e202403712&rft_id=info:doi/10.1002%2Fanie.202403712&rft_id=info%3Apmid%2F38525796&rft.externalDocID=38525796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon